Users' Mathboxes Mathbox for Asger C. Ipsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dnibndlem13 Structured version   Visualization version   GIF version

Theorem dnibndlem13 35366
Description: Lemma for dnibnd 35367. (Contributed by Asger C. Ipsen, 4-Apr-2021.)
Hypotheses
Ref Expression
dnibndlem13.1 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
dnibndlem13.2 (𝜑𝐴 ∈ ℝ)
dnibndlem13.3 (𝜑𝐵 ∈ ℝ)
dnibndlem13.4 (𝜑 → (⌊‘(𝐴 + (1 / 2))) ≤ (⌊‘(𝐵 + (1 / 2))))
Assertion
Ref Expression
dnibndlem13 (𝜑 → (abs‘((𝑇𝐵) − (𝑇𝐴))) ≤ (abs‘(𝐵𝐴)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥)   𝑇(𝑥)

Proof of Theorem dnibndlem13
StepHypRef Expression
1 dnibndlem13.1 . . . 4 𝑇 = (𝑥 ∈ ℝ ↦ (abs‘((⌊‘(𝑥 + (1 / 2))) − 𝑥)))
2 dnibndlem13.2 . . . . 5 (𝜑𝐴 ∈ ℝ)
32ad2antrr 725 . . . 4 (((𝜑 ∧ (⌊‘(𝐴 + (1 / 2))) < (⌊‘(𝐵 + (1 / 2)))) ∧ ((⌊‘(𝐴 + (1 / 2))) + 2) ≤ (⌊‘(𝐵 + (1 / 2)))) → 𝐴 ∈ ℝ)
4 dnibndlem13.3 . . . . 5 (𝜑𝐵 ∈ ℝ)
54ad2antrr 725 . . . 4 (((𝜑 ∧ (⌊‘(𝐴 + (1 / 2))) < (⌊‘(𝐵 + (1 / 2)))) ∧ ((⌊‘(𝐴 + (1 / 2))) + 2) ≤ (⌊‘(𝐵 + (1 / 2)))) → 𝐵 ∈ ℝ)
6 simpr 486 . . . 4 (((𝜑 ∧ (⌊‘(𝐴 + (1 / 2))) < (⌊‘(𝐵 + (1 / 2)))) ∧ ((⌊‘(𝐴 + (1 / 2))) + 2) ≤ (⌊‘(𝐵 + (1 / 2)))) → ((⌊‘(𝐴 + (1 / 2))) + 2) ≤ (⌊‘(𝐵 + (1 / 2))))
71, 3, 5, 6dnibndlem12 35365 . . 3 (((𝜑 ∧ (⌊‘(𝐴 + (1 / 2))) < (⌊‘(𝐵 + (1 / 2)))) ∧ ((⌊‘(𝐴 + (1 / 2))) + 2) ≤ (⌊‘(𝐵 + (1 / 2)))) → (abs‘((𝑇𝐵) − (𝑇𝐴))) ≤ (abs‘(𝐵𝐴)))
82ad2antrr 725 . . . 4 (((𝜑 ∧ (⌊‘(𝐴 + (1 / 2))) < (⌊‘(𝐵 + (1 / 2)))) ∧ ((⌊‘(𝐴 + (1 / 2))) + 1) = (⌊‘(𝐵 + (1 / 2)))) → 𝐴 ∈ ℝ)
94ad2antrr 725 . . . 4 (((𝜑 ∧ (⌊‘(𝐴 + (1 / 2))) < (⌊‘(𝐵 + (1 / 2)))) ∧ ((⌊‘(𝐴 + (1 / 2))) + 1) = (⌊‘(𝐵 + (1 / 2)))) → 𝐵 ∈ ℝ)
10 simpr 486 . . . . 5 (((𝜑 ∧ (⌊‘(𝐴 + (1 / 2))) < (⌊‘(𝐵 + (1 / 2)))) ∧ ((⌊‘(𝐴 + (1 / 2))) + 1) = (⌊‘(𝐵 + (1 / 2)))) → ((⌊‘(𝐴 + (1 / 2))) + 1) = (⌊‘(𝐵 + (1 / 2))))
1110eqcomd 2739 . . . 4 (((𝜑 ∧ (⌊‘(𝐴 + (1 / 2))) < (⌊‘(𝐵 + (1 / 2)))) ∧ ((⌊‘(𝐴 + (1 / 2))) + 1) = (⌊‘(𝐵 + (1 / 2)))) → (⌊‘(𝐵 + (1 / 2))) = ((⌊‘(𝐴 + (1 / 2))) + 1))
121, 8, 9, 11dnibndlem9 35362 . . 3 (((𝜑 ∧ (⌊‘(𝐴 + (1 / 2))) < (⌊‘(𝐵 + (1 / 2)))) ∧ ((⌊‘(𝐴 + (1 / 2))) + 1) = (⌊‘(𝐵 + (1 / 2)))) → (abs‘((𝑇𝐵) − (𝑇𝐴))) ≤ (abs‘(𝐵𝐴)))
