MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordtri2or2 Structured version   Visualization version   GIF version

Theorem ordtri2or2 6483
Description: A trichotomy law for ordinal classes. (Contributed by NM, 2-Nov-2003.)
Assertion
Ref Expression
ordtri2or2 ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴𝐵𝐵𝐴))

Proof of Theorem ordtri2or2
StepHypRef Expression
1 ordtri2or 6482 . 2 ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴𝐵𝐵𝐴))
2 ordelss 6400 . . . . 5 ((Ord 𝐵𝐴𝐵) → 𝐴𝐵)
32ex 412 . . . 4 (Ord 𝐵 → (𝐴𝐵𝐴𝐵))
43orim1d 968 . . 3 (Ord 𝐵 → ((𝐴𝐵𝐵𝐴) → (𝐴𝐵𝐵𝐴)))
54adantl 481 . 2 ((Ord 𝐴 ∧ Ord 𝐵) → ((𝐴𝐵𝐵𝐴) → (𝐴𝐵𝐵𝐴)))
61, 5mpd 15 1 ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴𝐵𝐵𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 848  wcel 2108  wss 3951  Ord word 6383
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-tr 5260  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-ord 6387
This theorem is referenced by:  ordtri2or3  6484  ordssun  6486  ordequn  6487  onunel  6489  onun2  6492  ordunpr  7846  omun  7909  ackbij2  10282  sornom  10317  fin23lem23  10366  isf32lem2  10394  fpwwe2lem9  10679  noextendseq  27712  noetalem1  27786  hfun  36179  onsucunipr  43385
  Copyright terms: Public domain W3C validator