MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordtypelem5 Structured version   Visualization version   GIF version

Theorem ordtypelem5 9513
Description: Lemma for ordtype 9523. (Contributed by Mario Carneiro, 25-Jun-2015.)
Hypotheses
Ref Expression
ordtypelem.1 𝐹 = recs(𝐺)
ordtypelem.2 𝐶 = {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤}
ordtypelem.3 𝐺 = ( ∈ V ↦ (𝑣𝐶𝑢𝐶 ¬ 𝑢𝑅𝑣))
ordtypelem.5 𝑇 = {𝑥 ∈ On ∣ ∃𝑡𝐴𝑧 ∈ (𝐹𝑥)𝑧𝑅𝑡}
ordtypelem.6 𝑂 = OrdIso(𝑅, 𝐴)
ordtypelem.7 (𝜑𝑅 We 𝐴)
ordtypelem.8 (𝜑𝑅 Se 𝐴)
Assertion
Ref Expression
ordtypelem5 (𝜑 → (Ord dom 𝑂𝑂:dom 𝑂𝐴))
Distinct variable groups:   𝑣,𝑢,𝐶   ,𝑗,𝑡,𝑢,𝑣,𝑤,𝑥,𝑧,𝑅   𝐴,,𝑗,𝑡,𝑢,𝑣,𝑤,𝑥,𝑧   𝑡,𝑂,𝑢,𝑣,𝑥   𝜑,𝑡,𝑥   ,𝐹,𝑗,𝑡,𝑢,𝑣,𝑤,𝑥,𝑧
Allowed substitution hints:   𝜑(𝑧,𝑤,𝑣,𝑢,,𝑗)   𝐶(𝑥,𝑧,𝑤,𝑡,,𝑗)   𝑇(𝑥,𝑧,𝑤,𝑣,𝑢,𝑡,,𝑗)   𝐺(𝑥,𝑧,𝑤,𝑣,𝑢,𝑡,,𝑗)   𝑂(𝑧,𝑤,,𝑗)

Proof of Theorem ordtypelem5
StepHypRef Expression
1 ordtypelem.1 . . . . 5 𝐹 = recs(𝐺)
2 ordtypelem.2 . . . . 5 𝐶 = {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤}
3 ordtypelem.3 . . . . 5 𝐺 = ( ∈ V ↦ (𝑣𝐶𝑢𝐶 ¬ 𝑢𝑅𝑣))
4 ordtypelem.5 . . . . 5 𝑇 = {𝑥 ∈ On ∣ ∃𝑡𝐴𝑧 ∈ (𝐹𝑥)𝑧𝑅𝑡}
5 ordtypelem.6 . . . . 5 𝑂 = OrdIso(𝑅, 𝐴)
6 ordtypelem.7 . . . . 5 (𝜑𝑅 We 𝐴)
7 ordtypelem.8 . . . . 5 (𝜑𝑅 Se 𝐴)
81, 2, 3, 4, 5, 6, 7ordtypelem2 9510 . . . 4 (𝜑 → Ord 𝑇)
91tfr1a 8389 . . . . . 6 (Fun 𝐹 ∧ Lim dom 𝐹)
109simpri 485 . . . . 5 Lim dom 𝐹
11 limord 6414 . . . . 5 (Lim dom 𝐹 → Ord dom 𝐹)
1210, 11ax-mp 5 . . . 4 Ord dom 𝐹
13 ordin 6384 . . . 4 ((Ord 𝑇 ∧ Ord dom 𝐹) → Ord (𝑇 ∩ dom 𝐹))
148, 12, 13sylancl 585 . . 3 (𝜑 → Ord (𝑇 ∩ dom 𝐹))
151, 2, 3, 4, 5, 6, 7ordtypelem4 9512 . . . . 5 (𝜑𝑂:(𝑇 ∩ dom 𝐹)⟶𝐴)
1615fdmd 6718 . . . 4 (𝜑 → dom 𝑂 = (𝑇 ∩ dom 𝐹))
17 ordeq 6361 . . . 4 (dom 𝑂 = (𝑇 ∩ dom 𝐹) → (Ord dom 𝑂 ↔ Ord (𝑇 ∩ dom 𝐹)))
1816, 17syl 17 . . 3 (𝜑 → (Ord dom 𝑂 ↔ Ord (𝑇 ∩ dom 𝐹)))
1914, 18mpbird 257 . 2 (𝜑 → Ord dom 𝑂)
2015ffdmd 6738 . 2 (𝜑𝑂:dom 𝑂𝐴)
2119, 20jca 511 1 (𝜑 → (Ord dom 𝑂𝑂:dom 𝑂𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395   = wceq 1533  wral 3053  wrex 3062  {crab 3424  Vcvv 3466  cin 3939   class class class wbr 5138  cmpt 5221   Se wse 5619   We wwe 5620  dom cdm 5666  ran crn 5667  cima 5669  Ord word 6353  Oncon0 6354  Lim wlim 6355  Fun wfun 6527  wf 6529  crio 7356  recscrecs 8365  OrdIsocoi 9500
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5289  ax-nul 5296  ax-pr 5417  ax-un 7718
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3959  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-tr 5256  df-id 5564  df-eprel 5570  df-po 5578  df-so 5579  df-fr 5621  df-se 5622  df-we 5623  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-riota 7357  df-ov 7404  df-2nd 7969  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-oi 9501
This theorem is referenced by:  oicl  9520  oif  9521
  Copyright terms: Public domain W3C validator