MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordtypelem5 Structured version   Visualization version   GIF version

Theorem ordtypelem5 9408
Description: Lemma for ordtype 9418. (Contributed by Mario Carneiro, 25-Jun-2015.)
Hypotheses
Ref Expression
ordtypelem.1 𝐹 = recs(𝐺)
ordtypelem.2 𝐶 = {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤}
ordtypelem.3 𝐺 = ( ∈ V ↦ (𝑣𝐶𝑢𝐶 ¬ 𝑢𝑅𝑣))
ordtypelem.5 𝑇 = {𝑥 ∈ On ∣ ∃𝑡𝐴𝑧 ∈ (𝐹𝑥)𝑧𝑅𝑡}
ordtypelem.6 𝑂 = OrdIso(𝑅, 𝐴)
ordtypelem.7 (𝜑𝑅 We 𝐴)
ordtypelem.8 (𝜑𝑅 Se 𝐴)
Assertion
Ref Expression
ordtypelem5 (𝜑 → (Ord dom 𝑂𝑂:dom 𝑂𝐴))
Distinct variable groups:   𝑣,𝑢,𝐶   ,𝑗,𝑡,𝑢,𝑣,𝑤,𝑥,𝑧,𝑅   𝐴,,𝑗,𝑡,𝑢,𝑣,𝑤,𝑥,𝑧   𝑡,𝑂,𝑢,𝑣,𝑥   𝜑,𝑡,𝑥   ,𝐹,𝑗,𝑡,𝑢,𝑣,𝑤,𝑥,𝑧
Allowed substitution hints:   𝜑(𝑧,𝑤,𝑣,𝑢,,𝑗)   𝐶(𝑥,𝑧,𝑤,𝑡,,𝑗)   𝑇(𝑥,𝑧,𝑤,𝑣,𝑢,𝑡,,𝑗)   𝐺(𝑥,𝑧,𝑤,𝑣,𝑢,𝑡,,𝑗)   𝑂(𝑧,𝑤,,𝑗)

Proof of Theorem ordtypelem5
StepHypRef Expression
1 ordtypelem.1 . . . . 5 𝐹 = recs(𝐺)
2 ordtypelem.2 . . . . 5 𝐶 = {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤}
3 ordtypelem.3 . . . . 5 𝐺 = ( ∈ V ↦ (𝑣𝐶𝑢𝐶 ¬ 𝑢𝑅𝑣))
4 ordtypelem.5 . . . . 5 𝑇 = {𝑥 ∈ On ∣ ∃𝑡𝐴𝑧 ∈ (𝐹𝑥)𝑧𝑅𝑡}
5 ordtypelem.6 . . . . 5 𝑂 = OrdIso(𝑅, 𝐴)
6 ordtypelem.7 . . . . 5 (𝜑𝑅 We 𝐴)
7 ordtypelem.8 . . . . 5 (𝜑𝑅 Se 𝐴)
81, 2, 3, 4, 5, 6, 7ordtypelem2 9405 . . . 4 (𝜑 → Ord 𝑇)
91tfr1a 8313 . . . . . 6 (Fun 𝐹 ∧ Lim dom 𝐹)
109simpri 485 . . . . 5 Lim dom 𝐹
11 limord 6367 . . . . 5 (Lim dom 𝐹 → Ord dom 𝐹)
1210, 11ax-mp 5 . . . 4 Ord dom 𝐹
13 ordin 6336 . . . 4 ((Ord 𝑇 ∧ Ord dom 𝐹) → Ord (𝑇 ∩ dom 𝐹))
148, 12, 13sylancl 586 . . 3 (𝜑 → Ord (𝑇 ∩ dom 𝐹))
151, 2, 3, 4, 5, 6, 7ordtypelem4 9407 . . . . 5 (𝜑𝑂:(𝑇 ∩ dom 𝐹)⟶𝐴)
1615fdmd 6661 . . . 4 (𝜑 → dom 𝑂 = (𝑇 ∩ dom 𝐹))
17 ordeq 6313 . . . 4 (dom 𝑂 = (𝑇 ∩ dom 𝐹) → (Ord dom 𝑂 ↔ Ord (𝑇 ∩ dom 𝐹)))
1816, 17syl 17 . . 3 (𝜑 → (Ord dom 𝑂 ↔ Ord (𝑇 ∩ dom 𝐹)))
1914, 18mpbird 257 . 2 (𝜑 → Ord dom 𝑂)
2015ffdmd 6681 . 2 (𝜑𝑂:dom 𝑂𝐴)
2119, 20jca 511 1 (𝜑 → (Ord dom 𝑂𝑂:dom 𝑂𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1541  wral 3047  wrex 3056  {crab 3395  Vcvv 3436  cin 3901   class class class wbr 5091  cmpt 5172   Se wse 5567   We wwe 5568  dom cdm 5616  ran crn 5617  cima 5619  Ord word 6305  Oncon0 6306  Lim wlim 6307  Fun wfun 6475  wf 6477  crio 7302  recscrecs 8290  OrdIsocoi 9395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-se 5570  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-oi 9396
This theorem is referenced by:  oicl  9415  oif  9416
  Copyright terms: Public domain W3C validator