Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dnibndlem13 Structured version   Visualization version   GIF version

Theorem dnibndlem13 35170
Description: Lemma for dnibnd 35171. (Contributed by Asger C. Ipsen, 4-Apr-2021.)
Hypotheses
Ref Expression
dnibndlem13.1 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
dnibndlem13.2 (𝜑𝐴 ∈ ℝ)
dnibndlem13.3 (𝜑𝐵 ∈ ℝ)
dnibndlem13.4 (𝜑 → (⌊‘(𝐴 + (1 / 2))) ≤ (⌊‘(𝐵 + (1 / 2))))
Assertion
Ref Expression
dnibndlem13 (𝜑 → (abs‘((𝑇𝐵) − (𝑇𝐴))) ≤ (abs‘(𝐵𝐴)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥)   𝑇(𝑥)

Proof of Theorem dnibndlem13
StepHypRef Expression
1 dnibndlem13.1 . . . 4 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
2 dnibndlem13.2 . . . . 5 (𝜑𝐴 ∈ ℝ)
32ad2antrr 724 . . . 4 (((𝜑 ∧ (⌊‘(𝐴 + (1 / 2))) < (⌊‘(𝐵 + (1 / 2)))) ∧ ((⌊‘(𝐴 + (1 / 2))) + 2) ≤ (⌊‘(𝐵 + (1 / 2)))) → 𝐴 ∈ ℝ)
4 dnibndlem13.3 . . . . 5 (𝜑𝐵 ∈ ℝ)
54ad2antrr 724 . . . 4 (((𝜑 ∧ (⌊‘(𝐴 + (1 / 2))) < (⌊‘(𝐵 + (1 / 2)))) ∧ ((⌊‘(𝐴 + (1 / 2))) + 2) ≤ (⌊‘(𝐵 + (1 / 2)))) → 𝐵 ∈ ℝ)
6 simpr 485 . . . 4 (((𝜑 ∧ (⌊‘(𝐴 + (1 / 2))) < (⌊‘(𝐵 + (1 / 2)))) ∧ ((⌊‘(𝐴 + (1 / 2))) + 2) ≤ (⌊‘(𝐵 + (1 / 2)))) → ((⌊‘(𝐴 + (1 / 2))) + 2) ≤ (⌊‘(𝐵 + (1 / 2))))
71, 3, 5, 6dnibndlem12 35169 . . 3 (((𝜑 ∧ (⌊‘(𝐴 + (1 / 2))) < (⌊‘(𝐵 + (1 / 2)))) ∧ ((⌊‘(𝐴 + (1 / 2))) + 2) ≤ (⌊‘(𝐵 + (1 / 2)))) → (abs‘((𝑇𝐵) − (𝑇𝐴))) ≤ (abs‘(𝐵𝐴)))
82ad2antrr 724 . . . 4 (((𝜑 ∧ (⌊‘(𝐴 + (1 / 2))) < (⌊‘(𝐵 + (1 / 2)))) ∧ ((⌊‘(𝐴 + (1 / 2))) + 1) = (⌊‘(𝐵 + (1 / 2)))) → 𝐴 ∈ ℝ)
94ad2antrr 724 . . . 4 (((𝜑 ∧ (⌊‘(𝐴 + (1 / 2))) < (⌊‘(𝐵 + (1 / 2)))) ∧ ((⌊‘(𝐴 + (1 / 2))) + 1) = (⌊‘(𝐵 + (1 / 2)))) → 𝐵 ∈ ℝ)
10 simpr 485 . . . . 5 (((𝜑 ∧ (⌊‘(𝐴 + (1 / 2))) < (⌊‘(𝐵 + (1 / 2)))) ∧ ((⌊‘(𝐴 + (1 / 2))) + 1) = (⌊‘(𝐵 + (1 / 2)))) → ((⌊‘(𝐴 + (1 / 2))) + 1) = (⌊‘(𝐵 + (1 / 2))))
