Proof of Theorem dnibndlem13
Step | Hyp | Ref
| Expression |
1 | | dnibndlem13.1 |
. . . 4
⊢ 𝑇 = (𝑥 ∈ ℝ ↦
(abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥))) |
2 | | dnibndlem13.2 |
. . . . 5
⊢ (𝜑 → 𝐴 ∈ ℝ) |
3 | 2 | ad2antrr 722 |
. . . 4
⊢ (((𝜑 ∧ (⌊‘(𝐴 + (1 / 2))) <
(⌊‘(𝐵 + (1 /
2)))) ∧ ((⌊‘(𝐴 + (1 / 2))) + 2) ≤ (⌊‘(𝐵 + (1 / 2)))) → 𝐴 ∈
ℝ) |
4 | | dnibndlem13.3 |
. . . . 5
⊢ (𝜑 → 𝐵 ∈ ℝ) |
5 | 4 | ad2antrr 722 |
. . . 4
⊢ (((𝜑 ∧ (⌊‘(𝐴 + (1 / 2))) <
(⌊‘(𝐵 + (1 /
2)))) ∧ ((⌊‘(𝐴 + (1 / 2))) + 2) ≤ (⌊‘(𝐵 + (1 / 2)))) → 𝐵 ∈
ℝ) |
6 | | simpr 484 |
. . . 4
⊢ (((𝜑 ∧ (⌊‘(𝐴 + (1 / 2))) <
(⌊‘(𝐵 + (1 /
2)))) ∧ ((⌊‘(𝐴 + (1 / 2))) + 2) ≤ (⌊‘(𝐵 + (1 / 2)))) →
((⌊‘(𝐴 + (1 /
2))) + 2) ≤ (⌊‘(𝐵 + (1 / 2)))) |
7 | 1, 3, 5, 6 | dnibndlem12 34596 |
. . 3
⊢ (((𝜑 ∧ (⌊‘(𝐴 + (1 / 2))) <
(⌊‘(𝐵 + (1 /
2)))) ∧ ((⌊‘(𝐴 + (1 / 2))) + 2) ≤ (⌊‘(𝐵 + (1 / 2)))) →
(abs‘((𝑇‘𝐵) − (𝑇‘𝐴))) ≤ (abs‘(𝐵 − 𝐴))) |
8 | 2 | ad2antrr 722 |
. . . 4
⊢ (((𝜑 ∧ (⌊‘(𝐴 + (1 / 2))) <
(⌊‘(𝐵 + (1 /
2)))) ∧ ((⌊‘(𝐴 + (1 / 2))) + 1) = (⌊‘(𝐵 + (1 / 2)))) → 𝐴 ∈
ℝ) |
9 | 4 | ad2antrr 722 |
. . . 4
⊢ (((𝜑 ∧ (⌊‘(𝐴 + (1 / 2))) <
(⌊‘(𝐵 + (1 /
2)))) ∧ ((⌊‘(𝐴 + (1 / 2))) + 1) = (⌊‘(𝐵 + (1 / 2)))) → 𝐵 ∈
ℝ) |
10 | | simpr 484 |
. . . . 5
⊢ (((𝜑 ∧ (⌊‘(𝐴 + (1 / 2))) <
(⌊‘(𝐵 + (1 /
2)))) ∧ ((⌊‘(𝐴 + (1 / 2))) + 1) = (⌊‘(𝐵 + (1 / 2)))) →
((⌊‘(𝐴 + (1 /
2))) + 1) = (⌊‘(𝐵 + (1 / 2)))) |
11 | 10 | eqcomd 2744 |
. . . 4
⊢ (((𝜑 ∧ (⌊‘(𝐴 + (1 / 2))) <
(⌊‘(𝐵 + (1 /
2)))) ∧ ((⌊‘(𝐴 + (1 / 2))) + 1) = (⌊‘(𝐵 + (1 / 2)))) →
(⌊‘(𝐵 + (1 /
2))) = ((⌊‘(𝐴 +
(1 / 2))) + 1)) |
12 | 1, 8, 9, 11 | dnibndlem9 34593 |
. . 3
⊢ (((𝜑 ∧ (⌊‘(𝐴 + (1 / 2))) <
(⌊‘(𝐵 + (1 /
2)))) ∧ ((⌊‘(𝐴 + (1 / 2))) + 1) = (⌊‘(𝐵 + (1 / 2)))) →
(abs‘((𝑇‘𝐵) − (𝑇‘𝐴))) ≤ (abs‘(𝐵 − 𝐴))) |
13 | | simpr 484 |
. . . . . 6
⊢ ((𝜑 ∧ (⌊‘(𝐴 + (1 / 2))) <
(⌊‘(𝐵 + (1 /
2)))) → (⌊‘(𝐴 + (1 / 2))) < (⌊‘(𝐵 + (1 / 2)))) |
14 | | halfre 12117 |
. . . . . . . . . . . 12
⊢ (1 / 2)
∈ ℝ |
