| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > leat3 | Structured version Visualization version GIF version | ||
| Description: A poset element less than or equal to an atom is either an atom or zero. (Contributed by NM, 2-Dec-2012.) |
| Ref | Expression |
|---|---|
| leatom.b | ⊢ 𝐵 = (Base‘𝐾) |
| leatom.l | ⊢ ≤ = (le‘𝐾) |
| leatom.z | ⊢ 0 = (0.‘𝐾) |
| leatom.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| Ref | Expression |
|---|---|
| leat3 | ⊢ (((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) ∧ 𝑋 ≤ 𝑃) → (𝑋 ∈ 𝐴 ∨ 𝑋 = 0 )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | leatom.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | leatom.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
| 3 | leatom.z | . . 3 ⊢ 0 = (0.‘𝐾) | |
| 4 | leatom.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 5 | 1, 2, 3, 4 | leat 39286 | . 2 ⊢ (((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) ∧ 𝑋 ≤ 𝑃) → (𝑋 = 𝑃 ∨ 𝑋 = 0 )) |
| 6 | simpl3 1194 | . . . 4 ⊢ (((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) ∧ 𝑋 ≤ 𝑃) → 𝑃 ∈ 𝐴) | |
| 7 | eleq1a 2823 | . . . 4 ⊢ (𝑃 ∈ 𝐴 → (𝑋 = 𝑃 → 𝑋 ∈ 𝐴)) | |
| 8 | 6, 7 | syl 17 | . . 3 ⊢ (((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) ∧ 𝑋 ≤ 𝑃) → (𝑋 = 𝑃 → 𝑋 ∈ 𝐴)) |
| 9 | 8 | orim1d 967 | . 2 ⊢ (((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) ∧ 𝑋 ≤ 𝑃) → ((𝑋 = 𝑃 ∨ 𝑋 = 0 ) → (𝑋 ∈ 𝐴 ∨ 𝑋 = 0 ))) |
| 10 | 5, 9 | mpd 15 | 1 ⊢ (((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) ∧ 𝑋 ≤ 𝑃) → (𝑋 ∈ 𝐴 ∨ 𝑋 = 0 )) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 class class class wbr 5107 ‘cfv 6511 Basecbs 17179 lecple 17227 0.cp0 18382 OPcops 39165 Atomscatm 39256 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-proset 18255 df-poset 18274 df-plt 18289 df-glb 18306 df-p0 18384 df-oposet 39169 df-covers 39259 df-ats 39260 |
| This theorem is referenced by: cdleme22b 40335 |
| Copyright terms: Public domain | W3C validator |