Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dnibndlem13 Structured version   Visualization version   GIF version

Theorem dnibndlem13 33942
Description: Lemma for dnibnd 33943. (Contributed by Asger C. Ipsen, 4-Apr-2021.)
Hypotheses
Ref Expression
dnibndlem13.1 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
dnibndlem13.2 (𝜑𝐴 ∈ ℝ)
dnibndlem13.3 (𝜑𝐵 ∈ ℝ)
dnibndlem13.4 (𝜑 → (⌊‘(𝐴 + (1 / 2))) ≤ (⌊‘(𝐵 + (1 / 2))))
Assertion
Ref Expression
dnibndlem13 (𝜑 → (abs‘((𝑇𝐵) − (𝑇𝐴))) ≤ (abs‘(𝐵𝐴)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥)   𝑇(𝑥)

Proof of Theorem dnibndlem13
StepHypRef Expression
1 dnibndlem13.1 . . . 4 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
2 dnibndlem13.2 . . . . 5 (𝜑𝐴 ∈ ℝ)
32ad2antrr 725 . . . 4 (((𝜑 ∧ (⌊‘(𝐴 + (1 / 2))) < (⌊‘(𝐵 + (1 / 2)))) ∧ ((⌊‘(𝐴 + (1 / 2))) + 2) ≤ (⌊‘(𝐵 + (1 / 2)))) → 𝐴 ∈ ℝ)
4 dnibndlem13.3 . . . . 5 (𝜑𝐵 ∈ ℝ)
54ad2antrr 725 . . . 4 (((𝜑 ∧ (⌊‘(𝐴 + (1 / 2))) < (⌊‘(𝐵 + (1 / 2)))) ∧ ((⌊‘(𝐴 + (1 / 2))) + 2) ≤ (⌊‘(𝐵 + (1 / 2)))) → 𝐵 ∈ ℝ)
6 simpr 488 . . . 4 (((𝜑 ∧ (⌊‘(𝐴 + (1 / 2))) < (⌊‘(𝐵 + (1 / 2)))) ∧ ((⌊‘(𝐴 + (1 / 2))) + 2) ≤ (⌊‘(𝐵 + (1 / 2)))) → ((⌊‘(𝐴 + (1 / 2))) + 2) ≤ (⌊‘(𝐵 + (1 / 2))))
71, 3, 5, 6dnibndlem12 33941 . . 3 (((𝜑 ∧ (⌊‘(𝐴 + (1 / 2))) < (⌊‘(𝐵 + (1 / 2)))) ∧ ((⌊‘(𝐴 + (1 / 2))) + 2) ≤ (⌊‘(𝐵 + (1 / 2)))) → (abs‘((𝑇𝐵) − (𝑇𝐴))) ≤ (abs‘(𝐵𝐴)))
82ad2antrr 725 . . . 4 (((𝜑 ∧ (⌊‘(𝐴 + (1 / 2))) < (⌊‘(𝐵 + (1 / 2)))) ∧ ((⌊‘(𝐴 + (1 / 2))) + 1) = (⌊‘(𝐵 + (1 / 2)))) → 𝐴 ∈ ℝ)
94ad2antrr 725 . . . 4 (((𝜑 ∧ (⌊‘(𝐴 + (1 / 2))) < (⌊‘(𝐵 + (1 / 2)))) ∧ ((⌊‘(𝐴 + (1 / 2))) + 1) = (⌊‘(𝐵 + (1 / 2)))) → 𝐵 ∈ ℝ)
10 simpr 488 . . . . 5 (((𝜑 ∧ (⌊‘(𝐴 + (1 / 2))) < (⌊‘(𝐵 + (1 / 2)))) ∧ ((⌊‘(𝐴 + (1 / 2))) + 1) = (⌊‘(𝐵 + (1 / 2)))) → ((⌊‘(𝐴 + (1 / 2))) + 1) = (⌊‘(𝐵 + (1 / 2))))
1110eqcomd 2804 . . . 4 (((𝜑 ∧ (⌊‘(𝐴 + (1 / 2))) < (⌊‘(𝐵 + (1 / 2)))) ∧ ((⌊‘(𝐴 + (1 / 2))) + 1) = (⌊‘(𝐵 + (1 / 2)))) → (⌊‘(𝐵 + (1 / 2))) = ((⌊‘(𝐴 + (1 / 2))) + 1))