15 | 14 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝜑 → (1 / 2) ∈
ℝ) |
16 | 2, 15 | readdcld 10935 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐴 + (1 / 2)) ∈ ℝ) |
17 | 16 | flcld 13446 |
. . . . . . . . 9
⊢ (𝜑 → (⌊‘(𝐴 + (1 / 2))) ∈
ℤ) |
18 | 4, 15 | readdcld 10935 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐵 + (1 / 2)) ∈ ℝ) |
19 | 18 | flcld 13446 |
. . . . . . . . 9
⊢ (𝜑 → (⌊‘(𝐵 + (1 / 2))) ∈
ℤ) |
20 | 17, 19 | jca 511 |
. . . . . . . 8
⊢ (𝜑 → ((⌊‘(𝐴 + (1 / 2))) ∈ ℤ
∧ (⌊‘(𝐵 +
(1 / 2))) ∈ ℤ)) |
21 | 20 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ (⌊‘(𝐴 + (1 / 2))) <
(⌊‘(𝐵 + (1 /
2)))) → ((⌊‘(𝐴 + (1 / 2))) ∈ ℤ ∧
(⌊‘(𝐵 + (1 /
2))) ∈ ℤ)) |
22 | | zltp1le 12300 |
. . . . . . 7
⊢
(((⌊‘(𝐴
+ (1 / 2))) ∈ ℤ ∧ (⌊‘(𝐵 + (1 / 2))) ∈ ℤ) →
((⌊‘(𝐴 + (1 /
2))) < (⌊‘(𝐵
+ (1 / 2))) ↔ ((⌊‘(𝐴 + (1 / 2))) + 1) ≤ (⌊‘(𝐵 + (1 / 2))))) |
23 | 21, 22 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ (⌊‘(𝐴 + (1 / 2))) <
(⌊‘(𝐵 + (1 /
2)))) → ((⌊‘(𝐴 + (1 / 2))) < (⌊‘(𝐵 + (1 / 2))) ↔
((⌊‘(𝐴 + (1 /
2))) + 1) ≤ (⌊‘(𝐵 + (1 / 2))))) |
24 | 13, 23 | mpbid 231 |
. . . . 5
⊢ ((𝜑 ∧ (⌊‘(𝐴 + (1 / 2))) <
(⌊‘(𝐵 + (1 /
2)))) → ((⌊‘(𝐴 + (1 / 2))) + 1) ≤ (⌊‘(𝐵 + (1 / 2)))) |
25 | | reflcl 13444 |
. . . . . . . . 9
⊢ ((𝐴 + (1 / 2)) ∈ ℝ
→ (⌊‘(𝐴 +
(1 / 2))) ∈ ℝ) |
26 | 16, 25 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → (⌊‘(𝐴 + (1 / 2))) ∈
ℝ) |
27 | | peano2re 11078 |
. . . . . . . 8
⊢
((⌊‘(𝐴 +
(1 / 2))) ∈ ℝ → ((⌊‘(𝐴 + (1 / 2))) + 1) ∈
ℝ) |
28 | 26, 27 | syl 17 |
. . . . . . 7
⊢ (𝜑 → ((⌊‘(𝐴 + (1 / 2))) + 1) ∈
ℝ) |
29 | 28 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ (⌊‘(𝐴 + (1 / 2))) <
(⌊‘(𝐵 + (1 /
2)))) → ((⌊‘(𝐴 + (1 / 2))) + 1) ∈
ℝ) |
30 | 19 | zred 12355 |
. . . . . . 7
⊢ (𝜑 → (⌊‘(𝐵 + (1 / 2))) ∈
ℝ) |
31 | 30 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ (⌊‘(𝐴 + (1 / 2))) <
(⌊‘(𝐵 + (1 /
2)))) → (⌊‘(𝐵 + (1 / 2))) ∈
ℝ) |
32 | 29, 31 | leloed 11048 |
. . . . 5
