Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dnibndlem13 Structured version   Visualization version   GIF version

Theorem dnibndlem13 34982
Description: Lemma for dnibnd 34983. (Contributed by Asger C. Ipsen, 4-Apr-2021.)
Hypotheses
Ref Expression
dnibndlem13.1 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
dnibndlem13.2 (𝜑𝐴 ∈ ℝ)
dnibndlem13.3 (𝜑𝐵 ∈ ℝ)
dnibndlem13.4 (𝜑 → (⌊‘(𝐴 + (1 / 2))) ≤ (⌊‘(𝐵 + (1 / 2))))
Assertion
Ref Expression
dnibndlem13 (𝜑 → (abs‘((𝑇𝐵) − (𝑇𝐴))) ≤ (abs‘(𝐵𝐴)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥)   𝑇(𝑥)

Proof of Theorem dnibndlem13
StepHypRef Expression
1 dnibndlem13.1 . . . 4 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
2 dnibndlem13.2 . . . . 5 (𝜑𝐴 ∈ ℝ)
32ad2antrr 725 . . . 4 (((𝜑 ∧ (⌊‘(𝐴 + (1 / 2))) < (⌊‘(𝐵 + (1 / 2)))) ∧ ((⌊‘(𝐴 + (1 / 2))) + 2) ≤ (⌊‘(𝐵 + (1 / 2)))) → 𝐴 ∈ ℝ)
4 dnibndlem13.3 . . . . 5 (𝜑𝐵 ∈ ℝ)
54ad2antrr 725 . . . 4 (((𝜑 ∧ (⌊‘(𝐴 + (1 / 2))) < (⌊‘(𝐵 + (1 / 2)))) ∧ ((⌊‘(𝐴 + (1 / 2))) + 2) ≤ (⌊‘(𝐵 + (1 / 2)))) → 𝐵 ∈ ℝ)
6 simpr 486 . . . 4 (((𝜑 ∧ (⌊‘(𝐴 + (1 / 2))) < (⌊‘(𝐵 + (1 / 2)))) ∧ ((⌊‘(𝐴 + (1 / 2))) + 2) ≤ (⌊‘(𝐵 + (1 / 2)))) → ((⌊‘(𝐴 + (1 / 2))) + 2) ≤ (⌊‘(𝐵 + (1 / 2))))
71, 3, 5, 6dnibndlem12 34981 . . 3 (((𝜑 ∧ (⌊‘(𝐴 + (1 / 2))) < (⌊‘(𝐵 + (1 / 2)))) ∧ ((⌊‘(𝐴 + (1 / 2))) + 2) ≤ (⌊‘(𝐵 + (1 / 2)))) → (abs‘((𝑇𝐵) − (𝑇𝐴))) ≤ (abs‘(𝐵𝐴)))
82ad2antrr 725 . . . 4 (((𝜑 ∧ (⌊‘(𝐴 + (1 / 2))) < (⌊‘(𝐵 + (1 / 2)))) ∧ ((⌊‘(𝐴 + (1 / 2))) + 1) = (⌊‘(𝐵 + (1 / 2)))) → 𝐴 ∈ ℝ)
94ad2antrr 725 . . . 4 (((𝜑 ∧ (⌊‘(𝐴 + (1 / 2))) < (⌊‘(𝐵 + (1 / 2)))) ∧ ((⌊‘(𝐴 + (1 / 2))) + 1) = (⌊‘(𝐵 + (1 / 2)))) → 𝐵 ∈ ℝ)
10 simpr 486 . . . . 5 (((𝜑 ∧ (⌊‘(𝐴 + (1 / 2))) < (⌊‘(𝐵 + (1 / 2)))) ∧ ((⌊‘(𝐴 + (1 / 2))) + 1) = (⌊‘(𝐵 + (1 / 2)))) → ((⌊‘(𝐴 + (1 / 2))) + 1) = (⌊‘(𝐵 + (1 / 2))))