121, 8, 9, 11dnibndlem9 33938 . . 3 (((𝜑 ∧ (⌊‘(𝐴 + (1 / 2))) < (⌊‘(𝐵 + (1 / 2)))) ∧ ((⌊‘(𝐴 + (1 / 2))) + 1) = (⌊‘(𝐵 + (1 / 2)))) → (abs‘((𝑇𝐵) − (𝑇𝐴))) ≤ (abs‘(𝐵𝐴)))
13 simpr 488 . . . . . 6 ((𝜑 ∧ (⌊‘(𝐴 + (1 / 2))) < (⌊‘(𝐵 + (1 / 2)))) → (⌊‘(𝐴 + (1 / 2))) < (⌊‘(𝐵 + (1 / 2))))
14 halfre 11839 . . . . . . . . . . . 12 (1 / 2) ∈ ℝ
1514a1i 11 . . . . . . . . . . 11 (𝜑 → (1 / 2) ∈ ℝ)
162, 15readdcld 10659 . . . . . . . . . 10 (𝜑 → (𝐴 + (1 / 2)) ∈ ℝ)
1716flcld 13163 . . . . . . . . 9 (𝜑 → (⌊‘(𝐴 + (1 / 2))) ∈ ℤ)
184, 15readdcld 10659 . . . . . . . . . 10 (𝜑 → (𝐵 + (1 / 2)) ∈ ℝ)
1918flcld 13163 . . . . . . . . 9 (𝜑 → (⌊‘(𝐵 + (1 / 2))) ∈ ℤ)
2017, 19jca 515 . . . . . . . 8 (𝜑 → ((⌊‘(𝐴 + (1 / 2))) ∈ ℤ ∧ (⌊‘(𝐵 + (1 / 2))) ∈ ℤ))
2120adantr 484 . . . . . . 7 ((𝜑 ∧ (⌊‘(𝐴 + (1 / 2))) < (⌊‘(𝐵 + (1 / 2)))) → ((⌊‘(𝐴 + (1 / 2))) ∈ ℤ ∧ (⌊‘(𝐵 + (1 / 2))) ∈ ℤ))
22 zltp1le 12020 . . . . . . 7 (((⌊‘(𝐴 + (1 / 2))) ∈ ℤ ∧ (⌊‘(𝐵 + (1 / 2))) ∈ ℤ) → ((⌊‘(𝐴 + (1 / 2))) < (⌊‘(𝐵 + (1 / 2))) ↔ ((⌊‘(𝐴 + (1 / 2))) + 1) ≤ (⌊‘(𝐵 + (1 / 2)))))
2321, 22syl 17 . . . . . 6 ((𝜑 ∧ (⌊‘(𝐴 + (1 / 2))) < (⌊‘(𝐵 + (1 / 2)))) → ((⌊‘(𝐴 + (1 / 2))) < (⌊‘(𝐵 + (1 / 2))) ↔ ((⌊‘(𝐴 + (1 / 2))) + 1) ≤ (⌊‘(𝐵 + (1 / 2)))))
2413, 23mpbid 235 . . . . 5 ((𝜑 ∧ (⌊‘(𝐴 + (1 / 2))) < (⌊‘(𝐵 + (1 / 2)))) → ((⌊‘(𝐴 + (1 / 2))) + 1) ≤ (⌊‘(𝐵 + (1 / 2))))
25 reflcl 13161 . . . . . . . . 9 ((𝐴 + (1 / 2)) ∈ ℝ → (⌊‘(𝐴 + (1 / 2))) ∈ ℝ)
2616, 25syl 17 . . . . . . . 8 (𝜑 → (⌊‘(𝐴 + (1 / 2))) ∈ ℝ)
27 peano2re 10802 . . . . . . . 8 ((⌊‘(𝐴 + (1 / 2))) ∈ ℝ → ((⌊‘(𝐴 + (1 / 2))) + 1) ∈ ℝ)
2826, 27syl 17 . . . . . . 7 (𝜑 → ((⌊‘(𝐴 + (1 / 2))) + 1) ∈ ℝ)
2928adantr 484 . . . . . 6 ((𝜑 ∧ (⌊‘(𝐴 + (1 / 2))) < (⌊‘(𝐵 + (1 / 2)))) → ((⌊‘(𝐴 + (1 / 2))) + 1) ∈ ℝ)
3019zred 12075 . . . . . . 7 (𝜑 → (⌊‘(𝐵 + (1 / 2))) ∈ ℝ)
3130adantr 484 . . . . . 6 ((𝜑 ∧ (⌊‘(𝐴 + (1 / 2))) < (⌊‘(𝐵 + (1 / 2)))) → (⌊‘(𝐵 + (1 / 2))) ∈ ℝ)
3229, 31leloed 10772 . . . . 5 ((𝜑 ∧ (⌊‘(𝐴 + (1 / 2))) < (⌊‘(𝐵 + (1 / 2)))) → (((⌊‘(𝐴 + (1 / 2))) + 1) ≤ (⌊‘(𝐵 + (1 / 2))) ↔ (((⌊‘(𝐴 + (1 / 2))) + 1) < (⌊‘(𝐵 + (1 / 2))) ∨ ((⌊‘(𝐴 + (1 / 2))) + 1) = (⌊‘(𝐵 + (1 / 2))))))