13 simpr 486 . . . . . 6 ((𝜑 ∧ (⌊‘(𝐴 + (1 / 2))) < (⌊‘(𝐵 + (1 / 2)))) → (⌊‘(𝐴 + (1 / 2))) < (⌊‘(𝐵 + (1 / 2))))
14 halfre 12426 . . . . . . . . . . . 12 (1 / 2) ∈ ℝ
1514a1i 11 . . . . . . . . . . 11 (𝜑 → (1 / 2) ∈ ℝ)
162, 15readdcld 11243 . . . . . . . . . 10 (𝜑 → (𝐴 + (1 / 2)) ∈ ℝ)
1716flcld 13763 . . . . . . . . 9 (𝜑 → (⌊‘(𝐴 + (1 / 2))) ∈ ℤ)
184, 15readdcld 11243 . . . . . . . . . 10 (𝜑 → (𝐵 + (1 / 2)) ∈ ℝ)
1918flcld 13763 . . . . . . . . 9 (𝜑 → (⌊‘(𝐵 + (1 / 2))) ∈ ℤ)
2017, 19jca 513 . . . . . . . 8 (𝜑 → ((⌊‘(𝐴 + (1 / 2))) ∈ ℤ ∧ (⌊‘(𝐵 + (1 / 2))) ∈ ℤ))
2120adantr 482 . . . . . . 7 ((𝜑 ∧ (⌊‘(𝐴 + (1 / 2))) < (⌊‘(𝐵 + (1 / 2)))) → ((⌊‘(𝐴 + (1 / 2))) ∈ ℤ ∧ (⌊‘(𝐵 + (1 / 2))) ∈ ℤ))
22 zltp1le 12612 . . . . . . 7 (((⌊‘(𝐴 + (1 / 2))) ∈ ℤ ∧ (⌊‘(𝐵 + (1 / 2))) ∈ ℤ) → ((⌊‘(𝐴 + (1 / 2))) < (⌊‘(𝐵 + (1 / 2))) ↔ ((⌊‘(𝐴 + (1 / 2))) + 1) ≤ (⌊‘(𝐵 + (1 / 2)))))
2321, 22syl 17 . . . . . 6 ((𝜑 ∧ (⌊‘(𝐴 + (1 / 2))) < (⌊‘(𝐵 + (1 / 2)))) → ((⌊‘(𝐴 + (1 / 2))) < (⌊‘(𝐵 + (1 / 2))) ↔ ((⌊‘(𝐴 + (1 / 2))) + 1) ≤ (⌊‘(𝐵 + (1 / 2)))))
2413, 23mpbid 231 . . . . 5 ((𝜑 ∧ (⌊‘(𝐴 + (1 / 2))) < (⌊‘(𝐵 + (1 / 2)))) → ((⌊‘(𝐴 + (1 / 2))) + 1) ≤ (⌊‘(𝐵 + (1 / 2))))
25 reflcl 13761 . . . . . . . . 9 ((𝐴 + (1 / 2)) ∈ ℝ → (⌊‘(𝐴 + (1 / 2))) ∈ ℝ)
2616, 25syl 17 . . . . . . . 8 (𝜑 → (⌊‘(𝐴 + (1 / 2))) ∈ ℝ)
27 peano2re 11387 . . . . . . . 8 ((⌊‘(𝐴 + (1 / 2))) ∈ ℝ → ((⌊‘(𝐴 + (1 / 2))) + 1) ∈ ℝ)
2826, 27syl 17 . . . . . . 7 (𝜑 → ((⌊‘(𝐴 + (1 / 2))) + 1) ∈ ℝ)
2928adantr 482 . . . . . 6 ((𝜑 ∧ (⌊‘(𝐴 + (1 / 2))) < (⌊‘(𝐵 + (1 / 2)))) → ((⌊‘(𝐴 + (1 / 2))) + 1) ∈ ℝ)
3019zred 12666 . . . . . . 7 (𝜑 → (⌊‘(𝐵 + (1 / 2))) ∈ ℝ)
3130adantr 482 . . . . . 6 ((𝜑 ∧ (⌊‘(𝐴 + (1 / 2))) < (⌊‘(𝐵 + (1 / 2)))) → (⌊‘(𝐵 + (1 / 2))) ∈ ℝ)
3229, 31leloed 11357 . . . . 5 ((𝜑 ∧ (⌊‘(𝐴 + (1 / 2))) < (⌊‘(𝐵 + (1 / 2)))) → (((⌊‘(𝐴 + (1 / 2))) + 1) ≤ (⌊‘(𝐵 + (1 / 2))) ↔ (((⌊‘(𝐴 + (1 / 2))) + 1) < (⌊‘(𝐵 + (1 / 2))) ∨ ((⌊‘(𝐴 + (1 / 2))) + 1) = (⌊‘(𝐵 + (1 / 2))))))
3324, 32mpbid 231 . . . 4 ((𝜑 ∧ (⌊‘(𝐴 + (1 / 2))) < (⌊‘(𝐵 + (1 / 2)))) → (((⌊‘(𝐴 + (1 / 2))) + 1) < (⌊‘(𝐵 + (1 / 2))) ∨ ((⌊‘(𝐴 + (1 / 2))) + 1) = (⌊‘(𝐵 + (1 / 2)))))
