| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ordtypelem5 | Structured version Visualization version GIF version | ||
| Description: Lemma for ordtype 9551. (Contributed by Mario Carneiro, 25-Jun-2015.) |
| Ref | Expression |
|---|---|
| ordtypelem.1 | ⊢ 𝐹 = recs(𝐺) |
| ordtypelem.2 | ⊢ 𝐶 = {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ ran ℎ 𝑗𝑅𝑤} |
| ordtypelem.3 | ⊢ 𝐺 = (ℎ ∈ V ↦ (℩𝑣 ∈ 𝐶 ∀𝑢 ∈ 𝐶 ¬ 𝑢𝑅𝑣)) |
| ordtypelem.5 | ⊢ 𝑇 = {𝑥 ∈ On ∣ ∃𝑡 ∈ 𝐴 ∀𝑧 ∈ (𝐹 “ 𝑥)𝑧𝑅𝑡} |
| ordtypelem.6 | ⊢ 𝑂 = OrdIso(𝑅, 𝐴) |
| ordtypelem.7 | ⊢ (𝜑 → 𝑅 We 𝐴) |
| ordtypelem.8 | ⊢ (𝜑 → 𝑅 Se 𝐴) |
| Ref | Expression |
|---|---|
| ordtypelem5 | ⊢ (𝜑 → (Ord dom 𝑂 ∧ 𝑂:dom 𝑂⟶𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordtypelem.1 | . . . . 5 ⊢ 𝐹 = recs(𝐺) | |
| 2 | ordtypelem.2 | . . . . 5 ⊢ 𝐶 = {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ ran ℎ 𝑗𝑅𝑤} | |
| 3 | ordtypelem.3 | . . . . 5 ⊢ 𝐺 = (ℎ ∈ V ↦ (℩𝑣 ∈ 𝐶 ∀𝑢 ∈ 𝐶 ¬ 𝑢𝑅𝑣)) | |
| 4 | ordtypelem.5 | . . . . 5 ⊢ 𝑇 = {𝑥 ∈ On ∣ ∃𝑡 ∈ 𝐴 ∀𝑧 ∈ (𝐹 “ 𝑥)𝑧𝑅𝑡} | |
| 5 | ordtypelem.6 | . . . . 5 ⊢ 𝑂 = OrdIso(𝑅, 𝐴) | |
| 6 | ordtypelem.7 | . . . . 5 ⊢ (𝜑 → 𝑅 We 𝐴) | |
| 7 | ordtypelem.8 | . . . . 5 ⊢ (𝜑 → 𝑅 Se 𝐴) | |
| 8 | 1, 2, 3, 4, 5, 6, 7 | ordtypelem2 9538 | . . . 4 ⊢ (𝜑 → Ord 𝑇) |
| 9 | 1 | tfr1a 8413 | . . . . . 6 ⊢ (Fun 𝐹 ∧ Lim dom 𝐹) |
| 10 | 9 | simpri 485 | . . . . 5 ⊢ Lim dom 𝐹 |
| 11 | limord 6418 | . . . . 5 ⊢ (Lim dom 𝐹 → Ord dom 𝐹) | |
| 12 | 10, 11 | ax-mp 5 | . . . 4 ⊢ Ord dom 𝐹 |
| 13 | ordin 6387 | . . . 4 ⊢ ((Ord 𝑇 ∧ Ord dom 𝐹) → Ord (𝑇 ∩ dom 𝐹)) | |
| 14 | 8, 12, 13 | sylancl 586 | . . 3 ⊢ (𝜑 → Ord (𝑇 ∩ dom 𝐹)) |
| 15 | 1, 2, 3, 4, 5, 6, 7 | ordtypelem4 9540 | . . . . 5 ⊢ (𝜑 → 𝑂:(𝑇 ∩ dom 𝐹)⟶𝐴) |
| 16 | 15 | fdmd 6721 | . . . 4 ⊢ (𝜑 → dom 𝑂 = (𝑇 ∩ dom 𝐹)) |
| 17 | ordeq 6364 | . . . 4 ⊢ (dom 𝑂 = (𝑇 ∩ dom 𝐹) → (Ord dom 𝑂 ↔ Ord (𝑇 ∩ dom 𝐹))) | |
| 18 | 16, 17 | syl 17 | . . 3 ⊢ (𝜑 → (Ord dom 𝑂 ↔ Ord (𝑇 ∩ dom 𝐹))) |
| 19 | 14, 18 | mpbird 257 | . 2 ⊢ (𝜑 → Ord dom 𝑂) |
| 20 | 15 | ffdmd 6741 | . 2 ⊢ (𝜑 → 𝑂:dom 𝑂⟶𝐴) |
| 21 | 19, 20 | jca 511 | 1 ⊢ (𝜑 → (Ord dom 𝑂 ∧ 𝑂:dom 𝑂⟶𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∀wral 3052 ∃wrex 3061 {crab 3420 Vcvv 3464 ∩ cin 3930 class class class wbr 5124 ↦ cmpt 5206 Se wse 5609 We wwe 5610 dom cdm 5659 ran crn 5660 “ cima 5662 Ord word 6356 Oncon0 6357 Lim wlim 6358 Fun wfun 6530 ⟶wf 6532 ℩crio 7366 recscrecs 8389 OrdIsocoi 9528 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-se 5612 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-oi 9529 |
| This theorem is referenced by: oicl 9548 oif 9549 |
| Copyright terms: Public domain | W3C validator |