1110eqcomd 2737 . . . 4 (((𝜑 ∧ (⌊‘(𝐴 + (1 / 2))) < (⌊‘(𝐵 + (1 / 2)))) ∧ ((⌊‘(𝐴 + (1 / 2))) + 1) = (⌊‘(𝐵 + (1 / 2)))) → (⌊‘(𝐵 + (1 / 2))) = ((⌊‘(𝐴 + (1 / 2))) + 1))
121, 8, 9, 11dnibndlem9 35166 . . 3 (((𝜑 ∧ (⌊‘(𝐴 + (1 / 2))) < (⌊‘(𝐵 + (1 / 2)))) ∧ ((⌊‘(𝐴 + (1 / 2))) + 1) = (⌊‘(𝐵 + (1 / 2)))) → (abs‘((𝑇𝐵) − (𝑇𝐴))) ≤ (abs‘(𝐵𝐴)))
13 simpr 485 . . . . . 6 ((𝜑 ∧ (⌊‘(𝐴 + (1 / 2))) < (⌊‘(𝐵 + (1 / 2)))) → (⌊‘(𝐴 + (1 / 2))) < (⌊‘(𝐵 + (1 / 2))))
14 halfre 12408 . . . . . . . . . . . 12 (1 / 2) ∈ ℝ
1514a1i 11 . . . . . . . . . . 11 (𝜑 → (1 / 2) ∈ ℝ)
162, 15readdcld 11225 . . . . . . . . . 10 (𝜑 → (𝐴 + (1 / 2)) ∈ ℝ)
1716flcld 13745 . . . . . . . . 9 (𝜑 → (⌊‘(𝐴 + (1 / 2))) ∈ ℤ)
184, 15readdcld 11225 . . . . . . . . . 10 (𝜑 → (𝐵 + (1 / 2)) ∈ ℝ)
1918flcld 13745 . . . . . . . . 9 (𝜑 → (⌊‘(𝐵 + (1 / 2))) ∈ ℤ)
2017, 19jca 512 . . . . . . . 8 (𝜑 → ((⌊‘(𝐴 + (1 / 2))) ∈ ℤ ∧ (⌊‘(𝐵 + (1 / 2))) ∈ ℤ))
2120adantr 481 . . . . . . 7 ((𝜑 ∧ (⌊‘(𝐴 + (1 / 2))) < (⌊‘(𝐵 + (1 / 2)))) → ((⌊‘(𝐴 + (1 / 2))) ∈ ℤ ∧ (⌊‘(𝐵 + (1 / 2))) ∈ ℤ))
22 zltp1le 12594 . . . . . . 7 (((⌊‘(𝐴 + (1 / 2))) ∈ ℤ ∧ (⌊‘(𝐵 + (1 / 2))) ∈ ℤ) → ((⌊‘(𝐴 + (1 / 2))) < (⌊‘(𝐵 + (1 / 2))) ↔ ((⌊‘(𝐴 + (1 / 2))) + 1) ≤ (⌊‘(𝐵 + (1 / 2)))))
2321, 22syl 17 . . . . . 6 ((𝜑 ∧ (⌊‘(𝐴 + (1 / 2))) < (⌊‘(𝐵 + (1 / 2)))) → ((⌊‘(𝐴 + (1 / 2))) < (⌊‘(𝐵 + (1 / 2))) ↔ ((⌊‘(𝐴 + (1 / 2))) + 1) ≤ (⌊‘(𝐵 + (1 / 2)))))
2413, 23mpbid 231 . . . . 5 ((𝜑 ∧ (⌊‘(𝐴 + (1 / 2))) < (⌊‘(𝐵 + (1 / 2)))) → ((⌊‘(𝐴 + (1 / 2))) + 1) ≤ (⌊‘(𝐵 + (1 / 2))))
25 reflcl 13743 . . . . . . . . 9 ((𝐴 + (1 / 2)) ∈ ℝ → (⌊‘(𝐴 + (1 / 2))) ∈ ℝ)
2616, 25syl 17 . . . . . . . 8 (𝜑 → (⌊‘(𝐴 + (1 / 2))) ∈ ℝ)
27 peano2re 11369 . . . . . . . 8 ((⌊‘(𝐴 + (1 / 2))) ∈ ℝ → ((⌊‘(𝐴 + (1 / 2))) + 1) ∈ ℝ)
2826, 27syl 17 . . . . . . 7 (𝜑 → ((⌊‘(𝐴 + (1 / 2))) + 1) ∈ ℝ)