3417peano2zd 12669 . . . . . . . . . 10 (𝜑 → ((⌊‘(𝐴 + (1 / 2))) + 1) ∈ ℤ)
3534, 19jca 513 . . . . . . . . 9 (𝜑 → (((⌊‘(𝐴 + (1 / 2))) + 1) ∈ ℤ ∧ (⌊‘(𝐵 + (1 / 2))) ∈ ℤ))
36 zltp1le 12612 . . . . . . . . 9 ((((⌊‘(𝐴 + (1 / 2))) + 1) ∈ ℤ ∧ (⌊‘(𝐵 + (1 / 2))) ∈ ℤ) → (((⌊‘(𝐴 + (1 / 2))) + 1) < (⌊‘(𝐵 + (1 / 2))) ↔ (((⌊‘(𝐴 + (1 / 2))) + 1) + 1) ≤ (⌊‘(𝐵 + (1 / 2)))))
3735, 36syl 17 . . . . . . . 8 (𝜑 → (((⌊‘(𝐴 + (1 / 2))) + 1) < (⌊‘(𝐵 + (1 / 2))) ↔ (((⌊‘(𝐴 + (1 / 2))) + 1) + 1) ≤ (⌊‘(𝐵 + (1 / 2)))))
3826recnd 11242 . . . . . . . . . . 11 (𝜑 → (⌊‘(𝐴 + (1 / 2))) ∈ ℂ)
39 1cnd 11209 . . . . . . . . . . 11 (𝜑 → 1 ∈ ℂ)
4038, 39, 39addassd 11236 . . . . . . . . . 10 (𝜑 → (((⌊‘(𝐴 + (1 / 2))) + 1) + 1) = ((⌊‘(𝐴 + (1 / 2))) + (1 + 1)))
41 1p1e2 12337 . . . . . . . . . . . 12 (1 + 1) = 2
4241a1i 11 . . . . . . . . . . 11 (𝜑 → (1 + 1) = 2)
4342oveq2d 7425 . . . . . . . . . 10 (𝜑 → ((⌊‘(𝐴 + (1 / 2))) + (1 + 1)) = ((⌊‘(𝐴 + (1 / 2))) + 2))
4440, 43eqtrd 2773 . . . . . . . . 9 (𝜑 → (((⌊‘(𝐴 + (1 / 2))) + 1) + 1) = ((⌊‘(𝐴 + (1 / 2))) + 2))
4544breq1d 5159 . . . . . . . 8 (𝜑 → ((((⌊‘(𝐴 + (1 / 2))) + 1) + 1) ≤ (⌊‘(𝐵 + (1 / 2))) ↔ ((⌊‘(𝐴 + (1 / 2))) + 2) ≤ (⌊‘(𝐵 + (1 / 2)))))
4637, 45bitrd 279 . . . . . . 7 (𝜑 → (((⌊‘(𝐴 + (1 / 2))) + 1) < (⌊‘(𝐵 + (1 / 2))) ↔ ((⌊‘(𝐴 + (1 / 2))) + 2) ≤ (⌊‘(𝐵 + (1 / 2)))))
4746biimpd 228 . . . . . 6 (𝜑 → (((⌊‘(𝐴 + (1 / 2))) + 1) < (⌊‘(𝐵 + (1 / 2))) → ((⌊‘(𝐴 + (1 / 2))) + 2) ≤ (⌊‘(𝐵 + (1 / 2)))))
4847adantr 482 . . . . 5 ((𝜑 ∧ (⌊‘(𝐴 + (1 / 2))) < (⌊‘(𝐵 + (1 / 2)))) → (((⌊‘(𝐴 + (1 / 2))) + 1) < (⌊‘(𝐵 + (1 / 2))) → ((⌊‘(𝐴 + (1 / 2))) + 2) ≤ (⌊‘(𝐵 + (1 / 2)))))
4948orim1d 965 . . . 4 ((𝜑 ∧ (⌊‘(𝐴 + (1 / 2))) < (⌊‘(𝐵 + (1 / 2)))) → ((((⌊‘(𝐴 + (1 / 2))) + 1) < (⌊‘(𝐵 + (1 / 2))) ∨ ((⌊‘(𝐴 + (1 / 2))) + 1) = (⌊‘(𝐵 + (1 / 2)))) → (((⌊‘(𝐴 + (1 / 2))) + 2) ≤ (⌊‘(𝐵 + (1 / 2))) ∨ ((⌊‘(𝐴 + (1 / 2))) + 1) = (⌊‘(𝐵 + (1 / 2))))))
5033, 49mpd 15 . . 3 ((𝜑 ∧ (⌊‘(𝐴 + (1 / 2))) < (⌊‘(𝐵 + (1 / 2)))) → (((⌊‘(𝐴 + (1 / 2))) + 2) ≤ (⌊‘(𝐵 + (1 / 2))) ∨ ((⌊‘(𝐴 + (1 / 2))) + 1) = (⌊‘(𝐵 + (1 / 2)))))
