MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gchor Structured version   Visualization version   GIF version

Theorem gchor 10525
Description: If 𝐴𝐵 ≤ 𝒫 𝐴, and 𝐴 is an infinite GCH-set, then either 𝐴 = 𝐵 or 𝐵 = 𝒫 𝐴 in cardinality. (Contributed by Mario Carneiro, 15-May-2015.)
Assertion
Ref Expression
gchor (((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) ∧ (𝐴𝐵𝐵 ≼ 𝒫 𝐴)) → (𝐴𝐵𝐵 ≈ 𝒫 𝐴))

Proof of Theorem gchor
StepHypRef Expression
1 simprr 772 . . 3 (((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) ∧ (𝐴𝐵𝐵 ≼ 𝒫 𝐴)) → 𝐵 ≼ 𝒫 𝐴)
2 brdom2 8911 . . 3 (𝐵 ≼ 𝒫 𝐴 ↔ (𝐵 ≺ 𝒫 𝐴𝐵 ≈ 𝒫 𝐴))
31, 2sylib 218 . 2 (((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) ∧ (𝐴𝐵𝐵 ≼ 𝒫 𝐴)) → (𝐵 ≺ 𝒫 𝐴𝐵 ≈ 𝒫 𝐴))
4 gchen1 10523 . . . . 5 (((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) ∧ (𝐴𝐵𝐵 ≺ 𝒫 𝐴)) → 𝐴𝐵)
54expr 456 . . . 4 (((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) ∧ 𝐴𝐵) → (𝐵 ≺ 𝒫 𝐴𝐴𝐵))
65adantrr 717 . . 3 (((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) ∧ (𝐴𝐵𝐵 ≼ 𝒫 𝐴)) → (𝐵 ≺ 𝒫 𝐴𝐴𝐵))
76orim1d 967 . 2 (((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) ∧ (𝐴𝐵𝐵 ≼ 𝒫 𝐴)) → ((𝐵 ≺ 𝒫 𝐴𝐵 ≈ 𝒫 𝐴) → (𝐴𝐵𝐵 ≈ 𝒫 𝐴)))
83, 7mpd 15 1 (((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) ∧ (𝐴𝐵𝐵 ≼ 𝒫 𝐴)) → (𝐴𝐵𝐵 ≈ 𝒫 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847  wcel 2113  𝒫 cpw 4549   class class class wbr 5093  cen 8872  cdom 8873  csdm 8874  Fincfn 8875  GCHcgch 10518
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-br 5094  df-opab 5156  df-xp 5625  df-rel 5626  df-f1o 6493  df-en 8876  df-dom 8877  df-sdom 8878  df-gch 10519
This theorem is referenced by:  gchdomtri  10527  gchpwdom  10568
  Copyright terms: Public domain W3C validator