⊢ ((𝜑 ∧ (⌊‘(𝐴 + (1 / 2))) <
(⌊‘(𝐵 + (1 /
2)))) → (((⌊‘(𝐴 + (1 / 2))) + 1) ≤ (⌊‘(𝐵 + (1 / 2))) ↔
(((⌊‘(𝐴 + (1 /
2))) + 1) < (⌊‘(𝐵 + (1 / 2))) ∨ ((⌊‘(𝐴 + (1 / 2))) + 1) =
(⌊‘(𝐵 + (1 /
2)))))) |
33 | 24, 32 | mpbid 231 |
. . . 4
⊢ ((𝜑 ∧ (⌊‘(𝐴 + (1 / 2))) <
(⌊‘(𝐵 + (1 /
2)))) → (((⌊‘(𝐴 + (1 / 2))) + 1) < (⌊‘(𝐵 + (1 / 2))) ∨
((⌊‘(𝐴 + (1 /
2))) + 1) = (⌊‘(𝐵 + (1 / 2))))) |
34 | 17 | peano2zd 12358 |
. . . . . . . . . 10
⊢ (𝜑 → ((⌊‘(𝐴 + (1 / 2))) + 1) ∈
ℤ) |
35 | 34, 19 | jca 511 |
. . . . . . . . 9
⊢ (𝜑 → (((⌊‘(𝐴 + (1 / 2))) + 1) ∈ ℤ
∧ (⌊‘(𝐵 +
(1 / 2))) ∈ ℤ)) |
36 | | zltp1le 12300 |
. . . . . . . . 9
⊢
((((⌊‘(𝐴
+ (1 / 2))) + 1) ∈ ℤ ∧ (⌊‘(𝐵 + (1 / 2))) ∈ ℤ) →
(((⌊‘(𝐴 + (1 /
2))) + 1) < (⌊‘(𝐵 + (1 / 2))) ↔ (((⌊‘(𝐴 + (1 / 2))) + 1) + 1) ≤
(⌊‘(𝐵 + (1 /
2))))) |
37 | 35, 36 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → (((⌊‘(𝐴 + (1 / 2))) + 1) <
(⌊‘(𝐵 + (1 /
2))) ↔ (((⌊‘(𝐴 + (1 / 2))) + 1) + 1) ≤
(⌊‘(𝐵 + (1 /
2))))) |
38 | 26 | recnd 10934 |
. . . . . . . . . . 11
⊢ (𝜑 → (⌊‘(𝐴 + (1 / 2))) ∈
ℂ) |
39 | | 1cnd 10901 |
. . . . . . . . . . 11
⊢ (𝜑 → 1 ∈
ℂ) |
40 | 38, 39, 39 | addassd 10928 |
. . . . . . . . . 10
⊢ (𝜑 → (((⌊‘(𝐴 + (1 / 2))) + 1) + 1) =
((⌊‘(𝐴 + (1 /
2))) + (1 + 1))) |
41 | | 1p1e2 12028 |
. . . . . . . . . . . 12
⊢ (1 + 1) =
2 |
42 | 41 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝜑 → (1 + 1) =
2) |
43 | 42 | oveq2d 7271 |
. . . . . . . . . 10
⊢ (𝜑 → ((⌊‘(𝐴 + (1 / 2))) + (1 + 1)) =
((⌊‘(𝐴 + (1 /
2))) + 2)) |
44 | 40, 43 | eqtrd 2778 |
. . . . . . . . 9
⊢ (𝜑 → (((⌊‘(𝐴 + (1 / 2))) + 1) + 1) =
((⌊‘(𝐴 + (1 /
2))) + 2)) |
45 | 44 | breq1d 5080 |
. . . . . . . 8
⊢ (𝜑 → ((((⌊‘(𝐴 + (1 / 2))) + 1) + 1) ≤
(⌊‘(𝐵 + (1 /
2))) ↔ ((⌊‘(𝐴 + (1 / 2))) + 2) ≤ (⌊‘(𝐵 + (1 / 2))))) |
46 | 37, 45 | bitrd 278 |
. . . . . . 7
⊢ (𝜑 → (((⌊‘(𝐴 + (1 / 2))) + 1) <
(⌊‘(𝐵 + (1 /
2))) ↔ ((⌊‘(𝐴 + (1 / 2))) + 2) ≤ (⌊‘(𝐵 + (1 / 2))))) |
47 | 46 | biimpd 228 |
. . . . . 6