517, 12, 50mpjaodan 958 . 2 ((𝜑 ∧ (⌊‘(𝐴 + (1 / 2))) < (⌊‘(𝐵 + (1 / 2)))) → (abs‘((𝑇𝐵) − (𝑇𝐴))) ≤ (abs‘(𝐵𝐴)))
522adantr 482 . . 3 ((𝜑 ∧ (⌊‘(𝐴 + (1 / 2))) = (⌊‘(𝐵 + (1 / 2)))) → 𝐴 ∈ ℝ)
534adantr 482 . . 3 ((𝜑 ∧ (⌊‘(𝐴 + (1 / 2))) = (⌊‘(𝐵 + (1 / 2)))) → 𝐵 ∈ ℝ)
54 simpr 486 . . . 4 ((𝜑 ∧ (⌊‘(𝐴 + (1 / 2))) = (⌊‘(𝐵 + (1 / 2)))) → (⌊‘(𝐴 + (1 / 2))) = (⌊‘(𝐵 + (1 / 2))))
5554eqcomd 2739 . . 3 ((𝜑 ∧ (⌊‘(𝐴 + (1 / 2))) = (⌊‘(𝐵 + (1 / 2)))) → (⌊‘(𝐵 + (1 / 2))) = (⌊‘(𝐴 + (1 / 2))))
561, 52, 53, 55dnibndlem2 35355 . 2 ((𝜑 ∧ (⌊‘(𝐴 + (1 / 2))) = (⌊‘(𝐵 + (1 / 2)))) → (abs‘((𝑇𝐵) − (𝑇𝐴))) ≤ (abs‘(𝐵𝐴)))
57 dnibndlem13.4 . . 3 (𝜑 → (⌊‘(𝐴 + (1 / 2))) ≤ (⌊‘(𝐵 + (1 / 2))))
5826, 30leloed 11357 . . 3 (𝜑 → ((⌊‘(𝐴 + (1 / 2))) ≤ (⌊‘(𝐵 + (1 / 2))) ↔ ((⌊‘(𝐴 + (1 / 2))) < (⌊‘(𝐵 + (1 / 2))) ∨ (⌊‘(𝐴 + (1 / 2))) = (⌊‘(𝐵 + (1 / 2))))))
5957, 58mpbid 231 . 2 (𝜑 → ((⌊‘(𝐴 + (1 / 2))) < (⌊‘(𝐵 + (1 / 2))) ∨ (⌊‘(𝐴 + (1 / 2))) = (⌊‘(𝐵 + (1 / 2)))))
6051, 56, 59mpjaodan 958 1 (𝜑 → (abs‘((𝑇𝐵) − (𝑇𝐴))) ≤ (abs‘(𝐵𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  wo 846   = wceq 1542  wcel 2107   class class class wbr 5149  cmpt 5232  cfv 6544  (class class class)co 7409  cr 11109  1c1 11111   + caddc 11113   < clt 11248  cle 11249  cmin 11444   / cdiv 11871  2c2 12267  cz 12558  cfl 13755  abscabs 15181
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-cnex 11166  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186  ax-pre-mulgt0 11187  ax-pre-sup 11188
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-om 7856  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-er 8703  df-en 8940  df-dom 8941  df-sdom 8942  df-sup 9437  df-inf 9438  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-sub 11446  df-neg 11447  df-div 11872  df-nn 12213  df-2 12275  df-3 12276  df-n0 12473  df-z 12559  df-uz 12823  df-rp 12975  df-fl 13757  df-seq 13967  df-exp 14028  df-cj 15046  df-re 15047  df-im 15048  df-sqrt 15182  df-abs 15183
This theorem is referenced by:  dnibnd  35367
  Copyright terms: Public domain W3C validator