MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  icombl Structured version   Visualization version   GIF version

Theorem icombl 25517
Description: A closed-below, open-above real interval is measurable. (Contributed by Mario Carneiro, 16-Jun-2014.)
Assertion
Ref Expression
icombl ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → (𝐴[,)𝐵) ∈ dom vol)

Proof of Theorem icombl
StepHypRef Expression
1 uncom 4133 . . . . 5 ((𝐵[,)+∞) ∪ (𝐴[,)𝐵)) = ((𝐴[,)𝐵) ∪ (𝐵[,)+∞))
2 rexr 11281 . . . . . . 7 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*)
32ad2antrr 726 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ 𝐴 < 𝐵) → 𝐴 ∈ ℝ*)
4 simplr 768 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ 𝐴 < 𝐵) → 𝐵 ∈ ℝ*)
5 pnfxr 11289 . . . . . . 7 +∞ ∈ ℝ*
65a1i 11 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ 𝐴 < 𝐵) → +∞ ∈ ℝ*)
7 xrltle 13165 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 < 𝐵𝐴𝐵))
82, 7sylan 580 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → (𝐴 < 𝐵𝐴𝐵))
98imp 406 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ 𝐴 < 𝐵) → 𝐴𝐵)
10 pnfge 13146 . . . . . . 7 (𝐵 ∈ ℝ*𝐵 ≤ +∞)
114, 10syl 17 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ 𝐴 < 𝐵) → 𝐵 ≤ +∞)
12 icoun 13492 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ +∞ ∈ ℝ*) ∧ (𝐴𝐵𝐵 ≤ +∞)) → ((𝐴[,)𝐵) ∪ (𝐵[,)+∞)) = (𝐴[,)+∞))
133, 4, 6, 9, 11, 12syl32anc 1380 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ 𝐴 < 𝐵) → ((𝐴[,)𝐵) ∪ (𝐵[,)+∞)) = (𝐴[,)+∞))
141, 13eqtrid 2782 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ 𝐴 < 𝐵) → ((𝐵[,)+∞) ∪ (𝐴[,)𝐵)) = (𝐴[,)+∞))
15 ssun1 4153 . . . . . 6 (𝐵[,)+∞) ⊆ ((𝐵[,)+∞) ∪ (𝐴[,)𝐵))
1615, 14sseqtrid 4001 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ 𝐴 < 𝐵) → (𝐵[,)+∞) ⊆ (𝐴[,)+∞))
17 incom 4184 . . . . . 6 ((𝐵[,)+∞) ∩ (𝐴[,)𝐵)) = ((𝐴[,)𝐵) ∩ (𝐵[,)+∞))
18 icodisj 13493 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ +∞ ∈ ℝ*) → ((𝐴[,)𝐵) ∩ (𝐵[,)+∞)) = ∅)
195, 18mp3an3 1452 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴[,)𝐵) ∩ (𝐵[,)+∞)) = ∅)
203, 4, 19syl2anc 584 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ 𝐴 < 𝐵) → ((𝐴[,)𝐵) ∩ (𝐵[,)+∞)) = ∅)
2117, 20eqtrid 2782 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ 𝐴 < 𝐵) → ((𝐵[,)+∞) ∩ (𝐴[,)𝐵)) = ∅)
22 uneqdifeq 4468 . . . . 5 (((𝐵[,)+∞) ⊆ (𝐴[,)+∞) ∧ ((𝐵[,)+∞) ∩ (𝐴[,)𝐵)) = ∅) → (((𝐵[,)+∞) ∪ (𝐴[,)𝐵)) = (𝐴[,)+∞) ↔ ((𝐴[,)+∞) ∖ (𝐵[,)+∞)) = (𝐴[,)𝐵)))
2316, 21, 22syl2anc 584 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ 𝐴 < 𝐵) → (((𝐵[,)+∞) ∪ (𝐴[,)𝐵)) = (𝐴[,)+∞) ↔ ((𝐴[,)+∞) ∖ (𝐵[,)+∞)) = (𝐴[,)𝐵)))
2414, 23mpbid 232 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ 𝐴 < 𝐵) → ((𝐴[,)+∞) ∖ (𝐵[,)+∞)) = (𝐴[,)𝐵))
25 icombl1 25516 . . . . 5 (𝐴 ∈ ℝ → (𝐴[,)+∞) ∈ dom vol)
2625ad2antrr 726 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ 𝐴 < 𝐵) → (𝐴[,)+∞) ∈ dom vol)
27 xrleloe 13160 . . . . . . . 8 ((𝐵 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝐵 ≤ +∞ ↔ (𝐵 < +∞ ∨ 𝐵 = +∞)))
284, 6, 27syl2anc 584 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ 𝐴 < 𝐵) → (𝐵 ≤ +∞ ↔ (𝐵 < +∞ ∨ 𝐵 = +∞)))
2911, 28mpbid 232 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ 𝐴 < 𝐵) → (𝐵 < +∞ ∨ 𝐵 = +∞))
30 simpr 484 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ 𝐴 < 𝐵) → 𝐴 < 𝐵)
31 xrre2 13186 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ +∞ ∈ ℝ*) ∧ (𝐴 < 𝐵𝐵 < +∞)) → 𝐵 ∈ ℝ)
3231expr 456 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ +∞ ∈ ℝ*) ∧ 𝐴 < 𝐵) → (𝐵 < +∞ → 𝐵 ∈ ℝ))
333, 4, 6, 30, 32syl31anc 1375 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ 𝐴 < 𝐵) → (𝐵 < +∞ → 𝐵 ∈ ℝ))