2928adantr 481 . . . . . 6 ((𝜑 ∧ (⌊‘(𝐴 + (1 / 2))) < (⌊‘(𝐵 + (1 / 2)))) → ((⌊‘(𝐴 + (1 / 2))) + 1) ∈ ℝ)
3019zred 12648 . . . . . . 7 (𝜑 → (⌊‘(𝐵 + (1 / 2))) ∈ ℝ)
3130adantr 481 . . . . . 6 ((𝜑 ∧ (⌊‘(𝐴 + (1 / 2))) < (⌊‘(𝐵 + (1 / 2)))) → (⌊‘(𝐵 + (1 / 2))) ∈ ℝ)
3229, 31leloed 11339 . . . . 5 ((𝜑 ∧ (⌊‘(𝐴 + (1 / 2))) < (⌊‘(𝐵 + (1 / 2)))) → (((⌊‘(𝐴 + (1 / 2))) + 1) ≤ (⌊‘(𝐵 + (1 / 2))) ↔ (((⌊‘(𝐴 + (1 / 2))) + 1) < (⌊‘(𝐵 + (1 / 2))) ∨ ((⌊‘(𝐴 + (1 / 2))) + 1) = (⌊‘(𝐵 + (1 / 2))))))
3324, 32mpbid 231 . . . 4 ((𝜑 ∧ (⌊‘(𝐴 + (1 / 2))) < (⌊‘(𝐵 + (1 / 2)))) → (((⌊‘(𝐴 + (1 / 2))) + 1) < (⌊‘(𝐵 + (1 / 2))) ∨ ((⌊‘(𝐴 + (1 / 2))) + 1) = (⌊‘(𝐵 + (1 / 2)))))
3417peano2zd 12651 . . . . . . . . . 10 (𝜑 → ((⌊‘(𝐴 + (1 / 2))) + 1) ∈ ℤ)
3534, 19jca 512 . . . . . . . . 9 (𝜑 → (((⌊‘(𝐴 + (1 / 2))) + 1) ∈ ℤ ∧ (⌊‘(𝐵 + (1 / 2))) ∈ ℤ))
36 zltp1le 12594 . . . . . . . . 9 ((((⌊‘(𝐴 + (1 / 2))) + 1) ∈ ℤ ∧ (⌊‘(𝐵 + (1 / 2))) ∈ ℤ) → (((⌊‘(𝐴 + (1 / 2))) + 1) < (⌊‘(𝐵 + (1 / 2))) ↔ (((⌊‘(𝐴 + (1 / 2))) + 1) + 1) ≤ (⌊‘(𝐵 + (1 / 2)))))
3735, 36syl 17 . . . . . . . 8 (𝜑 → (((⌊‘(𝐴 + (1 / 2))) + 1) < (⌊‘(𝐵 + (1 / 2))) ↔ (((⌊‘(𝐴 + (1 / 2))) + 1) + 1) ≤ (⌊‘(𝐵 + (1 / 2)))))
3826recnd 11224 . . . . . . . . . . 11 (𝜑 → (⌊‘(𝐴 + (1 / 2))) ∈ ℂ)
39 1cnd 11191 . . . . . . . . . . 11 (𝜑 → 1 ∈ ℂ)
4038, 39, 39addassd 11218 . . . . . . . . . 10 (𝜑 → (((⌊‘(𝐴 + (1 / 2))) + 1) + 1) = ((⌊‘(𝐴 + (1 / 2))) + (1 + 1)))
41 1p1e2 12319 . . . . . . . . . . . 12 (1 + 1) = 2
4241a1i 11 . . . . . . . . . . 11 (𝜑 → (1 + 1) = 2)
4342oveq2d 7409 . . . . . . . . . 10 (𝜑 → ((⌊‘(𝐴 + (1 / 2))) + (1 + 1)) = ((⌊‘(𝐴 + (1 / 2))) + 2))
4440, 43eqtrd 2771 . . . . . . . . 9 (𝜑 → (((⌊‘(𝐴 + (1 / 2))) + 1) + 1) = ((⌊‘(𝐴 + (1 / 2))) + 2))
4544breq1d 5151 . . . . . . . 8 (𝜑 → ((((⌊‘(𝐴 + (1 / 2))) + 1) + 1) ≤ (⌊‘(𝐵 + (1 / 2))) ↔ ((⌊‘(𝐴 + (1 / 2))) + 2) ≤ (⌊‘(𝐵 + (1 / 2)))))
