| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ordtri2or2 | Structured version Visualization version GIF version | ||
| Description: A trichotomy law for ordinal classes. (Contributed by NM, 2-Nov-2003.) |
| Ref | Expression |
|---|---|
| ordtri2or2 | ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordtri2or 6406 | . 2 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 ∈ 𝐵 ∨ 𝐵 ⊆ 𝐴)) | |
| 2 | ordelss 6322 | . . . . 5 ⊢ ((Ord 𝐵 ∧ 𝐴 ∈ 𝐵) → 𝐴 ⊆ 𝐵) | |
| 3 | 2 | ex 412 | . . . 4 ⊢ (Ord 𝐵 → (𝐴 ∈ 𝐵 → 𝐴 ⊆ 𝐵)) |
| 4 | 3 | orim1d 967 | . . 3 ⊢ (Ord 𝐵 → ((𝐴 ∈ 𝐵 ∨ 𝐵 ⊆ 𝐴) → (𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴))) |
| 5 | 4 | adantl 481 | . 2 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → ((𝐴 ∈ 𝐵 ∨ 𝐵 ⊆ 𝐴) → (𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴))) |
| 6 | 1, 5 | mpd 15 | 1 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 ∈ wcel 2111 ⊆ wss 3902 Ord word 6305 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-tr 5199 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-ord 6309 |
| This theorem is referenced by: ordtri2or3 6408 ordssun 6410 ordequn 6411 onunel 6413 onun2 6416 ordunpr 7756 omun 7818 ackbij2 10133 sornom 10168 fin23lem23 10217 isf32lem2 10245 fpwwe2lem9 10530 noextendseq 27607 noetalem1 27681 hfun 36218 onsucunipr 43411 |
| Copyright terms: Public domain | W3C validator |