MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  icombl Structured version   Visualization version   GIF version

Theorem icombl 25599
Description: A closed-below, open-above real interval is measurable. (Contributed by Mario Carneiro, 16-Jun-2014.)
Assertion
Ref Expression
icombl ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → (𝐴[,)𝐵) ∈ dom vol)

Proof of Theorem icombl
StepHypRef Expression
1 uncom 4158 . . . . 5 ((𝐵[,)+∞) ∪ (𝐴[,)𝐵)) = ((𝐴[,)𝐵) ∪ (𝐵[,)+∞))
2 rexr 11307 . . . . . . 7 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*)
32ad2antrr 726 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ 𝐴 < 𝐵) → 𝐴 ∈ ℝ*)
4 simplr 769 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ 𝐴 < 𝐵) → 𝐵 ∈ ℝ*)
5 pnfxr 11315 . . . . . . 7 +∞ ∈ ℝ*
65a1i 11 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ 𝐴 < 𝐵) → +∞ ∈ ℝ*)
7 xrltle 13191 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 < 𝐵𝐴𝐵))
82, 7sylan 580 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → (𝐴 < 𝐵𝐴𝐵))
98imp 406 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ 𝐴 < 𝐵) → 𝐴𝐵)
10 pnfge 13172 . . . . . . 7 (𝐵 ∈ ℝ*𝐵 ≤ +∞)
114, 10syl 17 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ 𝐴 < 𝐵) → 𝐵 ≤ +∞)
12 icoun 13515 . . . . . 6 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ +∞ ∈ ℝ*) ∧ (𝐴𝐵𝐵 ≤ +∞)) → ((𝐴[,)𝐵) ∪ (𝐵[,)+∞)) = (𝐴[,)+∞))
133, 4, 6, 9, 11, 12syl32anc 1380 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ 𝐴 < 𝐵) → ((𝐴[,)𝐵) ∪ (𝐵[,)+∞)) = (𝐴[,)+∞))
141, 13eqtrid 2789 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ 𝐴 < 𝐵) → ((𝐵[,)+∞) ∪ (𝐴[,)𝐵)) = (𝐴[,)+∞))
15 ssun1 4178 . . . . . 6 (𝐵[,)+∞) ⊆ ((𝐵[,)+∞) ∪ (𝐴[,)𝐵))
1615, 14sseqtrid 4026 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ 𝐴 < 𝐵) → (𝐵[,)+∞) ⊆ (𝐴[,)+∞))
17 incom 4209 . . . . . 6 ((𝐵[,)+∞) ∩ (𝐴[,)𝐵)) = ((𝐴[,)𝐵) ∩ (𝐵[,)+∞))
18 icodisj 13516 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ +∞ ∈ ℝ*) → ((𝐴[,)𝐵) ∩ (𝐵[,)+∞)) = ∅)
195, 18mp3an3 1452 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴[,)𝐵) ∩ (𝐵[,)+∞)) = ∅)
203, 4, 19syl2anc 584 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ 𝐴 < 𝐵) → ((𝐴[,)𝐵) ∩ (𝐵[,)+∞)) = ∅)
2117, 20eqtrid 2789 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ 𝐴 < 𝐵) → ((𝐵[,)+∞) ∩ (𝐴[,)𝐵)) = ∅)
22 uneqdifeq 4493 . . . . 5 (((𝐵[,)+∞) ⊆ (𝐴[,)+∞) ∧ ((𝐵[,)+∞) ∩ (𝐴[,)𝐵)) = ∅) → (((𝐵[,)+∞) ∪ (𝐴[,)𝐵)) = (𝐴[,)+∞) ↔ ((𝐴[,)+∞) ∖ (𝐵[,)+∞)) = (𝐴[,)𝐵)))
2316, 21, 22syl2anc 584 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ 𝐴 < 𝐵) → (((𝐵[,)+∞) ∪ (𝐴[,)𝐵)) = (𝐴[,)+∞) ↔ ((𝐴[,)+∞) ∖ (𝐵[,)+∞)) = (𝐴[,)𝐵)))
2414, 23mpbid 232 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ 𝐴 < 𝐵) → ((𝐴[,)+∞) ∖ (𝐵[,)+∞)) = (𝐴[,)𝐵))
25 icombl1 25598 . . . . 5 (𝐴 ∈ ℝ → (𝐴[,)+∞) ∈ dom vol)
2625ad2antrr 726 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ 𝐴 < 𝐵) → (𝐴[,)+∞) ∈ dom vol)
27 xrleloe 13186 . . . . . . . 8 ((𝐵 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝐵 ≤ +∞ ↔ (𝐵 < +∞ ∨ 𝐵 = +∞)))
284, 6, 27syl2anc 584 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ 𝐴 < 𝐵) → (𝐵 ≤ +∞ ↔ (𝐵 < +∞ ∨ 𝐵 = +∞)))
2911, 28mpbid 232 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ 𝐴 < 𝐵) → (𝐵 < +∞ ∨ 𝐵 = +∞))
30 simpr 484 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ 𝐴 < 𝐵) → 𝐴 < 𝐵)
31 xrre2 13212 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ +∞ ∈ ℝ*) ∧ (𝐴 < 𝐵𝐵 < +∞)) → 𝐵 ∈ ℝ)
3231expr 456 . . . . . . . 8 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ +∞ ∈ ℝ*) ∧ 𝐴 < 𝐵) → (𝐵 < +∞ → 𝐵 ∈ ℝ))