4637, 45bitrd 278 . . . . . . 7 (𝜑 → (((⌊‘(𝐴 + (1 / 2))) + 1) < (⌊‘(𝐵 + (1 / 2))) ↔ ((⌊‘(𝐴 + (1 / 2))) + 2) ≤ (⌊‘(𝐵 + (1 / 2)))))
4746biimpd 228 . . . . . 6 (𝜑 → (((⌊‘(𝐴 + (1 / 2))) + 1) < (⌊‘(𝐵 + (1 / 2))) → ((⌊‘(𝐴 + (1 / 2))) + 2) ≤ (⌊‘(𝐵 + (1 / 2)))))
4847adantr 481 . . . . 5 ((𝜑 ∧ (⌊‘(𝐴 + (1 / 2))) < (⌊‘(𝐵 + (1 / 2)))) → (((⌊‘(𝐴 + (1 / 2))) + 1) < (⌊‘(𝐵 + (1 / 2))) → ((⌊‘(𝐴 + (1 / 2))) + 2) ≤ (⌊‘(𝐵 + (1 / 2)))))
4948orim1d 964 . . . 4 ((𝜑 ∧ (⌊‘(𝐴 + (1 / 2))) < (⌊‘(𝐵 + (1 / 2)))) → ((((⌊‘(𝐴 + (1 / 2))) + 1) < (⌊‘(𝐵 + (1 / 2))) ∨ ((⌊‘(𝐴 + (1 / 2))) + 1) = (⌊‘(𝐵 + (1 / 2)))) → (((⌊‘(𝐴 + (1 / 2))) + 2) ≤ (⌊‘(𝐵 + (1 / 2))) ∨ ((⌊‘(𝐴 + (1 / 2))) + 1) = (⌊‘(𝐵 + (1 / 2))))))
5033, 49mpd 15 . . 3 ((𝜑 ∧ (⌊‘(𝐴 + (1 / 2))) < (⌊‘(𝐵 + (1 / 2)))) → (((⌊‘(𝐴 + (1 / 2))) + 2) ≤ (⌊‘(𝐵 + (1 / 2))) ∨ ((⌊‘(𝐴 + (1 / 2))) + 1) = (⌊‘(𝐵 + (1 / 2)))))
517, 12, 50mpjaodan 957 . 2 ((𝜑 ∧ (⌊‘(𝐴 + (1 / 2))) < (⌊‘(𝐵 + (1 / 2)))) → (abs‘((𝑇𝐵) − (𝑇𝐴))) ≤ (abs‘(𝐵𝐴)))
522adantr 481 . . 3 ((𝜑 ∧ (⌊‘(𝐴 + (1 / 2))) = (⌊‘(𝐵 + (1 / 2)))) → 𝐴 ∈ ℝ)
534adantr 481 . . 3 ((𝜑 ∧ (⌊‘(𝐴 + (1 / 2))) = (⌊‘(𝐵 + (1 / 2)))) → 𝐵 ∈ ℝ)
54 simpr 485 . . . 4 ((𝜑 ∧ (⌊‘(𝐴 + (1 / 2))) = (⌊‘(𝐵 + (1 / 2)))) → (⌊‘(𝐴 + (1 / 2))) = (⌊‘(𝐵 + (1 / 2))))
5554eqcomd 2737 . . 3 ((𝜑 ∧ (⌊‘(𝐴 + (1 / 2))) = (⌊‘(𝐵 + (1 / 2)))) → (⌊‘(𝐵 + (1 / 2))) = (⌊‘(𝐴 + (1 / 2))))
561, 52, 53, 55dnibndlem2 35159 . 2 ((𝜑 ∧ (⌊‘(𝐴 + (1 / 2))) = (⌊‘(𝐵 + (1 / 2)))) → (abs‘((𝑇𝐵) − (𝑇𝐴))) ≤ (abs‘(𝐵𝐴)))
57 dnibndlem13.4 . . 3 (𝜑 → (⌊‘(𝐴 + (1 / 2))) ≤ (⌊‘(𝐵 + (1 / 2))))
5826, 30leloed 11339 . . 3 (𝜑 → ((⌊‘(𝐴 + (1 / 2))) ≤ (⌊‘(𝐵 + (1 / 2))) ↔ ((⌊‘(𝐴 + (1 / 2))) < (⌊‘(𝐵 + (1 / 2))) ∨ (⌊‘(𝐴 + (1 / 2))) = (⌊‘(𝐵 + (1 / 2))))))
5957, 58mpbid 231 . 2 (𝜑 → ((⌊‘(𝐴 + (1 / 2))) < (⌊‘(𝐵 + (1 / 2))) ∨ (⌊‘(𝐴 + (1 / 2))) = (⌊‘(𝐵 + (1 / 2)))))
