MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gchor Structured version   Visualization version   GIF version

Theorem gchor 10540
Description: If 𝐴𝐵 ≤ 𝒫 𝐴, and 𝐴 is an infinite GCH-set, then either 𝐴 = 𝐵 or 𝐵 = 𝒫 𝐴 in cardinality. (Contributed by Mario Carneiro, 15-May-2015.)
Assertion
Ref Expression
gchor (((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) ∧ (𝐴𝐵𝐵 ≼ 𝒫 𝐴)) → (𝐴𝐵𝐵 ≈ 𝒫 𝐴))

Proof of Theorem gchor
StepHypRef Expression
1 simprr 772 . . 3 (((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) ∧ (𝐴𝐵𝐵 ≼ 𝒫 𝐴)) → 𝐵 ≼ 𝒫 𝐴)
2 brdom2 8914 . . 3 (𝐵 ≼ 𝒫 𝐴 ↔ (𝐵 ≺ 𝒫 𝐴𝐵 ≈ 𝒫 𝐴))
31, 2sylib 218 . 2 (((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) ∧ (𝐴𝐵𝐵 ≼ 𝒫 𝐴)) → (𝐵 ≺ 𝒫 𝐴𝐵 ≈ 𝒫 𝐴))
4 gchen1 10538 . . . . 5 (((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) ∧ (𝐴𝐵𝐵 ≺ 𝒫 𝐴)) → 𝐴𝐵)
54expr 456 . . . 4 (((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐴𝐵) → (𝐵 ≺ 𝒫 𝐴𝐴𝐵))
65adantrr 717 . . 3 (((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) ∧ (𝐴𝐵𝐵 ≼ 𝒫 𝐴)) → (𝐵 ≺ 𝒫 𝐴𝐴𝐵))
76orim1d 967 . 2 (((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) ∧ (𝐴𝐵𝐵 ≼ 𝒫 𝐴)) → ((𝐵 ≺ 𝒫 𝐴𝐵 ≈ 𝒫 𝐴) → (𝐴𝐵𝐵 ≈ 𝒫 𝐴)))
83, 7mpd 15 1 (((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) ∧ (𝐴𝐵𝐵 ≼ 𝒫 𝐴)) → (𝐴𝐵𝐵 ≈ 𝒫 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847  wcel 2109  𝒫 cpw 4553   class class class wbr 5095  cen 8876  cdom 8877  csdm 8878  Fincfn 8879  GCHcgch 10533
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-br 5096  df-opab 5158  df-xp 5629  df-rel 5630  df-f1o 6493  df-en 8880  df-dom 8881  df-sdom 8882  df-gch 10534
This theorem is referenced by:  gchdomtri  10542  gchpwdom  10583
  Copyright terms: Public domain W3C validator