| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ordtri2or2 | Structured version Visualization version GIF version | ||
| Description: A trichotomy law for ordinal classes. (Contributed by NM, 2-Nov-2003.) |
| Ref | Expression |
|---|---|
| ordtri2or2 | ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordtri2or 6435 | . 2 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 ∈ 𝐵 ∨ 𝐵 ⊆ 𝐴)) | |
| 2 | ordelss 6351 | . . . . 5 ⊢ ((Ord 𝐵 ∧ 𝐴 ∈ 𝐵) → 𝐴 ⊆ 𝐵) | |
| 3 | 2 | ex 412 | . . . 4 ⊢ (Ord 𝐵 → (𝐴 ∈ 𝐵 → 𝐴 ⊆ 𝐵)) |
| 4 | 3 | orim1d 967 | . . 3 ⊢ (Ord 𝐵 → ((𝐴 ∈ 𝐵 ∨ 𝐵 ⊆ 𝐴) → (𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴))) |
| 5 | 4 | adantl 481 | . 2 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → ((𝐴 ∈ 𝐵 ∨ 𝐵 ⊆ 𝐴) → (𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴))) |
| 6 | 1, 5 | mpd 15 | 1 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 ∈ wcel 2109 ⊆ wss 3917 Ord word 6334 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-tr 5218 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-ord 6338 |
| This theorem is referenced by: ordtri2or3 6437 ordssun 6439 ordequn 6440 onunel 6442 onun2 6445 ordunpr 7804 omun 7867 ackbij2 10202 sornom 10237 fin23lem23 10286 isf32lem2 10314 fpwwe2lem9 10599 noextendseq 27586 noetalem1 27660 hfun 36173 onsucunipr 43368 |
| Copyright terms: Public domain | W3C validator |