1110eqcomd 2743 . . . 4 (((𝜑 ∧ (⌊‘(𝐴 + (1 / 2))) < (⌊‘(𝐵 + (1 / 2)))) ∧ ((⌊‘(𝐴 + (1 / 2))) + 1) = (⌊‘(𝐵 + (1 / 2)))) → (⌊‘(𝐵 + (1 / 2))) = ((⌊‘(𝐴 + (1 / 2))) + 1))
121, 8, 9, 11dnibndlem9 34978 . . 3 (((𝜑 ∧ (⌊‘(𝐴 + (1 / 2))) < (⌊‘(𝐵 + (1 / 2)))) ∧ ((⌊‘(𝐴 + (1 / 2))) + 1) = (⌊‘(𝐵 + (1 / 2)))) → (abs‘((𝑇𝐵) − (𝑇𝐴))) ≤ (abs‘(𝐵𝐴)))
13 simpr 486 . . . . . 6 ((𝜑 ∧ (⌊‘(𝐴 + (1 / 2))) < (⌊‘(𝐵 + (1 / 2)))) → (⌊‘(𝐴 + (1 / 2))) < (⌊‘(𝐵 + (1 / 2))))
14 halfre 12374 . . . . . . . . . . . 12 (1 / 2) ∈ ℝ
1514a1i 11 . . . . . . . . . . 11 (𝜑 → (1 / 2) ∈ ℝ)
162, 15readdcld 11191 . . . . . . . . . 10 (𝜑 → (𝐴 + (1 / 2)) ∈ ℝ)
1716flcld 13710 . . . . . . . . 9 (𝜑 → (⌊‘(𝐴 + (1 / 2))) ∈ ℤ)
184, 15readdcld 11191 . . . . . . . . . 10 (𝜑 → (𝐵 + (1 / 2)) ∈ ℝ)
1918flcld 13710 . . . . . . . . 9 (𝜑 → (⌊‘(𝐵 + (1 / 2))) ∈ ℤ)
2017, 19jca 513 . . . . . . . 8 (𝜑 → ((⌊‘(𝐴 + (1 / 2))) ∈ ℤ ∧ (⌊‘(𝐵 + (1 / 2))) ∈ ℤ))
2120adantr 482 . . . . . . 7 ((𝜑 ∧ (⌊‘(𝐴 + (1 / 2))) < (⌊‘(𝐵 + (1 / 2)))) → ((⌊‘(𝐴 + (1 / 2))) ∈ ℤ ∧ (⌊‘(𝐵 + (1 / 2))) ∈ ℤ))
22 zltp1le 12560 . . . . . . 7 (((⌊‘(𝐴 + (1 / 2))) ∈ ℤ ∧ (⌊‘(𝐵 + (1 / 2))) ∈ ℤ) → ((⌊‘(𝐴 + (1 / 2))) < (⌊‘(𝐵 + (1 / 2))) ↔ ((⌊‘(𝐴 + (1 / 2))) + 1) ≤ (⌊‘(𝐵 + (1 / 2)))))
2321, 22syl 17 . . . . . 6 ((𝜑 ∧ (⌊‘(𝐴 + (1 / 2))) < (⌊‘(𝐵 + (1 / 2)))) → ((⌊‘(𝐴 + (1 / 2))) < (⌊‘(𝐵 + (1 / 2))) ↔ ((⌊‘(𝐴 + (1 / 2))) + 1) ≤ (⌊‘(𝐵 + (1 / 2)))))
2413, 23mpbid 231 . . . . 5 ((𝜑 ∧ (⌊‘(𝐴 + (1 / 2))) < (⌊‘(𝐵 + (1 / 2)))) → ((⌊‘(𝐴 + (1 / 2))) + 1) ≤ (⌊‘(𝐵 + (1 / 2))))
25 reflcl 13708 . . . . . . . . 9 ((𝐴 + (1 / 2)) ∈ ℝ → (⌊‘(𝐴 + (1 / 2))) ∈ ℝ)
2616, 25syl 17 . . . . . . . 8 (𝜑 → (⌊‘(𝐴 + (1 / 2))) ∈ ℝ)
27 peano2re 11335 . . . . . . . 8 ((⌊‘(𝐴 + (1 / 2))) ∈ ℝ → ((⌊‘(𝐴 + (1 / 2))) + 1) ∈ ℝ)
2826, 27syl 17 . . . . . . 7 (𝜑 → ((⌊‘(𝐴 + (1 / 2))) + 1) ∈ ℝ)
2928adantr 482 . . . . . 6 ((𝜑 ∧ (⌊‘(𝐴 + (1 / 2))) < (⌊‘(𝐵 + (1 / 2)))) → ((⌊‘(𝐴 + (1 / 2))) + 1) ∈ ℝ)