333, 4, 6, 30, 32syl31anc 1375 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ 𝐴 < 𝐵) → (𝐵 < +∞ → 𝐵 ∈ ℝ))
3433orim1d 968 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ 𝐴 < 𝐵) → ((𝐵 < +∞ ∨ 𝐵 = +∞) → (𝐵 ∈ ℝ ∨ 𝐵 = +∞)))
3529, 34mpd 15 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ 𝐴 < 𝐵) → (𝐵 ∈ ℝ ∨ 𝐵 = +∞))
36 icombl1 25598 . . . . . 6 (𝐵 ∈ ℝ → (𝐵[,)+∞) ∈ dom vol)
37 oveq1 7438 . . . . . . . 8 (𝐵 = +∞ → (𝐵[,)+∞) = (+∞[,)+∞))
38 pnfge 13172 . . . . . . . . . 10 (+∞ ∈ ℝ* → +∞ ≤ +∞)
395, 38ax-mp 5 . . . . . . . . 9 +∞ ≤ +∞
40 ico0 13433 . . . . . . . . . 10 ((+∞ ∈ ℝ* ∧ +∞ ∈ ℝ*) → ((+∞[,)+∞) = ∅ ↔ +∞ ≤ +∞))
415, 5, 40mp2an 692 . . . . . . . . 9 ((+∞[,)+∞) = ∅ ↔ +∞ ≤ +∞)
4239, 41mpbir 231 . . . . . . . 8 (+∞[,)+∞) = ∅
4337, 42eqtrdi 2793 . . . . . . 7 (𝐵 = +∞ → (𝐵[,)+∞) = ∅)
44 0mbl 25574 . . . . . . 7 ∅ ∈ dom vol
4543, 44eqeltrdi 2849 . . . . . 6 (𝐵 = +∞ → (𝐵[,)+∞) ∈ dom vol)
4636, 45jaoi 858 . . . . 5 ((𝐵 ∈ ℝ ∨ 𝐵 = +∞) → (𝐵[,)+∞) ∈ dom vol)
4735, 46syl 17 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ 𝐴 < 𝐵) → (𝐵[,)+∞) ∈ dom vol)
48 difmbl 25578 . . . 4 (((𝐴[,)+∞) ∈ dom vol ∧ (𝐵[,)+∞) ∈ dom vol) → ((𝐴[,)+∞) ∖ (𝐵[,)+∞)) ∈ dom vol)
4926, 47, 48syl2anc 584 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ 𝐴 < 𝐵) → ((𝐴[,)+∞) ∖ (𝐵[,)+∞)) ∈ dom vol)
5024, 49eqeltrrd 2842 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ 𝐴 < 𝐵) → (𝐴[,)𝐵) ∈ dom vol)
51 ico0 13433 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴[,)𝐵) = ∅ ↔ 𝐵𝐴))
522, 51sylan 580 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → ((𝐴[,)𝐵) = ∅ ↔ 𝐵𝐴))
53 simpr 484 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → 𝐵 ∈ ℝ*)
542adantr 480 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → 𝐴 ∈ ℝ*)
5553, 54xrlenltd 11327 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → (𝐵𝐴 ↔ ¬ 𝐴 < 𝐵))
5652, 55bitrd 279 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → ((𝐴[,)𝐵) = ∅ ↔ ¬ 𝐴 < 𝐵))
5756biimpar 477 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ ¬ 𝐴 < 𝐵) → (𝐴[,)𝐵) = ∅)
5857, 44eqeltrdi 2849 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) ∧ ¬ 𝐴 < 𝐵) → (𝐴[,)𝐵) ∈ dom vol)
5950, 58pm2.61dan 813 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → (𝐴[,)𝐵) ∈ dom vol)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 848  w3a 1087   = wceq 1540  wcel 2108  cdif 3948  cun 3949  cin 3950  wss 3951  c0 4333   class class class wbr 5143  dom cdm 5685  (class class class)co 7431  cr 11154  +∞cpnf 11292  *cxr 11294   < clt 11295  cle 11296  [,)cico 13389  volcvol 25498
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-er 8745  df-map 8868  df-pm 8869  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-sup 9482  df-inf 9483  df-oi 9550  df-dju 9941  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-n0 12527  df-z 12614  df-uz 12879  df-q 12991  df-rp 13035  df-xadd 13155  df-ioo 13391  df-ico 13393  df-icc 13394  df-fz 13548  df-fzo 13695  df-fl 13832  df-seq 14043  df-exp 14103  df-hash 14370  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-clim 15524  df-rlim 15525  df-sum 15723  df-xmet 21357  df-met 21358  df-ovol 25499  df-vol 25500
This theorem is referenced by:  ioombl  25600  volicoff  46010  voliooicof  46011  icoresmbl  46558  hoiprodcl  46562  hoiprodcl3  46595  hoidmvcl  46597  hsphoidmvle2  46600  hsphoidmvle  46601  hoidmv1lelem1  46606  hoidmv1lelem2  46607  hoidmv1lelem3  46608  hoidifhspdmvle  46635  volicorege0  46652  ovolval5lem1  46667
  Copyright terms: Public domain W3C validator