⊢ (𝜑 → (((⌊‘(𝐴 + (1 / 2))) + 1) <
(⌊‘(𝐵 + (1 /
2))) → ((⌊‘(𝐴 + (1 / 2))) + 2) ≤ (⌊‘(𝐵 + (1 / 2))))) |
48 | 47 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ (⌊‘(𝐴 + (1 / 2))) <
(⌊‘(𝐵 + (1 /
2)))) → (((⌊‘(𝐴 + (1 / 2))) + 1) < (⌊‘(𝐵 + (1 / 2))) →
((⌊‘(𝐴 + (1 /
2))) + 2) ≤ (⌊‘(𝐵 + (1 / 2))))) |
49 | 48 | orim1d 962 |
. . . 4
⊢ ((𝜑 ∧ (⌊‘(𝐴 + (1 / 2))) <
(⌊‘(𝐵 + (1 /
2)))) → ((((⌊‘(𝐴 + (1 / 2))) + 1) < (⌊‘(𝐵 + (1 / 2))) ∨
((⌊‘(𝐴 + (1 /
2))) + 1) = (⌊‘(𝐵 + (1 / 2)))) → (((⌊‘(𝐴 + (1 / 2))) + 2) ≤
(⌊‘(𝐵 + (1 /
2))) ∨ ((⌊‘(𝐴 + (1 / 2))) + 1) = (⌊‘(𝐵 + (1 / 2)))))) |
50 | 33, 49 | mpd 15 |
. . 3
⊢ ((𝜑 ∧ (⌊‘(𝐴 + (1 / 2))) <
(⌊‘(𝐵 + (1 /
2)))) → (((⌊‘(𝐴 + (1 / 2))) + 2) ≤ (⌊‘(𝐵 + (1 / 2))) ∨
((⌊‘(𝐴 + (1 /
2))) + 1) = (⌊‘(𝐵 + (1 / 2))))) |
51 | 7, 12, 50 | mpjaodan 955 |
. 2
⊢ ((𝜑 ∧ (⌊‘(𝐴 + (1 / 2))) <
(⌊‘(𝐵 + (1 /
2)))) → (abs‘((𝑇‘𝐵) − (𝑇‘𝐴))) ≤ (abs‘(𝐵 − 𝐴))) |
52 | 2 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ (⌊‘(𝐴 + (1 / 2))) =
(⌊‘(𝐵 + (1 /
2)))) → 𝐴 ∈
ℝ) |
53 | 4 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ (⌊‘(𝐴 + (1 / 2))) =
(⌊‘(𝐵 + (1 /
2)))) → 𝐵 ∈
ℝ) |
54 | | simpr 484 |
. . . 4
⊢ ((𝜑 ∧ (⌊‘(𝐴 + (1 / 2))) =
(⌊‘(𝐵 + (1 /
2)))) → (⌊‘(𝐴 + (1 / 2))) = (⌊‘(𝐵 + (1 / 2)))) |
55 | 54 | eqcomd 2744 |
. . 3
⊢ ((𝜑 ∧ (⌊‘(𝐴 + (1 / 2))) =
(⌊‘(𝐵 + (1 /
2)))) → (⌊‘(𝐵 + (1 / 2))) = (⌊‘(𝐴 + (1 / 2)))) |
56 | 1, 52, 53, 55 | dnibndlem2 34586 |
. 2
⊢ ((𝜑 ∧ (⌊‘(𝐴 + (1 / 2))) =
(⌊‘(𝐵 + (1 /
2)))) → (abs‘((𝑇‘𝐵) − (𝑇‘𝐴))) ≤ (abs‘(𝐵 − 𝐴))) |
57 | | dnibndlem13.4 |
. . 3
⊢ (𝜑 → (⌊‘(𝐴 + (1 / 2))) ≤
(⌊‘(𝐵 + (1 /
2)))) |
58 | 26, 30 | leloed 11048 |
. . 3
⊢ (𝜑 → ((⌊‘(𝐴 + (1 / 2))) ≤
(⌊‘(𝐵 + (1 /
2))) ↔ ((⌊‘(𝐴 + (1 / 2))) < (⌊‘(𝐵 + (1 / 2))) ∨
(⌊‘(𝐴 + (1 /
2))) = (⌊‘(𝐵 +
(1 / 2)))))) |
59 | 57, 58 | mpbid 231 |
. 2
⊢ (𝜑 → ((⌊‘(𝐴 + (1 / 2))) <
(⌊‘(𝐵 + (1 /
2))) ∨ (⌊‘(𝐴
+ (1 / 2))) = (⌊‘(𝐵 + (1 / 2))))) |
60 | 51, 56, 59 | mpjaodan 955 |
1
⊢ (𝜑 → (abs‘((𝑇‘𝐵) − (𝑇‘𝐴))) ≤ (abs‘(𝐵 − 𝐴))) |