![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ordtypelem5 | Structured version Visualization version GIF version |
Description: Lemma for ordtype 9523. (Contributed by Mario Carneiro, 25-Jun-2015.) |
Ref | Expression |
---|---|
ordtypelem.1 | ⊢ 𝐹 = recs(𝐺) |
ordtypelem.2 | ⊢ 𝐶 = {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ ran ℎ 𝑗𝑅𝑤} |
ordtypelem.3 | ⊢ 𝐺 = (ℎ ∈ V ↦ (℩𝑣 ∈ 𝐶 ∀𝑢 ∈ 𝐶 ¬ 𝑢𝑅𝑣)) |
ordtypelem.5 | ⊢ 𝑇 = {𝑥 ∈ On ∣ ∃𝑡 ∈ 𝐴 ∀𝑧 ∈ (𝐹 “ 𝑥)𝑧𝑅𝑡} |
ordtypelem.6 | ⊢ 𝑂 = OrdIso(𝑅, 𝐴) |
ordtypelem.7 | ⊢ (𝜑 → 𝑅 We 𝐴) |
ordtypelem.8 | ⊢ (𝜑 → 𝑅 Se 𝐴) |
Ref | Expression |
---|---|
ordtypelem5 | ⊢ (𝜑 → (Ord dom 𝑂 ∧ 𝑂:dom 𝑂⟶𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordtypelem.1 | . . . . 5 ⊢ 𝐹 = recs(𝐺) | |
2 | ordtypelem.2 | . . . . 5 ⊢ 𝐶 = {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ ran ℎ 𝑗𝑅𝑤} | |
3 | ordtypelem.3 | . . . . 5 ⊢ 𝐺 = (ℎ ∈ V ↦ (℩𝑣 ∈ 𝐶 ∀𝑢 ∈ 𝐶 ¬ 𝑢𝑅𝑣)) | |
4 | ordtypelem.5 | . . . . 5 ⊢ 𝑇 = {𝑥 ∈ On ∣ ∃𝑡 ∈ 𝐴 ∀𝑧 ∈ (𝐹 “ 𝑥)𝑧𝑅𝑡} | |
5 | ordtypelem.6 | . . . . 5 ⊢ 𝑂 = OrdIso(𝑅, 𝐴) | |
6 | ordtypelem.7 | . . . . 5 ⊢ (𝜑 → 𝑅 We 𝐴) | |
7 | ordtypelem.8 | . . . . 5 ⊢ (𝜑 → 𝑅 Se 𝐴) | |
8 | 1, 2, 3, 4, 5, 6, 7 | ordtypelem2 9510 | . . . 4 ⊢ (𝜑 → Ord 𝑇) |
9 | 1 | tfr1a 8389 | . . . . . 6 ⊢ (Fun 𝐹 ∧ Lim dom 𝐹) |
10 | 9 | simpri 485 | . . . . 5 ⊢ Lim dom 𝐹 |
11 | limord 6414 | . . . . 5 ⊢ (Lim dom 𝐹 → Ord dom 𝐹) | |
12 | 10, 11 | ax-mp 5 | . . . 4 ⊢ Ord dom 𝐹 |
13 | ordin 6384 | . . . 4 ⊢ ((Ord 𝑇 ∧ Ord dom 𝐹) → Ord (𝑇 ∩ dom 𝐹)) | |
14 | 8, 12, 13 | sylancl 585 | . . 3 ⊢ (𝜑 → Ord (𝑇 ∩ dom 𝐹)) |
15 | 1, 2, 3, 4, 5, 6, 7 | ordtypelem4 9512 | . . . . 5 ⊢ (𝜑 → 𝑂:(𝑇 ∩ dom 𝐹)⟶𝐴) |
16 | 15 | fdmd 6718 | . . . 4 ⊢ (𝜑 → dom 𝑂 = (𝑇 ∩ dom 𝐹)) |
17 | ordeq 6361 | . . . 4 ⊢ (dom 𝑂 = (𝑇 ∩ dom 𝐹) → (Ord dom 𝑂 ↔ Ord (𝑇 ∩ dom 𝐹))) | |
18 | 16, 17 | syl 17 | . . 3 ⊢ (𝜑 → (Ord dom 𝑂 ↔ Ord (𝑇 ∩ dom 𝐹))) |
19 | 14, 18 | mpbird 257 | . 2 ⊢ (𝜑 → Ord dom 𝑂) |
20 | 15 | ffdmd 6738 | . 2 ⊢ (𝜑 → 𝑂:dom 𝑂⟶𝐴) |
21 | 19, 20 | jca 511 | 1 ⊢ (𝜑 → (Ord dom 𝑂 ∧ 𝑂:dom 𝑂⟶𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1533 ∀wral 3053 ∃wrex 3062 {crab 3424 Vcvv 3466 ∩ cin 3939 class class class wbr 5138 ↦ cmpt 5221 Se wse 5619 We wwe 5620 dom cdm 5666 ran crn 5667 “ cima 5669 Ord word 6353 Oncon0 6354 Lim wlim 6355 Fun wfun 6527 ⟶wf 6529 ℩crio 7356 recscrecs 8365 OrdIsocoi 9500 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5289 ax-nul 5296 ax-pr 5417 ax-un 7718 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3959 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-tr 5256 df-id 5564 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-se 5622 df-we 5623 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-pred 6290 df-ord 6357 df-on 6358 df-lim 6359 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-riota 7357 df-ov 7404 df-2nd 7969 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-oi 9501 |
This theorem is referenced by: oicl 9520 oif 9521 |
Copyright terms: Public domain | W3C validator |