3019zred 12614 . . . . . . 7 (𝜑 → (⌊‘(𝐵 + (1 / 2))) ∈ ℝ)
3130adantr 482 . . . . . 6 ((𝜑 ∧ (⌊‘(𝐴 + (1 / 2))) < (⌊‘(𝐵 + (1 / 2)))) → (⌊‘(𝐵 + (1 / 2))) ∈ ℝ)
3229, 31leloed 11305 . . . . 5 ((𝜑 ∧ (⌊‘(𝐴 + (1 / 2))) < (⌊‘(𝐵 + (1 / 2)))) → (((⌊‘(𝐴 + (1 / 2))) + 1) ≤ (⌊‘(𝐵 + (1 / 2))) ↔ (((⌊‘(𝐴 + (1 / 2))) + 1) < (⌊‘(𝐵 + (1 / 2))) ∨ ((⌊‘(𝐴 + (1 / 2))) + 1) = (⌊‘(𝐵 + (1 / 2))))))
3324, 32mpbid 231 . . . 4 ((𝜑 ∧ (⌊‘(𝐴 + (1 / 2))) < (⌊‘(𝐵 + (1 / 2)))) → (((⌊‘(𝐴 + (1 / 2))) + 1) < (⌊‘(𝐵 + (1 / 2))) ∨ ((⌊‘(𝐴 + (1 / 2))) + 1) = (⌊‘(𝐵 + (1 / 2)))))
3417peano2zd 12617 . . . . . . . . . 10 (𝜑 → ((⌊‘(𝐴 + (1 / 2))) + 1) ∈ ℤ)
3534, 19jca 513 . . . . . . . . 9 (𝜑 → (((⌊‘(𝐴 + (1 / 2))) + 1) ∈ ℤ ∧ (⌊‘(𝐵 + (1 / 2))) ∈ ℤ))
36 zltp1le 12560 . . . . . . . . 9 ((((⌊‘(𝐴 + (1 / 2))) + 1) ∈ ℤ ∧ (⌊‘(𝐵 + (1 / 2))) ∈ ℤ) → (((⌊‘(𝐴 + (1 / 2))) + 1) < (⌊‘(𝐵 + (1 / 2))) ↔ (((⌊‘(𝐴 + (1 / 2))) + 1) + 1) ≤ (⌊‘(𝐵 + (1 / 2)))))
3735, 36syl 17 . . . . . . . 8 (𝜑 → (((⌊‘(𝐴 + (1 / 2))) + 1) < (⌊‘(𝐵 + (1 / 2))) ↔ (((⌊‘(𝐴 + (1 / 2))) + 1) + 1) ≤ (⌊‘(𝐵 + (1 / 2)))))
3826recnd 11190 . . . . . . . . . . 11 (𝜑 → (⌊‘(𝐴 + (1 / 2))) ∈ ℂ)
39 1cnd 11157 . . . . . . . . . . 11 (𝜑 → 1 ∈ ℂ)
4038, 39, 39addassd 11184 . . . . . . . . . 10 (𝜑 → (((⌊‘(𝐴 + (1 / 2))) + 1) + 1) = ((⌊‘(𝐴 + (1 / 2))) + (1 + 1)))
41 1p1e2 12285 . . . . . . . . . . . 12 (1 + 1) = 2
4241a1i 11 . . . . . . . . . . 11 (𝜑 → (1 + 1) = 2)
4342oveq2d 7378 . . . . . . . . . 10 (𝜑 → ((⌊‘(𝐴 + (1 / 2))) + (1 + 1)) = ((⌊‘(𝐴 + (1 / 2))) + 2))
4440, 43eqtrd 2777 . . . . . . . . 9 (𝜑 → (((⌊‘(𝐴 + (1 / 2))) + 1) + 1) = ((⌊‘(𝐴 + (1 / 2))) + 2))
4544breq1d 5120 . . . . . . . 8 (𝜑 → ((((⌊‘(𝐴 + (1 / 2))) + 1) + 1) ≤ (⌊‘(𝐵 + (1 / 2))) ↔ ((⌊‘(𝐴 + (1 / 2))) + 2) ≤ (⌊‘(𝐵 + (1 / 2)))))
4637, 45bitrd 279 . . . . . . 7 (𝜑 → (((⌊‘(𝐴 + (1 / 2))) + 1) < (⌊‘(𝐵 + (1 / 2))) ↔ ((⌊‘(𝐴 + (1 / 2))) + 2) ≤ (⌊‘(𝐵 + (1 / 2)))))