6051, 56, 59mpjaodan 957 1 (𝜑 → (abs‘((𝑇𝐵) − (𝑇𝐴))) ≤ (abs‘(𝐵𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wo 845   = wceq 1541  wcel 2106   class class class wbr 5141  cmpt 5224  cfv 6532  (class class class)co 7393  cr 11091  1c1 11093   + caddc 11095   < clt 11230  cle 11231  cmin 11426   / cdiv 11853  2c2 12249  cz 12540  cfl 13737  abscabs 15163
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7708  ax-cnex 11148  ax-resscn 11149  ax-1cn 11150  ax-icn 11151  ax-addcl 11152  ax-addrcl 11153  ax-mulcl 11154  ax-mulrcl 11155  ax-mulcom 11156  ax-addass 11157  ax-mulass 11158  ax-distr 11159  ax-i2m1 11160  ax-1ne0 11161  ax-1rid 11162  ax-rnegex 11163  ax-rrecex 11164  ax-cnre 11165  ax-pre-lttri 11166  ax-pre-lttrn 11167  ax-pre-ltadd 11168  ax-pre-mulgt0 11169  ax-pre-sup 11170
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4523  df-pw 4598  df-sn 4623  df-pr 4625  df-op 4629  df-uni 4902  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6289  df-ord 6356  df-on 6357  df-lim 6358  df-suc 6359  df-iota 6484  df-fun 6534  df-fn 6535  df-f 6536  df-f1 6537  df-fo 6538  df-f1o 6539  df-fv 6540  df-riota 7349  df-ov 7396  df-oprab 7397  df-mpo 7398  df-om 7839  df-2nd 7958  df-frecs 8248  df-wrecs 8279  df-recs 8353  df-rdg 8392  df-er 8686  df-en 8923  df-dom 8924  df-sdom 8925  df-sup 9419  df-inf 9420  df-pnf 11232  df-mnf 11233  df-xr 11234  df-ltxr 11235  df-le 11236  df-sub 11428  df-neg 11429  df-div 11854  df-nn 12195  df-2 12257  df-3 12258  df-n0 12455  df-z 12541  df-uz 12805  df-rp 12957  df-fl 13739  df-seq 13949  df-exp 14010  df-cj 15028  df-re 15029  df-im 15030  df-sqrt 15164  df-abs 15165
This theorem is referenced by:  dnibnd  35171
  Copyright terms: Public domain W3C validator