Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  leat3 Structured version   Visualization version   GIF version

Theorem leat3 39261
Description: A poset element less than or equal to an atom is either an atom or zero. (Contributed by NM, 2-Dec-2012.)
Hypotheses
Ref Expression
leatom.b 𝐵 = (Base‘𝐾)
leatom.l = (le‘𝐾)
leatom.z 0 = (0.‘𝐾)
leatom.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
leat3 (((𝐾 ∈ OP ∧ 𝑋𝐵𝑃𝐴) ∧ 𝑋 𝑃) → (𝑋𝐴𝑋 = 0 ))

Proof of Theorem leat3
StepHypRef Expression
1 leatom.b . . 3 𝐵 = (Base‘𝐾)
2 leatom.l . . 3 = (le‘𝐾)
3 leatom.z . . 3 0 = (0.‘𝐾)
4 leatom.a . . 3 𝐴 = (Atoms‘𝐾)
51, 2, 3, 4leat 39259 . 2 (((𝐾 ∈ OP ∧ 𝑋𝐵𝑃𝐴) ∧ 𝑋 𝑃) → (𝑋 = 𝑃𝑋 = 0 ))
6 simpl3 1194 . . . 4 (((𝐾 ∈ OP ∧ 𝑋𝐵𝑃𝐴) ∧ 𝑋 𝑃) → 𝑃𝐴)
7 eleq1a 2823 . . . 4 (𝑃𝐴 → (𝑋 = 𝑃𝑋𝐴))
86, 7syl 17 . . 3 (((𝐾 ∈ OP ∧ 𝑋𝐵𝑃𝐴) ∧ 𝑋 𝑃) → (𝑋 = 𝑃𝑋𝐴))
98orim1d 967 . 2 (((𝐾 ∈ OP ∧ 𝑋𝐵𝑃𝐴) ∧ 𝑋 𝑃) → ((𝑋 = 𝑃𝑋 = 0 ) → (𝑋𝐴𝑋 = 0 )))
105, 9mpd 15 1 (((𝐾 ∈ OP ∧ 𝑋𝐵𝑃𝐴) ∧ 𝑋 𝑃) → (𝑋𝐴𝑋 = 0 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109   class class class wbr 5102  cfv 6499  Basecbs 17155  lecple 17203  0.cp0 18358  OPcops 39138  Atomscatm 39229
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-proset 18231  df-poset 18250  df-plt 18265  df-glb 18282  df-p0 18360  df-oposet 39142  df-covers 39232  df-ats 39233
This theorem is referenced by:  cdleme22b  40308
  Copyright terms: Public domain W3C validator