Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dnibndlem13 Structured version   Visualization version   GIF version

Theorem dnibndlem13 36508
Description: Lemma for dnibnd 36509. (Contributed by Asger C. Ipsen, 4-Apr-2021.)
Hypotheses
Ref Expression
dnibndlem13.1 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
dnibndlem13.2 (𝜑𝐴 ∈ ℝ)
dnibndlem13.3 (𝜑𝐵 ∈ ℝ)
dnibndlem13.4 (𝜑 → (⌊‘(𝐴 + (1 / 2))) ≤ (⌊‘(𝐵 + (1 / 2))))
Assertion
Ref Expression
dnibndlem13 (𝜑 → (abs‘((𝑇𝐵) − (𝑇𝐴))) ≤ (abs‘(𝐵𝐴)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥)   𝑇(𝑥)

Proof of Theorem dnibndlem13
StepHypRef Expression
1 dnibndlem13.1 . . . 4 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
2 dnibndlem13.2 . . . . 5 (𝜑𝐴 ∈ ℝ)
32ad2antrr 726 . . . 4 (((𝜑 ∧ (⌊‘(𝐴 + (1 / 2))) < (⌊‘(𝐵 + (1 / 2)))) ∧ ((⌊‘(𝐴 + (1 / 2))) + 2) ≤ (⌊‘(𝐵 + (1 / 2)))) → 𝐴 ∈ ℝ)
4 dnibndlem13.3 . . . . 5 (𝜑𝐵 ∈ ℝ)
54ad2antrr 726 . . . 4 (((𝜑 ∧ (⌊‘(𝐴 + (1 / 2))) < (⌊‘(𝐵 + (1 / 2)))) ∧ ((⌊‘(𝐴 + (1 / 2))) + 2) ≤ (⌊‘(𝐵 + (1 / 2)))) → 𝐵 ∈ ℝ)
6 simpr 484 . . . 4 (((𝜑 ∧ (⌊‘(𝐴 + (1 / 2))) < (⌊‘(𝐵 + (1 / 2)))) ∧ ((⌊‘(𝐴 + (1 / 2))) + 2) ≤ (⌊‘(𝐵 + (1 / 2)))) → ((⌊‘(𝐴 + (1 / 2))) + 2) ≤ (⌊‘(𝐵 + (1 / 2))))
71, 3, 5, 6dnibndlem12 36507 . . 3 (((𝜑 ∧ (⌊‘(𝐴 + (1 / 2))) < (⌊‘(𝐵 + (1 / 2)))) ∧ ((⌊‘(𝐴 + (1 / 2))) + 2) ≤ (⌊‘(𝐵 + (1 / 2)))) → (abs‘((𝑇𝐵) − (𝑇𝐴))) ≤ (abs‘(𝐵𝐴)))
82ad2antrr 726 . . . 4 (((𝜑 ∧ (⌊‘(𝐴 + (1 / 2))) < (⌊‘(𝐵 + (1 / 2)))) ∧ ((⌊‘(𝐴 + (1 / 2))) + 1) = (⌊‘(𝐵 + (1 / 2)))) → 𝐴 ∈ ℝ)
94ad2antrr 726 . . . 4 (((𝜑 ∧ (⌊‘(𝐴 + (1 / 2))) < (⌊‘(𝐵 + (1 / 2)))) ∧ ((⌊‘(𝐴 + (1 / 2))) + 1) = (⌊‘(𝐵 + (1 / 2)))) → 𝐵 ∈ ℝ)
10 simpr 484 . . . . 5 (((𝜑 ∧ (⌊‘(𝐴 + (1 / 2))) < (⌊‘(𝐵 + (1 / 2)))) ∧ ((⌊‘(𝐴 + (1 / 2))) + 1) = (⌊‘(𝐵 + (1 / 2)))) → ((⌊‘(𝐴 + (1 / 2))) + 1) = (⌊‘(𝐵 + (1 / 2))))
1110eqcomd 2741 . . . 4 (((𝜑 ∧ (⌊‘(𝐴 + (1 / 2))) < (⌊‘(𝐵 + (1 / 2)))) ∧ ((⌊‘(𝐴 + (1 / 2))) + 1) = (⌊‘(𝐵 + (1 / 2)))) → (⌊‘(𝐵 + (1 / 2))) = ((⌊‘(𝐴 + (1 / 2))) + 1))
