![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ordtri2or2 | Structured version Visualization version GIF version |
Description: A trichotomy law for ordinal classes. (Contributed by NM, 2-Nov-2003.) |
Ref | Expression |
---|---|
ordtri2or2 | ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordtri2or 6452 | . 2 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 ∈ 𝐵 ∨ 𝐵 ⊆ 𝐴)) | |
2 | ordelss 6370 | . . . . 5 ⊢ ((Ord 𝐵 ∧ 𝐴 ∈ 𝐵) → 𝐴 ⊆ 𝐵) | |
3 | 2 | ex 412 | . . . 4 ⊢ (Ord 𝐵 → (𝐴 ∈ 𝐵 → 𝐴 ⊆ 𝐵)) |
4 | 3 | orim1d 962 | . . 3 ⊢ (Ord 𝐵 → ((𝐴 ∈ 𝐵 ∨ 𝐵 ⊆ 𝐴) → (𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴))) |
5 | 4 | adantl 481 | . 2 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → ((𝐴 ∈ 𝐵 ∨ 𝐵 ⊆ 𝐴) → (𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴))) |
6 | 1, 5 | mpd 15 | 1 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∨ wo 844 ∈ wcel 2098 ⊆ wss 3940 Ord word 6353 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2695 ax-sep 5289 ax-nul 5296 ax-pr 5417 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-ne 2933 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3959 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-br 5139 df-opab 5201 df-tr 5256 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-we 5623 df-ord 6357 |
This theorem is referenced by: ordtri2or3 6454 ordssun 6456 ordequn 6457 onunel 6459 onun2 6462 ordunpr 7807 omun 7871 ackbij2 10234 sornom 10268 fin23lem23 10317 isf32lem2 10345 fpwwe2lem9 10630 noextendseq 27516 noetalem1 27590 hfun 35645 onsucunipr 42611 |
Copyright terms: Public domain | W3C validator |