| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > gchor | Structured version Visualization version GIF version | ||
| Description: If 𝐴 ≤ 𝐵 ≤ 𝒫 𝐴, and 𝐴 is an infinite GCH-set, then either 𝐴 = 𝐵 or 𝐵 = 𝒫 𝐴 in cardinality. (Contributed by Mario Carneiro, 15-May-2015.) |
| Ref | Expression |
|---|---|
| gchor | ⊢ (((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) ∧ (𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝒫 𝐴)) → (𝐴 ≈ 𝐵 ∨ 𝐵 ≈ 𝒫 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simprr 772 | . . 3 ⊢ (((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) ∧ (𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝒫 𝐴)) → 𝐵 ≼ 𝒫 𝐴) | |
| 2 | brdom2 8904 | . . 3 ⊢ (𝐵 ≼ 𝒫 𝐴 ↔ (𝐵 ≺ 𝒫 𝐴 ∨ 𝐵 ≈ 𝒫 𝐴)) | |
| 3 | 1, 2 | sylib 218 | . 2 ⊢ (((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) ∧ (𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝒫 𝐴)) → (𝐵 ≺ 𝒫 𝐴 ∨ 𝐵 ≈ 𝒫 𝐴)) |
| 4 | gchen1 10513 | . . . . 5 ⊢ (((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) ∧ (𝐴 ≼ 𝐵 ∧ 𝐵 ≺ 𝒫 𝐴)) → 𝐴 ≈ 𝐵) | |
| 5 | 4 | expr 456 | . . . 4 ⊢ (((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐴 ≼ 𝐵) → (𝐵 ≺ 𝒫 𝐴 → 𝐴 ≈ 𝐵)) |
| 6 | 5 | adantrr 717 | . . 3 ⊢ (((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) ∧ (𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝒫 𝐴)) → (𝐵 ≺ 𝒫 𝐴 → 𝐴 ≈ 𝐵)) |
| 7 | 6 | orim1d 967 | . 2 ⊢ (((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) ∧ (𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝒫 𝐴)) → ((𝐵 ≺ 𝒫 𝐴 ∨ 𝐵 ≈ 𝒫 𝐴) → (𝐴 ≈ 𝐵 ∨ 𝐵 ≈ 𝒫 𝐴))) |
| 8 | 3, 7 | mpd 15 | 1 ⊢ (((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) ∧ (𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝒫 𝐴)) → (𝐴 ≈ 𝐵 ∨ 𝐵 ≈ 𝒫 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 847 ∈ wcel 2111 𝒫 cpw 4550 class class class wbr 5091 ≈ cen 8866 ≼ cdom 8867 ≺ csdm 8868 Fincfn 8869 GCHcgch 10508 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-br 5092 df-opab 5154 df-xp 5622 df-rel 5623 df-f1o 6488 df-en 8870 df-dom 8871 df-sdom 8872 df-gch 10509 |
| This theorem is referenced by: gchdomtri 10517 gchpwdom 10558 |
| Copyright terms: Public domain | W3C validator |