121, 8, 9, 11dnibndlem9 36504 . . 3 (((𝜑 ∧ (⌊‘(𝐴 + (1 / 2))) < (⌊‘(𝐵 + (1 / 2)))) ∧ ((⌊‘(𝐴 + (1 / 2))) + 1) = (⌊‘(𝐵 + (1 / 2)))) → (abs‘((𝑇𝐵) − (𝑇𝐴))) ≤ (abs‘(𝐵𝐴)))
13 simpr 484 . . . . . 6 ((𝜑 ∧ (⌊‘(𝐴 + (1 / 2))) < (⌊‘(𝐵 + (1 / 2)))) → (⌊‘(𝐴 + (1 / 2))) < (⌊‘(𝐵 + (1 / 2))))
14 halfre 12454 . . . . . . . . . . . 12 (1 / 2) ∈ ℝ
1514a1i 11 . . . . . . . . . . 11 (𝜑 → (1 / 2) ∈ ℝ)
162, 15readdcld 11264 . . . . . . . . . 10 (𝜑 → (𝐴 + (1 / 2)) ∈ ℝ)
1716flcld 13815 . . . . . . . . 9 (𝜑 → (⌊‘(𝐴 + (1 / 2))) ∈ ℤ)
184, 15readdcld 11264 . . . . . . . . . 10 (𝜑 → (𝐵 + (1 / 2)) ∈ ℝ)
1918flcld 13815 . . . . . . . . 9 (𝜑 → (⌊‘(𝐵 + (1 / 2))) ∈ ℤ)
2017, 19jca 511 . . . . . . . 8 (𝜑 → ((⌊‘(𝐴 + (1 / 2))) ∈ ℤ ∧ (⌊‘(𝐵 + (1 / 2))) ∈ ℤ))
2120adantr 480 . . . . . . 7 ((𝜑 ∧ (⌊‘(𝐴 + (1 / 2))) < (⌊‘(𝐵 + (1 / 2)))) → ((⌊‘(𝐴 + (1 / 2))) ∈ ℤ ∧ (⌊‘(𝐵 + (1 / 2))) ∈ ℤ))
22 zltp1le 12642 . . . . . . 7 (((⌊‘(𝐴 + (1 / 2))) ∈ ℤ ∧ (⌊‘(𝐵 + (1 / 2))) ∈ ℤ) → ((⌊‘(𝐴 + (1 / 2))) < (⌊‘(𝐵 + (1 / 2))) ↔ ((⌊‘(𝐴 + (1 / 2))) + 1) ≤ (⌊‘(𝐵 + (1 / 2)))))
2321, 22syl 17 . . . . . 6 ((𝜑 ∧ (⌊‘(𝐴 + (1 / 2))) < (⌊‘(𝐵 + (1 / 2)))) → ((⌊‘(𝐴 + (1 / 2))) < (⌊‘(𝐵 + (1 / 2))) ↔ ((⌊‘(𝐴 + (1 / 2))) + 1) ≤ (⌊‘(𝐵 + (1 / 2)))))
2413, 23mpbid 232 . . . . 5 ((𝜑 ∧ (⌊‘(𝐴 + (1 / 2))) < (⌊‘(𝐵 + (1 / 2)))) → ((⌊‘(𝐴 + (1 / 2))) + 1) ≤ (⌊‘(𝐵 + (1 / 2))))
25 reflcl 13813 . . . . . . . . 9 ((𝐴 + (1 / 2)) ∈ ℝ → (⌊‘(𝐴 + (1 / 2))) ∈ ℝ)
2616, 25syl 17 . . . . . . . 8 (𝜑 → (⌊‘(𝐴 + (1 / 2))) ∈ ℝ)
27 peano2re 11408 . . . . . . . 8 ((⌊‘(𝐴 + (1 / 2))) ∈ ℝ → ((⌊‘(𝐴 + (1 / 2))) + 1) ∈ ℝ)
2826, 27syl 17 . . . . . . 7 (𝜑 → ((⌊‘(𝐴 + (1 / 2))) + 1) ∈ ℝ)
2928adantr 480 . . . . . 6 ((𝜑 ∧ (⌊‘(𝐴 + (1 / 2))) < (⌊‘(𝐵 + (1 / 2)))) → ((⌊‘(𝐴 + (1 / 2))) + 1) ∈ ℝ)
3019zred 12697 . . . . . . 7 (𝜑 → (⌊‘(𝐵 + (1 / 2))) ∈ ℝ)
3130adantr 480 . . . . . 6 ((𝜑 ∧ (⌊‘(𝐴 + (1 / 2))) < (⌊‘(𝐵 + (1 / 2)))) → (⌊‘(𝐵 + (1 / 2))) ∈ ℝ)
3229, 31leloed 11378 . . . . 5 ((𝜑 ∧ (⌊‘(𝐴 + (1 / 2))) < (⌊‘(𝐵 + (1 / 2)))) → (((⌊‘(𝐴 + (1 / 2))) + 1) ≤ (⌊‘(𝐵 + (1 / 2))) ↔ (((⌊‘(𝐴 + (1 / 2))) + 1) < (⌊‘(𝐵 + (1 / 2))) ∨ ((⌊‘(𝐴 + (1 / 2))) + 1) = (⌊‘(𝐵 + (1 / 2))))))
