| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ordtypelem5 | Structured version Visualization version GIF version | ||
| Description: Lemma for ordtype 9443. (Contributed by Mario Carneiro, 25-Jun-2015.) |
| Ref | Expression |
|---|---|
| ordtypelem.1 | ⊢ 𝐹 = recs(𝐺) |
| ordtypelem.2 | ⊢ 𝐶 = {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ ran ℎ 𝑗𝑅𝑤} |
| ordtypelem.3 | ⊢ 𝐺 = (ℎ ∈ V ↦ (℩𝑣 ∈ 𝐶 ∀𝑢 ∈ 𝐶 ¬ 𝑢𝑅𝑣)) |
| ordtypelem.5 | ⊢ 𝑇 = {𝑥 ∈ On ∣ ∃𝑡 ∈ 𝐴 ∀𝑧 ∈ (𝐹 “ 𝑥)𝑧𝑅𝑡} |
| ordtypelem.6 | ⊢ 𝑂 = OrdIso(𝑅, 𝐴) |
| ordtypelem.7 | ⊢ (𝜑 → 𝑅 We 𝐴) |
| ordtypelem.8 | ⊢ (𝜑 → 𝑅 Se 𝐴) |
| Ref | Expression |
|---|---|
| ordtypelem5 | ⊢ (𝜑 → (Ord dom 𝑂 ∧ 𝑂:dom 𝑂⟶𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordtypelem.1 | . . . . 5 ⊢ 𝐹 = recs(𝐺) | |
| 2 | ordtypelem.2 | . . . . 5 ⊢ 𝐶 = {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ ran ℎ 𝑗𝑅𝑤} | |
| 3 | ordtypelem.3 | . . . . 5 ⊢ 𝐺 = (ℎ ∈ V ↦ (℩𝑣 ∈ 𝐶 ∀𝑢 ∈ 𝐶 ¬ 𝑢𝑅𝑣)) | |
| 4 | ordtypelem.5 | . . . . 5 ⊢ 𝑇 = {𝑥 ∈ On ∣ ∃𝑡 ∈ 𝐴 ∀𝑧 ∈ (𝐹 “ 𝑥)𝑧𝑅𝑡} | |
| 5 | ordtypelem.6 | . . . . 5 ⊢ 𝑂 = OrdIso(𝑅, 𝐴) | |
| 6 | ordtypelem.7 | . . . . 5 ⊢ (𝜑 → 𝑅 We 𝐴) | |
| 7 | ordtypelem.8 | . . . . 5 ⊢ (𝜑 → 𝑅 Se 𝐴) | |
| 8 | 1, 2, 3, 4, 5, 6, 7 | ordtypelem2 9430 | . . . 4 ⊢ (𝜑 → Ord 𝑇) |
| 9 | 1 | tfr1a 8323 | . . . . . 6 ⊢ (Fun 𝐹 ∧ Lim dom 𝐹) |
| 10 | 9 | simpri 485 | . . . . 5 ⊢ Lim dom 𝐹 |
| 11 | limord 6372 | . . . . 5 ⊢ (Lim dom 𝐹 → Ord dom 𝐹) | |
| 12 | 10, 11 | ax-mp 5 | . . . 4 ⊢ Ord dom 𝐹 |
| 13 | ordin 6341 | . . . 4 ⊢ ((Ord 𝑇 ∧ Ord dom 𝐹) → Ord (𝑇 ∩ dom 𝐹)) | |
| 14 | 8, 12, 13 | sylancl 586 | . . 3 ⊢ (𝜑 → Ord (𝑇 ∩ dom 𝐹)) |
| 15 | 1, 2, 3, 4, 5, 6, 7 | ordtypelem4 9432 | . . . . 5 ⊢ (𝜑 → 𝑂:(𝑇 ∩ dom 𝐹)⟶𝐴) |
| 16 | 15 | fdmd 6666 | . . . 4 ⊢ (𝜑 → dom 𝑂 = (𝑇 ∩ dom 𝐹)) |
| 17 | ordeq 6318 | . . . 4 ⊢ (dom 𝑂 = (𝑇 ∩ dom 𝐹) → (Ord dom 𝑂 ↔ Ord (𝑇 ∩ dom 𝐹))) | |
| 18 | 16, 17 | syl 17 | . . 3 ⊢ (𝜑 → (Ord dom 𝑂 ↔ Ord (𝑇 ∩ dom 𝐹))) |
| 19 | 14, 18 | mpbird 257 | . 2 ⊢ (𝜑 → Ord dom 𝑂) |
| 20 | 15 | ffdmd 6686 | . 2 ⊢ (𝜑 → 𝑂:dom 𝑂⟶𝐴) |
| 21 | 19, 20 | jca 511 | 1 ⊢ (𝜑 → (Ord dom 𝑂 ∧ 𝑂:dom 𝑂⟶𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∀wral 3044 ∃wrex 3053 {crab 3396 Vcvv 3438 ∩ cin 3904 class class class wbr 5095 ↦ cmpt 5176 Se wse 5574 We wwe 5575 dom cdm 5623 ran crn 5624 “ cima 5626 Ord word 6310 Oncon0 6311 Lim wlim 6312 Fun wfun 6480 ⟶wf 6482 ℩crio 7309 recscrecs 8300 OrdIsocoi 9420 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-se 5577 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-oi 9421 |
| This theorem is referenced by: oicl 9440 oif 9441 |
| Copyright terms: Public domain | W3C validator |