MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordtri2or2 Structured version   Visualization version   GIF version

Theorem ordtri2or2 6453
Description: A trichotomy law for ordinal classes. (Contributed by NM, 2-Nov-2003.)
Assertion
Ref Expression
ordtri2or2 ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴𝐵𝐵𝐴))

Proof of Theorem ordtri2or2
StepHypRef Expression
1 ordtri2or 6452 . 2 ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴𝐵𝐵𝐴))
2 ordelss 6370 . . . . 5 ((Ord 𝐵𝐴𝐵) → 𝐴𝐵)
32ex 412 . . . 4 (Ord 𝐵 → (𝐴𝐵𝐴𝐵))
43orim1d 962 . . 3 (Ord 𝐵 → ((𝐴𝐵𝐵𝐴) → (𝐴𝐵𝐵𝐴)))
54adantl 481 . 2 ((Ord 𝐴 ∧ Ord 𝐵) → ((𝐴𝐵𝐵𝐴) → (𝐴𝐵𝐵𝐴)))
61, 5mpd 15 1 ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴𝐵𝐵𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 844  wcel 2098  wss 3940  Ord word 6353
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2695  ax-sep 5289  ax-nul 5296  ax-pr 5417
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2702  df-cleq 2716  df-clel 2802  df-ne 2933  df-ral 3054  df-rex 3063  df-rab 3425  df-v 3468  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3959  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-br 5139  df-opab 5201  df-tr 5256  df-eprel 5570  df-po 5578  df-so 5579  df-fr 5621  df-we 5623  df-ord 6357
This theorem is referenced by:  ordtri2or3  6454  ordssun  6456  ordequn  6457  onunel  6459  onun2  6462  ordunpr  7807  omun  7871  ackbij2  10234  sornom  10268  fin23lem23  10317  isf32lem2  10345  fpwwe2lem9  10630  noextendseq  27516  noetalem1  27590  hfun  35645  onsucunipr  42611
  Copyright terms: Public domain W3C validator