MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gchor Structured version   Visualization version   GIF version

Theorem gchor 10128
Description: If 𝐴𝐵 ≤ 𝒫 𝐴, and 𝐴 is an infinite GCH-set, then either 𝐴 = 𝐵 or 𝐵 = 𝒫 𝐴 in cardinality. (Contributed by Mario Carneiro, 15-May-2015.)
Assertion
Ref Expression
gchor (((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) ∧ (𝐴𝐵𝐵 ≼ 𝒫 𝐴)) → (𝐴𝐵𝐵 ≈ 𝒫 𝐴))

Proof of Theorem gchor
StepHypRef Expression
1 simprr 773 . . 3 (((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) ∧ (𝐴𝐵𝐵 ≼ 𝒫 𝐴)) → 𝐵 ≼ 𝒫 𝐴)
2 brdom2 8586 . . 3 (𝐵 ≼ 𝒫 𝐴 ↔ (𝐵 ≺ 𝒫 𝐴𝐵 ≈ 𝒫 𝐴))
31, 2sylib 221 . 2 (((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) ∧ (𝐴𝐵𝐵 ≼ 𝒫 𝐴)) → (𝐵 ≺ 𝒫 𝐴𝐵 ≈ 𝒫 𝐴))
4 gchen1 10126 . . . . 5 (((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) ∧ (𝐴𝐵𝐵 ≺ 𝒫 𝐴)) → 𝐴𝐵)
54expr 460 . . . 4 (((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐴𝐵) → (𝐵 ≺ 𝒫 𝐴𝐴𝐵))
65adantrr 717 . . 3 (((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) ∧ (𝐴𝐵𝐵 ≼ 𝒫 𝐴)) → (𝐵 ≺ 𝒫 𝐴𝐴𝐵))
76orim1d 965 . 2 (((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) ∧ (𝐴𝐵𝐵 ≼ 𝒫 𝐴)) → ((𝐵 ≺ 𝒫 𝐴𝐵 ≈ 𝒫 𝐴) → (𝐴𝐵𝐵 ≈ 𝒫 𝐴)))
83, 7mpd 15 1 (((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) ∧ (𝐴𝐵𝐵 ≼ 𝒫 𝐴)) → (𝐴𝐵𝐵 ≈ 𝒫 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399  wo 846  wcel 2113  𝒫 cpw 4489   class class class wbr 5031  cen 8553  cdom 8554  csdm 8555  Fincfn 8556  GCHcgch 10121
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1916  ax-6 1974  ax-7 2019  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2161  ax-12 2178  ax-ext 2710  ax-sep 5168  ax-nul 5175  ax-pr 5297
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2074  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ral 3058  df-rex 3059  df-rab 3062  df-v 3400  df-dif 3847  df-un 3849  df-in 3851  df-ss 3861  df-nul 4213  df-if 4416  df-pw 4491  df-sn 4518  df-pr 4520  df-op 4524  df-br 5032  df-opab 5094  df-xp 5532  df-rel 5533  df-f1o 6347  df-en 8557  df-dom 8558  df-sdom 8559  df-gch 10122
This theorem is referenced by:  gchdomtri  10130  gchpwdom  10171
  Copyright terms: Public domain W3C validator