4746biimpd 228 . . . . . 6 (𝜑 → (((⌊‘(𝐴 + (1 / 2))) + 1) < (⌊‘(𝐵 + (1 / 2))) → ((⌊‘(𝐴 + (1 / 2))) + 2) ≤ (⌊‘(𝐵 + (1 / 2)))))
4847adantr 482 . . . . 5 ((𝜑 ∧ (⌊‘(𝐴 + (1 / 2))) < (⌊‘(𝐵 + (1 / 2)))) → (((⌊‘(𝐴 + (1 / 2))) + 1) < (⌊‘(𝐵 + (1 / 2))) → ((⌊‘(𝐴 + (1 / 2))) + 2) ≤ (⌊‘(𝐵 + (1 / 2)))))
4948orim1d 965 . . . 4 ((𝜑 ∧ (⌊‘(𝐴 + (1 / 2))) < (⌊‘(𝐵 + (1 / 2)))) → ((((⌊‘(𝐴 + (1 / 2))) + 1) < (⌊‘(𝐵 + (1 / 2))) ∨ ((⌊‘(𝐴 + (1 / 2))) + 1) = (⌊‘(𝐵 + (1 / 2)))) → (((⌊‘(𝐴 + (1 / 2))) + 2) ≤ (⌊‘(𝐵 + (1 / 2))) ∨ ((⌊‘(𝐴 + (1 / 2))) + 1) = (⌊‘(𝐵 + (1 / 2))))))
5033, 49mpd 15 . . 3 ((𝜑 ∧ (⌊‘(𝐴 + (1 / 2))) < (⌊‘(𝐵 + (1 / 2)))) → (((⌊‘(𝐴 + (1 / 2))) + 2) ≤ (⌊‘(𝐵 + (1 / 2))) ∨ ((⌊‘(𝐴 + (1 / 2))) + 1) = (⌊‘(𝐵 + (1 / 2)))))
517, 12, 50mpjaodan 958 . 2 ((𝜑 ∧ (⌊‘(𝐴 + (1 / 2))) < (⌊‘(𝐵 + (1 / 2)))) → (abs‘((𝑇𝐵) − (𝑇𝐴))) ≤ (abs‘(𝐵𝐴)))
522adantr 482 . . 3 ((𝜑 ∧ (⌊‘(𝐴 + (1 / 2))) = (⌊‘(𝐵 + (1 / 2)))) → 𝐴 ∈ ℝ)
534adantr 482 . . 3 ((𝜑 ∧ (⌊‘(𝐴 + (1 / 2))) = (⌊‘(𝐵 + (1 / 2)))) → 𝐵 ∈ ℝ)
54 simpr 486 . . . 4 ((𝜑 ∧ (⌊‘(𝐴 + (1 / 2))) = (⌊‘(𝐵 + (1 / 2)))) → (⌊‘(𝐴 + (1 / 2))) = (⌊‘(𝐵 + (1 / 2))))
5554eqcomd 2743 . . 3 ((𝜑 ∧ (⌊‘(𝐴 + (1 / 2))) = (⌊‘(𝐵 + (1 / 2)))) → (⌊‘(𝐵 + (1 / 2))) = (⌊‘(𝐴 + (1 / 2))))
561, 52, 53, 55dnibndlem2 34971 . 2 ((𝜑 ∧ (⌊‘(𝐴 + (1 / 2))) = (⌊‘(𝐵 + (1 / 2)))) → (abs‘((𝑇𝐵) − (𝑇𝐴))) ≤ (abs‘(𝐵𝐴)))
57 dnibndlem13.4 . . 3 (𝜑 → (⌊‘(𝐴 + (1 / 2))) ≤ (⌊‘(𝐵 + (1 / 2))))
5826, 30leloed 11305 . . 3 (𝜑 → ((⌊‘(𝐴 + (1 / 2))) ≤ (⌊‘(𝐵 + (1 / 2))) ↔ ((⌊‘(𝐴 + (1 / 2))) < (⌊‘(𝐵 + (1 / 2))) ∨ (⌊‘(𝐴 + (1 / 2))) = (⌊‘(𝐵 + (1 / 2))))))
5957, 58mpbid 231 . 2 (𝜑 → ((⌊‘(𝐴 + (1 / 2))) < (⌊‘(𝐵 + (1 / 2))) ∨ (⌊‘(𝐴 + (1 / 2))) = (⌊‘(𝐵 + (1 / 2)))))