3324, 32mpbid 235 . . . 4 ((𝜑 ∧ (⌊‘(𝐴 + (1 / 2))) < (⌊‘(𝐵 + (1 / 2)))) → (((⌊‘(𝐴 + (1 / 2))) + 1) < (⌊‘(𝐵 + (1 / 2))) ∨ ((⌊‘(𝐴 + (1 / 2))) + 1) = (⌊‘(𝐵 + (1 / 2)))))
3417peano2zd 12078 . . . . . . . . . 10 (𝜑 → ((⌊‘(𝐴 + (1 / 2))) + 1) ∈ ℤ)
3534, 19jca 515 . . . . . . . . 9 (𝜑 → (((⌊‘(𝐴 + (1 / 2))) + 1) ∈ ℤ ∧ (⌊‘(𝐵 + (1 / 2))) ∈ ℤ))
36 zltp1le 12020 . . . . . . . . 9 ((((⌊‘(𝐴 + (1 / 2))) + 1) ∈ ℤ ∧ (⌊‘(𝐵 + (1 / 2))) ∈ ℤ) → (((⌊‘(𝐴 + (1 / 2))) + 1) < (⌊‘(𝐵 + (1 / 2))) ↔ (((⌊‘(𝐴 + (1 / 2))) + 1) + 1) ≤ (⌊‘(𝐵 + (1 / 2)))))
3735, 36syl 17 . . . . . . . 8 (𝜑 → (((⌊‘(𝐴 + (1 / 2))) + 1) < (⌊‘(𝐵 + (1 / 2))) ↔ (((⌊‘(𝐴 + (1 / 2))) + 1) + 1) ≤ (⌊‘(𝐵 + (1 / 2)))))
3826recnd 10658 . . . . . . . . . . 11 (𝜑 → (⌊‘(𝐴 + (1 / 2))) ∈ ℂ)
39 1cnd 10625 . . . . . . . . . . 11 (𝜑 → 1 ∈ ℂ)
4038, 39, 39addassd 10652 . . . . . . . . . 10 (𝜑 → (((⌊‘(𝐴 + (1 / 2))) + 1) + 1) = ((⌊‘(𝐴 + (1 / 2))) + (1 + 1)))
41 1p1e2 11750 . . . . . . . . . . . 12 (1 + 1) = 2
4241a1i 11 . . . . . . . . . . 11 (𝜑 → (1 + 1) = 2)
4342oveq2d 7151 . . . . . . . . . 10 (𝜑 → ((⌊‘(𝐴 + (1 / 2))) + (1 + 1)) = ((⌊‘(𝐴 + (1 / 2))) + 2))
4440, 43eqtrd 2833 . . . . . . . . 9 (𝜑 → (((⌊‘(𝐴 + (1 / 2))) + 1) + 1) = ((⌊‘(𝐴 + (1 / 2))) + 2))
4544breq1d 5040 . . . . . . . 8 (𝜑 → ((((⌊‘(𝐴 + (1 / 2))) + 1) + 1) ≤ (⌊‘(𝐵 + (1 / 2))) ↔ ((⌊‘(𝐴 + (1 / 2))) + 2) ≤ (⌊‘(𝐵 + (1 / 2)))))
4637, 45bitrd 282 . . . . . . 7 (𝜑 → (((⌊‘(𝐴 + (1 / 2))) + 1) < (⌊‘(𝐵 + (1 / 2))) ↔ ((⌊‘(𝐴 + (1 / 2))) + 2) ≤ (⌊‘(𝐵 + (1 / 2)))))
4746biimpd 232 . . . . . 6 (𝜑 → (((⌊‘(𝐴 + (1 / 2))) + 1) < (⌊‘(𝐵 + (1 / 2))) → ((⌊‘(𝐴 + (1 / 2))) + 2) ≤ (⌊‘(𝐵 + (1 / 2)))))
4847adantr 484 . . . . 5 ((𝜑 ∧ (⌊‘(𝐴 + (1 / 2))) < (⌊‘(𝐵 + (1 / 2)))) → (((⌊‘(𝐴 + (1 / 2))) + 1) < (⌊‘(𝐵 + (1 / 2))) → ((⌊‘(𝐴 + (1 / 2))) + 2) ≤ (⌊‘(𝐵 + (1 / 2)))))