3433orim1d 967 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ 𝐴 < 𝐵) → ((𝐵 < +∞ ∨ 𝐵 = +∞) → (𝐵 ∈ ℝ ∨ 𝐵 = +∞)))
3529, 34mpd 15 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ 𝐴 < 𝐵) → (𝐵 ∈ ℝ ∨ 𝐵 = +∞))
36 icombl1 25516 . . . . . 6 (𝐵 ∈ ℝ → (𝐵[,)+∞) ∈ dom vol)
37 oveq1 7412 . . . . . . . 8 (𝐵 = +∞ → (𝐵[,)+∞) = (+∞[,)+∞))
38 pnfge 13146 . . . . . . . . . 10 (+∞ ∈ ℝ* → +∞ ≤ +∞)
395, 38ax-mp 5 . . . . . . . . 9 +∞ ≤ +∞
40 ico0 13408 . . . . . . . . . 10 ((+∞ ∈ ℝ* ∧ +∞ ∈ ℝ*) → ((+∞[,)+∞) = ∅ ↔ +∞ ≤ +∞))
415, 5, 40mp2an 692 . . . . . . . . 9 ((+∞[,)+∞) = ∅ ↔ +∞ ≤ +∞)
4239, 41mpbir 231 . . . . . . . 8 (+∞[,)+∞) = ∅
4337, 42eqtrdi 2786 . . . . . . 7 (𝐵 = +∞ → (𝐵[,)+∞) = ∅)
44 0mbl 25492 . . . . . . 7 ∅ ∈ dom vol
4543, 44eqeltrdi 2842 . . . . . 6 (𝐵 = +∞ → (𝐵[,)+∞) ∈ dom vol)
4636, 45jaoi 857 . . . . 5 ((𝐵 ∈ ℝ ∨ 𝐵 = +∞) → (𝐵[,)+∞) ∈ dom vol)
4735, 46syl 17 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ 𝐴 < 𝐵) → (𝐵[,)+∞) ∈ dom vol)
48 difmbl 25496 . . . 4 (((𝐴[,)+∞) ∈ dom vol ∧ (𝐵[,)+∞) ∈ dom vol) → ((𝐴[,)+∞) ∖ (𝐵[,)+∞)) ∈ dom vol)
4926, 47, 48syl2anc 584 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ 𝐴 < 𝐵) → ((𝐴[,)+∞) ∖ (𝐵[,)+∞)) ∈ dom vol)
5024, 49eqeltrrd 2835 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ 𝐴 < 𝐵) → (𝐴[,)𝐵) ∈ dom vol)
51 ico0 13408 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴[,)𝐵) = ∅ ↔ 𝐵𝐴))
522, 51sylan 580 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → ((𝐴[,)𝐵) = ∅ ↔ 𝐵𝐴))
53 simpr 484 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → 𝐵 ∈ ℝ*)
542adantr 480 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → 𝐴 ∈ ℝ*)
5553, 54xrlenltd 11301 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → (𝐵𝐴 ↔ ¬ 𝐴 < 𝐵))
5652, 55bitrd 279 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → ((𝐴[,)𝐵) = ∅ ↔ ¬ 𝐴 < 𝐵))
5756biimpar 477 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ ¬ 𝐴 < 𝐵) → (𝐴[,)𝐵) = ∅)
5857, 44eqeltrdi 2842 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ ¬ 𝐴 < 𝐵) → (𝐴[,)𝐵) ∈ dom vol)
5950, 58pm2.61dan 812 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → (𝐴[,)𝐵) ∈ dom vol)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2108  cdif 3923  cun 3924  cin 3925  wss 3926  c0 4308   class class class wbr 5119  dom cdm 5654  (class class class)co 7405  cr 11128  +∞cpnf 11266  *cxr 11268   < clt 11269  cle 11270  [,)cico 13364  volcvol 25416
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-inf2 9655  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7671  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-er 8719  df-map 8842  df-pm 8843  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-sup 9454  df-inf 9455  df-oi 9524  df-dju 9915  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-n0 12502  df-z 12589  df-uz 12853  df-q 12965  df-rp 13009  df-xadd 13129  df-ioo 13366  df-ico 13368  df-icc 13369  df-fz 13525  df-fzo 13672  df-fl 13809  df-seq 14020  df-exp 14080  df-hash 14349  df-cj 15118  df-re 15119  df-im 15120  df-sqrt 15254  df-abs 15255  df-clim 15504  df-rlim 15505  df-sum 15703  df-xmet 21308  df-met 21309  df-ovol 25417  df-vol 25418
This theorem is referenced by:  ioombl  25518  volicoff  46024  voliooicof  46025  icoresmbl  46572  hoiprodcl  46576  hoiprodcl3  46609  hoidmvcl  46611  hsphoidmvle2  46614  hsphoidmvle  46615  hoidmv1lelem1  46620  hoidmv1lelem2  46621  hoidmv1lelem3  46622  hoidifhspdmvle  46649  volicorege0  46666  ovolval5lem1  46681
  Copyright terms: Public domain W3C validator