![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ordtypelem5 | Structured version Visualization version GIF version |
Description: Lemma for ordtype 9570. (Contributed by Mario Carneiro, 25-Jun-2015.) |
Ref | Expression |
---|---|
ordtypelem.1 | ⊢ 𝐹 = recs(𝐺) |
ordtypelem.2 | ⊢ 𝐶 = {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ ran ℎ 𝑗𝑅𝑤} |
ordtypelem.3 | ⊢ 𝐺 = (ℎ ∈ V ↦ (℩𝑣 ∈ 𝐶 ∀𝑢 ∈ 𝐶 ¬ 𝑢𝑅𝑣)) |
ordtypelem.5 | ⊢ 𝑇 = {𝑥 ∈ On ∣ ∃𝑡 ∈ 𝐴 ∀𝑧 ∈ (𝐹 “ 𝑥)𝑧𝑅𝑡} |
ordtypelem.6 | ⊢ 𝑂 = OrdIso(𝑅, 𝐴) |
ordtypelem.7 | ⊢ (𝜑 → 𝑅 We 𝐴) |
ordtypelem.8 | ⊢ (𝜑 → 𝑅 Se 𝐴) |
Ref | Expression |
---|---|
ordtypelem5 | ⊢ (𝜑 → (Ord dom 𝑂 ∧ 𝑂:dom 𝑂⟶𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordtypelem.1 | . . . . 5 ⊢ 𝐹 = recs(𝐺) | |
2 | ordtypelem.2 | . . . . 5 ⊢ 𝐶 = {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ ran ℎ 𝑗𝑅𝑤} | |
3 | ordtypelem.3 | . . . . 5 ⊢ 𝐺 = (ℎ ∈ V ↦ (℩𝑣 ∈ 𝐶 ∀𝑢 ∈ 𝐶 ¬ 𝑢𝑅𝑣)) | |
4 | ordtypelem.5 | . . . . 5 ⊢ 𝑇 = {𝑥 ∈ On ∣ ∃𝑡 ∈ 𝐴 ∀𝑧 ∈ (𝐹 “ 𝑥)𝑧𝑅𝑡} | |
5 | ordtypelem.6 | . . . . 5 ⊢ 𝑂 = OrdIso(𝑅, 𝐴) | |
6 | ordtypelem.7 | . . . . 5 ⊢ (𝜑 → 𝑅 We 𝐴) | |
7 | ordtypelem.8 | . . . . 5 ⊢ (𝜑 → 𝑅 Se 𝐴) | |
8 | 1, 2, 3, 4, 5, 6, 7 | ordtypelem2 9557 | . . . 4 ⊢ (𝜑 → Ord 𝑇) |
9 | 1 | tfr1a 8433 | . . . . . 6 ⊢ (Fun 𝐹 ∧ Lim dom 𝐹) |
10 | 9 | simpri 485 | . . . . 5 ⊢ Lim dom 𝐹 |
11 | limord 6446 | . . . . 5 ⊢ (Lim dom 𝐹 → Ord dom 𝐹) | |
12 | 10, 11 | ax-mp 5 | . . . 4 ⊢ Ord dom 𝐹 |
13 | ordin 6416 | . . . 4 ⊢ ((Ord 𝑇 ∧ Ord dom 𝐹) → Ord (𝑇 ∩ dom 𝐹)) | |
14 | 8, 12, 13 | sylancl 586 | . . 3 ⊢ (𝜑 → Ord (𝑇 ∩ dom 𝐹)) |
15 | 1, 2, 3, 4, 5, 6, 7 | ordtypelem4 9559 | . . . . 5 ⊢ (𝜑 → 𝑂:(𝑇 ∩ dom 𝐹)⟶𝐴) |
16 | 15 | fdmd 6747 | . . . 4 ⊢ (𝜑 → dom 𝑂 = (𝑇 ∩ dom 𝐹)) |
17 | ordeq 6393 | . . . 4 ⊢ (dom 𝑂 = (𝑇 ∩ dom 𝐹) → (Ord dom 𝑂 ↔ Ord (𝑇 ∩ dom 𝐹))) | |
18 | 16, 17 | syl 17 | . . 3 ⊢ (𝜑 → (Ord dom 𝑂 ↔ Ord (𝑇 ∩ dom 𝐹))) |
19 | 14, 18 | mpbird 257 | . 2 ⊢ (𝜑 → Ord dom 𝑂) |
20 | 15 | ffdmd 6767 | . 2 ⊢ (𝜑 → 𝑂:dom 𝑂⟶𝐴) |
21 | 19, 20 | jca 511 | 1 ⊢ (𝜑 → (Ord dom 𝑂 ∧ 𝑂:dom 𝑂⟶𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∀wral 3059 ∃wrex 3068 {crab 3433 Vcvv 3478 ∩ cin 3962 class class class wbr 5148 ↦ cmpt 5231 Se wse 5639 We wwe 5640 dom cdm 5689 ran crn 5690 “ cima 5692 Ord word 6385 Oncon0 6386 Lim wlim 6387 Fun wfun 6557 ⟶wf 6559 ℩crio 7387 recscrecs 8409 OrdIsocoi 9547 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-se 5642 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-oi 9548 |
This theorem is referenced by: oicl 9567 oif 9568 |
Copyright terms: Public domain | W3C validator |