Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  leat3 Structured version   Visualization version   GIF version

Theorem leat3 38767
Description: A poset element less than or equal to an atom is either an atom or zero. (Contributed by NM, 2-Dec-2012.)
Hypotheses
Ref Expression
leatom.b 𝐡 = (Baseβ€˜πΎ)
leatom.l ≀ = (leβ€˜πΎ)
leatom.z 0 = (0.β€˜πΎ)
leatom.a 𝐴 = (Atomsβ€˜πΎ)
Assertion
Ref Expression
leat3 (((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐡 ∧ 𝑃 ∈ 𝐴) ∧ 𝑋 ≀ 𝑃) β†’ (𝑋 ∈ 𝐴 ∨ 𝑋 = 0 ))

Proof of Theorem leat3
StepHypRef Expression
1 leatom.b . . 3 𝐡 = (Baseβ€˜πΎ)
2 leatom.l . . 3 ≀ = (leβ€˜πΎ)
3 leatom.z . . 3 0 = (0.β€˜πΎ)
4 leatom.a . . 3 𝐴 = (Atomsβ€˜πΎ)
51, 2, 3, 4leat 38765 . 2 (((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐡 ∧ 𝑃 ∈ 𝐴) ∧ 𝑋 ≀ 𝑃) β†’ (𝑋 = 𝑃 ∨ 𝑋 = 0 ))
6 simpl3 1191 . . . 4 (((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐡 ∧ 𝑃 ∈ 𝐴) ∧ 𝑋 ≀ 𝑃) β†’ 𝑃 ∈ 𝐴)
7 eleq1a 2824 . . . 4 (𝑃 ∈ 𝐴 β†’ (𝑋 = 𝑃 β†’ 𝑋 ∈ 𝐴))
86, 7syl 17 . . 3 (((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐡 ∧ 𝑃 ∈ 𝐴) ∧ 𝑋 ≀ 𝑃) β†’ (𝑋 = 𝑃 β†’ 𝑋 ∈ 𝐴))
98orim1d 964 . 2 (((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐡 ∧ 𝑃 ∈ 𝐴) ∧ 𝑋 ≀ 𝑃) β†’ ((𝑋 = 𝑃 ∨ 𝑋 = 0 ) β†’ (𝑋 ∈ 𝐴 ∨ 𝑋 = 0 )))
105, 9mpd 15 1 (((𝐾 ∈ OP ∧ 𝑋 ∈ 𝐡 ∧ 𝑃 ∈ 𝐴) ∧ 𝑋 ≀ 𝑃) β†’ (𝑋 ∈ 𝐴 ∨ 𝑋 = 0 ))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 395   ∨ wo 846   ∧ w3a 1085   = wceq 1534   ∈ wcel 2099   class class class wbr 5148  β€˜cfv 6548  Basecbs 17179  lecple 17239  0.cp0 18414  OPcops 38644  Atomscatm 38735
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-rmo 3373  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-riota 7376  df-ov 7423  df-proset 18286  df-poset 18304  df-plt 18321  df-glb 18338  df-p0 18416  df-oposet 38648  df-covers 38738  df-ats 38739
This theorem is referenced by:  cdleme22b  39814
  Copyright terms: Public domain W3C validator