| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ordtri2or2 | Structured version Visualization version GIF version | ||
| Description: A trichotomy law for ordinal classes. (Contributed by NM, 2-Nov-2003.) |
| Ref | Expression |
|---|---|
| ordtri2or2 | ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordtri2or 6452 | . 2 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 ∈ 𝐵 ∨ 𝐵 ⊆ 𝐴)) | |
| 2 | ordelss 6368 | . . . . 5 ⊢ ((Ord 𝐵 ∧ 𝐴 ∈ 𝐵) → 𝐴 ⊆ 𝐵) | |
| 3 | 2 | ex 412 | . . . 4 ⊢ (Ord 𝐵 → (𝐴 ∈ 𝐵 → 𝐴 ⊆ 𝐵)) |
| 4 | 3 | orim1d 967 | . . 3 ⊢ (Ord 𝐵 → ((𝐴 ∈ 𝐵 ∨ 𝐵 ⊆ 𝐴) → (𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴))) |
| 5 | 4 | adantl 481 | . 2 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → ((𝐴 ∈ 𝐵 ∨ 𝐵 ⊆ 𝐴) → (𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴))) |
| 6 | 1, 5 | mpd 15 | 1 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 ∈ wcel 2108 ⊆ wss 3926 Ord word 6351 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-tr 5230 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-ord 6355 |
| This theorem is referenced by: ordtri2or3 6454 ordssun 6456 ordequn 6457 onunel 6459 onun2 6462 ordunpr 7820 omun 7883 ackbij2 10256 sornom 10291 fin23lem23 10340 isf32lem2 10368 fpwwe2lem9 10653 noextendseq 27631 noetalem1 27705 hfun 36196 onsucunipr 43396 |
| Copyright terms: Public domain | W3C validator |