3324, 32mpbid 232 . . . 4 ((𝜑 ∧ (⌊‘(𝐴 + (1 / 2))) < (⌊‘(𝐵 + (1 / 2)))) → (((⌊‘(𝐴 + (1 / 2))) + 1) < (⌊‘(𝐵 + (1 / 2))) ∨ ((⌊‘(𝐴 + (1 / 2))) + 1) = (⌊‘(𝐵 + (1 / 2)))))
3417peano2zd 12700 . . . . . . . . . 10 (𝜑 → ((⌊‘(𝐴 + (1 / 2))) + 1) ∈ ℤ)
3534, 19jca 511 . . . . . . . . 9 (𝜑 → (((⌊‘(𝐴 + (1 / 2))) + 1) ∈ ℤ ∧ (⌊‘(𝐵 + (1 / 2))) ∈ ℤ))
36 zltp1le 12642 . . . . . . . . 9 ((((⌊‘(𝐴 + (1 / 2))) + 1) ∈ ℤ ∧ (⌊‘(𝐵 + (1 / 2))) ∈ ℤ) → (((⌊‘(𝐴 + (1 / 2))) + 1) < (⌊‘(𝐵 + (1 / 2))) ↔ (((⌊‘(𝐴 + (1 / 2))) + 1) + 1) ≤ (⌊‘(𝐵 + (1 / 2)))))
3735, 36syl 17 . . . . . . . 8 (𝜑 → (((⌊‘(𝐴 + (1 / 2))) + 1) < (⌊‘(𝐵 + (1 / 2))) ↔ (((⌊‘(𝐴 + (1 / 2))) + 1) + 1) ≤ (⌊‘(𝐵 + (1 / 2)))))
3826recnd 11263 . . . . . . . . . . 11 (𝜑 → (⌊‘(𝐴 + (1 / 2))) ∈ ℂ)
39 1cnd 11230 . . . . . . . . . . 11 (𝜑 → 1 ∈ ℂ)
4038, 39, 39addassd 11257 . . . . . . . . . 10 (𝜑 → (((⌊‘(𝐴 + (1 / 2))) + 1) + 1) = ((⌊‘(𝐴 + (1 / 2))) + (1 + 1)))
41 1p1e2 12365 . . . . . . . . . . . 12 (1 + 1) = 2
4241a1i 11 . . . . . . . . . . 11 (𝜑 → (1 + 1) = 2)
4342oveq2d 7421 . . . . . . . . . 10 (𝜑 → ((⌊‘(𝐴 + (1 / 2))) + (1 + 1)) = ((⌊‘(𝐴 + (1 / 2))) + 2))
4440, 43eqtrd 2770 . . . . . . . . 9 (𝜑 → (((⌊‘(𝐴 + (1 / 2))) + 1) + 1) = ((⌊‘(𝐴 + (1 / 2))) + 2))
4544breq1d 5129 . . . . . . . 8 (𝜑 → ((((⌊‘(𝐴 + (1 / 2))) + 1) + 1) ≤ (⌊‘(𝐵 + (1 / 2))) ↔ ((⌊‘(𝐴 + (1 / 2))) + 2) ≤ (⌊‘(𝐵 + (1 / 2)))))
4637, 45bitrd 279 . . . . . . 7 (𝜑 → (((⌊‘(𝐴 + (1 / 2))) + 1) < (⌊‘(𝐵 + (1 / 2))) ↔ ((⌊‘(𝐴 + (1 / 2))) + 2) ≤ (⌊‘(𝐵 + (1 / 2)))))
4746biimpd 229 . . . . . 6 (𝜑 → (((⌊‘(𝐴 + (1 / 2))) + 1) < (⌊‘(𝐵 + (1 / 2))) → ((⌊‘(𝐴 + (1 / 2))) + 2) ≤ (⌊‘(𝐵 + (1 / 2)))))
4847adantr 480 . . . . 5 ((𝜑 ∧ (⌊‘(𝐴 + (1 / 2))) < (⌊‘(𝐵 + (1 / 2)))) → (((⌊‘(𝐴 + (1 / 2))) + 1) < (⌊‘(𝐵 + (1 / 2))) → ((⌊‘(𝐴 + (1 / 2))) + 2) ≤ (⌊‘(𝐵 + (1 / 2)))))