4948orim1d 963 . . . 4 ((𝜑 ∧ (⌊‘(𝐴 + (1 / 2))) < (⌊‘(𝐵 + (1 / 2)))) → ((((⌊‘(𝐴 + (1 / 2))) + 1) < (⌊‘(𝐵 + (1 / 2))) ∨ ((⌊‘(𝐴 + (1 / 2))) + 1) = (⌊‘(𝐵 + (1 / 2)))) → (((⌊‘(𝐴 + (1 / 2))) + 2) ≤ (⌊‘(𝐵 + (1 / 2))) ∨ ((⌊‘(𝐴 + (1 / 2))) + 1) = (⌊‘(𝐵 + (1 / 2))))))
5033, 49mpd 15 . . 3 ((𝜑 ∧ (⌊‘(𝐴 + (1 / 2))) < (⌊‘(𝐵 + (1 / 2)))) → (((⌊‘(𝐴 + (1 / 2))) + 2) ≤ (⌊‘(𝐵 + (1 / 2))) ∨ ((⌊‘(𝐴 + (1 / 2))) + 1) = (⌊‘(𝐵 + (1 / 2)))))
517, 12, 50mpjaodan 956 . 2 ((𝜑 ∧ (⌊‘(𝐴 + (1 / 2))) < (⌊‘(𝐵 + (1 / 2)))) → (abs‘((𝑇𝐵) − (𝑇𝐴))) ≤ (abs‘(𝐵𝐴)))
522adantr 484 . . 3 ((𝜑 ∧ (⌊‘(𝐴 + (1 / 2))) = (⌊‘(𝐵 + (1 / 2)))) → 𝐴 ∈ ℝ)
534adantr 484 . . 3 ((𝜑 ∧ (⌊‘(𝐴 + (1 / 2))) = (⌊‘(𝐵 + (1 / 2)))) → 𝐵 ∈ ℝ)
54 simpr 488 . . . 4 ((𝜑 ∧ (⌊‘(𝐴 + (1 / 2))) = (⌊‘(𝐵 + (1 / 2)))) → (⌊‘(𝐴 + (1 / 2))) = (⌊‘(𝐵 + (1 / 2))))
5554eqcomd 2804 . . 3 ((𝜑 ∧ (⌊‘(𝐴 + (1 / 2))) = (⌊‘(𝐵 + (1 / 2)))) → (⌊‘(𝐵 + (1 / 2))) = (⌊‘(𝐴 + (1 / 2))))
561, 52, 53, 55dnibndlem2 33931 . 2 ((𝜑 ∧ (⌊‘(𝐴 + (1 / 2))) = (⌊‘(𝐵 + (1 / 2)))) → (abs‘((𝑇𝐵) − (𝑇𝐴))) ≤ (abs‘(𝐵𝐴)))
57 dnibndlem13.4 . . 3 (𝜑 → (⌊‘(𝐴 + (1 / 2))) ≤ (⌊‘(𝐵 + (1 / 2))))
5826, 30leloed 10772 . . 3 (𝜑 → ((⌊‘(𝐴 + (1 / 2))) ≤ (⌊‘(𝐵 + (1 / 2))) ↔ ((⌊‘(𝐴 + (1 / 2))) < (⌊‘(𝐵 + (1 / 2))) ∨ (⌊‘(𝐴 + (1 / 2))) = (⌊‘(𝐵 + (1 / 2))))))
5957, 58mpbid 235 . 2 (𝜑 → ((⌊‘(𝐴 + (1 / 2))) < (⌊‘(𝐵 + (1 / 2))) ∨ (⌊‘(𝐴 + (1 / 2))) = (⌊‘(𝐵 + (1 / 2)))))
6051, 56, 59mpjaodan 956 1 (𝜑 → (abs‘((𝑇𝐵) − (𝑇𝐴))) ≤ (abs‘(𝐵𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wo 844   = wceq 1538  wcel 2111   class class class wbr 5030  cmpt 5110  cfv 6324  (class class class)co 7135  cr 10525  1c1 10527   + caddc 10529   < clt 10664  cle 10665  cmin 10859   / cdiv 11286  2c2 11680  cz 11969  cfl 13155  abscabs 14585
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-sup 8890  df-inf 8891  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-fl 13157  df-seq 13365  df-exp 13426  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587
This theorem is referenced by:  dnibnd  33943
  Copyright terms: Public domain W3C validator