| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ordtypelem5 | Structured version Visualization version GIF version | ||
| Description: Lemma for ordtype 9418. (Contributed by Mario Carneiro, 25-Jun-2015.) |
| Ref | Expression |
|---|---|
| ordtypelem.1 | ⊢ 𝐹 = recs(𝐺) |
| ordtypelem.2 | ⊢ 𝐶 = {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ ran ℎ 𝑗𝑅𝑤} |
| ordtypelem.3 | ⊢ 𝐺 = (ℎ ∈ V ↦ (℩𝑣 ∈ 𝐶 ∀𝑢 ∈ 𝐶 ¬ 𝑢𝑅𝑣)) |
| ordtypelem.5 | ⊢ 𝑇 = {𝑥 ∈ On ∣ ∃𝑡 ∈ 𝐴 ∀𝑧 ∈ (𝐹 “ 𝑥)𝑧𝑅𝑡} |
| ordtypelem.6 | ⊢ 𝑂 = OrdIso(𝑅, 𝐴) |
| ordtypelem.7 | ⊢ (𝜑 → 𝑅 We 𝐴) |
| ordtypelem.8 | ⊢ (𝜑 → 𝑅 Se 𝐴) |
| Ref | Expression |
|---|---|
| ordtypelem5 | ⊢ (𝜑 → (Ord dom 𝑂 ∧ 𝑂:dom 𝑂⟶𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordtypelem.1 | . . . . 5 ⊢ 𝐹 = recs(𝐺) | |
| 2 | ordtypelem.2 | . . . . 5 ⊢ 𝐶 = {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ ran ℎ 𝑗𝑅𝑤} | |
| 3 | ordtypelem.3 | . . . . 5 ⊢ 𝐺 = (ℎ ∈ V ↦ (℩𝑣 ∈ 𝐶 ∀𝑢 ∈ 𝐶 ¬ 𝑢𝑅𝑣)) | |
| 4 | ordtypelem.5 | . . . . 5 ⊢ 𝑇 = {𝑥 ∈ On ∣ ∃𝑡 ∈ 𝐴 ∀𝑧 ∈ (𝐹 “ 𝑥)𝑧𝑅𝑡} | |
| 5 | ordtypelem.6 | . . . . 5 ⊢ 𝑂 = OrdIso(𝑅, 𝐴) | |
| 6 | ordtypelem.7 | . . . . 5 ⊢ (𝜑 → 𝑅 We 𝐴) | |
| 7 | ordtypelem.8 | . . . . 5 ⊢ (𝜑 → 𝑅 Se 𝐴) | |
| 8 | 1, 2, 3, 4, 5, 6, 7 | ordtypelem2 9405 | . . . 4 ⊢ (𝜑 → Ord 𝑇) |
| 9 | 1 | tfr1a 8313 | . . . . . 6 ⊢ (Fun 𝐹 ∧ Lim dom 𝐹) |
| 10 | 9 | simpri 485 | . . . . 5 ⊢ Lim dom 𝐹 |
| 11 | limord 6367 | . . . . 5 ⊢ (Lim dom 𝐹 → Ord dom 𝐹) | |
| 12 | 10, 11 | ax-mp 5 | . . . 4 ⊢ Ord dom 𝐹 |
| 13 | ordin 6336 | . . . 4 ⊢ ((Ord 𝑇 ∧ Ord dom 𝐹) → Ord (𝑇 ∩ dom 𝐹)) | |
| 14 | 8, 12, 13 | sylancl 586 | . . 3 ⊢ (𝜑 → Ord (𝑇 ∩ dom 𝐹)) |
| 15 | 1, 2, 3, 4, 5, 6, 7 | ordtypelem4 9407 | . . . . 5 ⊢ (𝜑 → 𝑂:(𝑇 ∩ dom 𝐹)⟶𝐴) |
| 16 | 15 | fdmd 6661 | . . . 4 ⊢ (𝜑 → dom 𝑂 = (𝑇 ∩ dom 𝐹)) |
| 17 | ordeq 6313 | . . . 4 ⊢ (dom 𝑂 = (𝑇 ∩ dom 𝐹) → (Ord dom 𝑂 ↔ Ord (𝑇 ∩ dom 𝐹))) | |
| 18 | 16, 17 | syl 17 | . . 3 ⊢ (𝜑 → (Ord dom 𝑂 ↔ Ord (𝑇 ∩ dom 𝐹))) |
| 19 | 14, 18 | mpbird 257 | . 2 ⊢ (𝜑 → Ord dom 𝑂) |
| 20 | 15 | ffdmd 6681 | . 2 ⊢ (𝜑 → 𝑂:dom 𝑂⟶𝐴) |
| 21 | 19, 20 | jca 511 | 1 ⊢ (𝜑 → (Ord dom 𝑂 ∧ 𝑂:dom 𝑂⟶𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∀wral 3047 ∃wrex 3056 {crab 3395 Vcvv 3436 ∩ cin 3901 class class class wbr 5091 ↦ cmpt 5172 Se wse 5567 We wwe 5568 dom cdm 5616 ran crn 5617 “ cima 5619 Ord word 6305 Oncon0 6306 Lim wlim 6307 Fun wfun 6475 ⟶wf 6477 ℩crio 7302 recscrecs 8290 OrdIsocoi 9395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-se 5570 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-oi 9396 |
| This theorem is referenced by: oicl 9415 oif 9416 |
| Copyright terms: Public domain | W3C validator |