4948orim1d 967 . . . 4 ((𝜑 ∧ (⌊‘(𝐴 + (1 / 2))) < (⌊‘(𝐵 + (1 / 2)))) → ((((⌊‘(𝐴 + (1 / 2))) + 1) < (⌊‘(𝐵 + (1 / 2))) ∨ ((⌊‘(𝐴 + (1 / 2))) + 1) = (⌊‘(𝐵 + (1 / 2)))) → (((⌊‘(𝐴 + (1 / 2))) + 2) ≤ (⌊‘(𝐵 + (1 / 2))) ∨ ((⌊‘(𝐴 + (1 / 2))) + 1) = (⌊‘(𝐵 + (1 / 2))))))
5033, 49mpd 15 . . 3 ((𝜑 ∧ (⌊‘(𝐴 + (1 / 2))) < (⌊‘(𝐵 + (1 / 2)))) → (((⌊‘(𝐴 + (1 / 2))) + 2) ≤ (⌊‘(𝐵 + (1 / 2))) ∨ ((⌊‘(𝐴 + (1 / 2))) + 1) = (⌊‘(𝐵 + (1 / 2)))))
517, 12, 50mpjaodan 960 . 2 ((𝜑 ∧ (⌊‘(𝐴 + (1 / 2))) < (⌊‘(𝐵 + (1 / 2)))) → (abs‘((𝑇𝐵) − (𝑇𝐴))) ≤ (abs‘(𝐵𝐴)))
522adantr 480 . . 3 ((𝜑 ∧ (⌊‘(𝐴 + (1 / 2))) = (⌊‘(𝐵 + (1 / 2)))) → 𝐴 ∈ ℝ)
534adantr 480 . . 3 ((𝜑 ∧ (⌊‘(𝐴 + (1 / 2))) = (⌊‘(𝐵 + (1 / 2)))) → 𝐵 ∈ ℝ)
54 simpr 484 . . . 4 ((𝜑 ∧ (⌊‘(𝐴 + (1 / 2))) = (⌊‘(𝐵 + (1 / 2)))) → (⌊‘(𝐴 + (1 / 2))) = (⌊‘(𝐵 + (1 / 2))))
5554eqcomd 2741 . . 3 ((𝜑 ∧ (⌊‘(𝐴 + (1 / 2))) = (⌊‘(𝐵 + (1 / 2)))) → (⌊‘(𝐵 + (1 / 2))) = (⌊‘(𝐴 + (1 / 2))))
561, 52, 53, 55dnibndlem2 36497 . 2 ((𝜑 ∧ (⌊‘(𝐴 + (1 / 2))) = (⌊‘(𝐵 + (1 / 2)))) → (abs‘((𝑇𝐵) − (𝑇𝐴))) ≤ (abs‘(𝐵𝐴)))
57 dnibndlem13.4 . . 3 (𝜑 → (⌊‘(𝐴 + (1 / 2))) ≤ (⌊‘(𝐵 + (1 / 2))))
5826, 30leloed 11378 . . 3 (𝜑 → ((⌊‘(𝐴 + (1 / 2))) ≤ (⌊‘(𝐵 + (1 / 2))) ↔ ((⌊‘(𝐴 + (1 / 2))) < (⌊‘(𝐵 + (1 / 2))) ∨ (⌊‘(𝐴 + (1 / 2))) = (⌊‘(𝐵 + (1 / 2))))))
5957, 58mpbid 232 . 2 (𝜑 → ((⌊‘(𝐴 + (1 / 2))) < (⌊‘(𝐵 + (1 / 2))) ∨ (⌊‘(𝐴 + (1 / 2))) = (⌊‘(𝐵 + (1 / 2)))))
6051, 56, 59mpjaodan 960 1 (𝜑 → (abs‘((𝑇𝐵) − (𝑇𝐴))) ≤ (abs‘(𝐵𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2108   class class class wbr 5119  cmpt 5201  cfv 6531  (class class class)co 7405  cr 11128  1c1 11130   + caddc 11132   < clt 11269  cle 11270  cmin 11466   / cdiv 11894  2c2 12295  cz 12588  cfl 13807  abscabs 15253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-sup 9454  df-inf 9455  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-n0 12502  df-z 12589  df-uz 12853  df-rp 13009  df-fl 13809  df-seq 14020  df-exp 14080  df-cj 15118  df-re 15119  df-im 15120  df-sqrt 15254  df-abs 15255
This theorem is referenced by:  dnibnd  36509
  Copyright terms: Public domain W3C validator