Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  leat3 Structured version   Visualization version   GIF version

Theorem leat3 37803
Description: A poset element less than or equal to an atom is either an atom or zero. (Contributed by NM, 2-Dec-2012.)
Hypotheses
Ref Expression
leatom.b 𝐡 = (Baseβ€˜πΎ)
leatom.l ≀ = (leβ€˜πΎ)
leatom.z 0 = (0.β€˜πΎ)
leatom.a 𝐴 = (Atomsβ€˜πΎ)
Assertion
Ref Expression
leat3 (((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐡 ∧ 𝑃 ∈ 𝐴) ∧ 𝑋 ≀ 𝑃) β†’ (𝑋 ∈ 𝐴 ∨ 𝑋 = 0 ))

Proof of Theorem leat3
StepHypRef Expression
1 leatom.b . . 3 𝐡 = (Baseβ€˜πΎ)
2 leatom.l . . 3 ≀ = (leβ€˜πΎ)
3 leatom.z . . 3 0 = (0.β€˜πΎ)
4 leatom.a . . 3 𝐴 = (Atomsβ€˜πΎ)
51, 2, 3, 4leat 37801 . 2 (((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐡 ∧ 𝑃 ∈ 𝐴) ∧ 𝑋 ≀ 𝑃) β†’ (𝑋 = 𝑃 ∨ 𝑋 = 0 ))
6 simpl3 1194 . . . 4 (((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐡 ∧ 𝑃 ∈ 𝐴) ∧ 𝑋 ≀ 𝑃) β†’ 𝑃 ∈ 𝐴)
7 eleq1a 2829 . . . 4 (𝑃 ∈ 𝐴 β†’ (𝑋 = 𝑃 β†’ 𝑋 ∈ 𝐴))
86, 7syl 17 . . 3 (((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐡 ∧ 𝑃 ∈ 𝐴) ∧ 𝑋 ≀ 𝑃) β†’ (𝑋 = 𝑃 β†’ 𝑋 ∈ 𝐴))
98orim1d 965 . 2 (((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐡 ∧ 𝑃 ∈ 𝐴) ∧ 𝑋 ≀ 𝑃) β†’ ((𝑋 = 𝑃 ∨ 𝑋 = 0 ) β†’ (𝑋 ∈ 𝐴 ∨ 𝑋 = 0 )))
105, 9mpd 15 1 (((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐡 ∧ 𝑃 ∈ 𝐴) ∧ 𝑋 ≀ 𝑃) β†’ (𝑋 ∈ 𝐴 ∨ 𝑋 = 0 ))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 397   ∨ wo 846   ∧ w3a 1088   = wceq 1542   ∈ wcel 2107   class class class wbr 5106  β€˜cfv 6497  Basecbs 17088  lecple 17145  0.cp0 18317  OPcops 37680  Atomscatm 37771
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5243  ax-sep 5257  ax-nul 5264  ax-pow 5321  ax-pr 5385  ax-un 7673
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3353  df-rab 3407  df-v 3446  df-sbc 3741  df-csb 3857  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-iun 4957  df-br 5107  df-opab 5169  df-mpt 5190  df-id 5532  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-f1 6502  df-fo 6503  df-f1o 6504  df-fv 6505  df-riota 7314  df-ov 7361  df-proset 18189  df-poset 18207  df-plt 18224  df-glb 18241  df-p0 18319  df-oposet 37684  df-covers 37774  df-ats 37775
This theorem is referenced by:  cdleme22b  38850
  Copyright terms: Public domain W3C validator