6051, 56, 59mpjaodan 958 1 (𝜑 → (abs‘((𝑇𝐵) − (𝑇𝐴))) ≤ (abs‘(𝐵𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  wo 846   = wceq 1542  wcel 2107   class class class wbr 5110  cmpt 5193  cfv 6501  (class class class)co 7362  cr 11057  1c1 11059   + caddc 11061   < clt 11196  cle 11197  cmin 11392   / cdiv 11819  2c2 12215  cz 12506  cfl 13702  abscabs 15126
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677  ax-cnex 11114  ax-resscn 11115  ax-1cn 11116  ax-icn 11117  ax-addcl 11118  ax-addrcl 11119  ax-mulcl 11120  ax-mulrcl 11121  ax-mulcom 11122  ax-addass 11123  ax-mulass 11124  ax-distr 11125  ax-i2m1 11126  ax-1ne0 11127  ax-1rid 11128  ax-rnegex 11129  ax-rrecex 11130  ax-cnre 11131  ax-pre-lttri 11132  ax-pre-lttrn 11133  ax-pre-ltadd 11134  ax-pre-mulgt0 11135  ax-pre-sup 11136
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3066  df-rex 3075  df-rmo 3356  df-reu 3357  df-rab 3411  df-v 3450  df-sbc 3745  df-csb 3861  df-dif 3918  df-un 3920  df-in 3922  df-ss 3932  df-pss 3934  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-iun 4961  df-br 5111  df-opab 5173  df-mpt 5194  df-tr 5228  df-id 5536  df-eprel 5542  df-po 5550  df-so 5551  df-fr 5593  df-we 5595  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6258  df-ord 6325  df-on 6326  df-lim 6327  df-suc 6328  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-riota 7318  df-ov 7365  df-oprab 7366  df-mpo 7367  df-om 7808  df-2nd 7927  df-frecs 8217  df-wrecs 8248  df-recs 8322  df-rdg 8361  df-er 8655  df-en 8891  df-dom 8892  df-sdom 8893  df-sup 9385  df-inf 9386  df-pnf 11198  df-mnf 11199  df-xr 11200  df-ltxr 11201  df-le 11202  df-sub 11394  df-neg 11395  df-div 11820  df-nn 12161  df-2 12223  df-3 12224  df-n0 12421  df-z 12507  df-uz 12771  df-rp 12923  df-fl 13704  df-seq 13914  df-exp 13975  df-cj 14991  df-re 14992  df-im 14993  df-sqrt 15127  df-abs 15128
This theorem is referenced by:  dnibnd  34983
  Copyright terms: Public domain W3C validator