MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coltr Structured version   Visualization version   GIF version

Theorem coltr 28618
Description: A transitivity law for colinearity. (Contributed by Thierry Arnoux, 27-Nov-2019.)
Hypotheses
Ref Expression
tglineintmo.p 𝑃 = (Base‘𝐺)
tglineintmo.i 𝐼 = (Itv‘𝐺)
tglineintmo.l 𝐿 = (LineG‘𝐺)
tglineintmo.g (𝜑𝐺 ∈ TarskiG)
coltr.a (𝜑𝐴𝑃)
coltr.b (𝜑𝐵𝑃)
coltr.c (𝜑𝐶𝑃)
coltr.d (𝜑𝐷𝑃)
coltr.1 (𝜑𝐴 ∈ (𝐵𝐿𝐶))
coltr.2 (𝜑 → (𝐵 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷))
Assertion
Ref Expression
coltr (𝜑 → (𝐴 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷))

Proof of Theorem coltr
StepHypRef Expression
1 tglineintmo.p . . . . . . . 8 𝑃 = (Base‘𝐺)
2 tglineintmo.i . . . . . . . 8 𝐼 = (Itv‘𝐺)
3 tglineintmo.l . . . . . . . 8 𝐿 = (LineG‘𝐺)
4 tglineintmo.g . . . . . . . . 9 (𝜑𝐺 ∈ TarskiG)
54adantr 480 . . . . . . . 8 ((𝜑𝐶𝐷) → 𝐺 ∈ TarskiG)
6 coltr.c . . . . . . . . 9 (𝜑𝐶𝑃)
76adantr 480 . . . . . . . 8 ((𝜑𝐶𝐷) → 𝐶𝑃)
8 coltr.d . . . . . . . . 9 (𝜑𝐷𝑃)
98adantr 480 . . . . . . . 8 ((𝜑𝐶𝐷) → 𝐷𝑃)
10 simpr 484 . . . . . . . 8 ((𝜑𝐶𝐷) → 𝐶𝐷)
111, 2, 3, 5, 7, 9, 10tglinerflx1 28604 . . . . . . 7 ((𝜑𝐶𝐷) → 𝐶 ∈ (𝐶𝐿𝐷))
1211ex 412 . . . . . 6 (𝜑 → (𝐶𝐷𝐶 ∈ (𝐶𝐿𝐷)))
1312necon1bd 2944 . . . . 5 (𝜑 → (¬ 𝐶 ∈ (𝐶𝐿𝐷) → 𝐶 = 𝐷))
1413orrd 863 . . . 4 (𝜑 → (𝐶 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷))
1514adantr 480 . . 3 ((𝜑𝐴 = 𝐶) → (𝐶 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷))
16 simplr 768 . . . . . 6 (((𝜑𝐴 = 𝐶) ∧ 𝐶 ∈ (𝐶𝐿𝐷)) → 𝐴 = 𝐶)
17 simpr 484 . . . . . 6 (((𝜑𝐴 = 𝐶) ∧ 𝐶 ∈ (𝐶𝐿𝐷)) → 𝐶 ∈ (𝐶𝐿𝐷))
1816, 17eqeltrd 2829 . . . . 5 (((𝜑𝐴 = 𝐶) ∧ 𝐶 ∈ (𝐶𝐿𝐷)) → 𝐴 ∈ (𝐶𝐿𝐷))
1918ex 412 . . . 4 ((𝜑𝐴 = 𝐶) → (𝐶 ∈ (𝐶𝐿𝐷) → 𝐴 ∈ (𝐶𝐿𝐷)))
2019orim1d 967 . . 3 ((𝜑𝐴 = 𝐶) → ((𝐶 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷) → (𝐴 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷)))
2115, 20mpd 15 . 2 ((𝜑𝐴 = 𝐶) → (𝐴 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷))
22 coltr.2 . . . 4 (𝜑 → (𝐵 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷))
2322ad2antrr 726 . . 3 (((𝜑𝐴𝐶) ∧ ¬ (𝐴 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷)) → (𝐵 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷))
244ad2antrr 726 . . . 4 (((𝜑𝐴𝐶) ∧ ¬ (𝐴 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷)) → 𝐺 ∈ TarskiG)
25 coltr.a . . . . 5 (𝜑𝐴𝑃)
2625ad2antrr 726 . . . 4 (((𝜑𝐴𝐶) ∧ ¬ (𝐴 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷)) → 𝐴𝑃)
276ad2antrr 726 . . . 4 (((𝜑𝐴𝐶) ∧ ¬ (𝐴 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷)) → 𝐶𝑃)
288ad2antrr 726 . . . 4 (((𝜑𝐴𝐶) ∧ ¬ (𝐴 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷)) → 𝐷𝑃)
29 coltr.b . . . . 5 (𝜑𝐵𝑃)
3029ad2antrr 726 . . . 4 (((𝜑𝐴𝐶) ∧ ¬ (𝐴 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷)) → 𝐵𝑃)
31 simpr 484 . . . 4 (((𝜑𝐴𝐶) ∧ ¬ (𝐴 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷)) → ¬ (𝐴 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷))
324adantr 480 . . . . . 6 ((𝜑𝐴𝐶) → 𝐺 ∈ TarskiG)
3325adantr 480 . . . . . 6 ((𝜑𝐴𝐶) → 𝐴𝑃)
346adantr 480 . . . . . 6 ((𝜑𝐴𝐶) → 𝐶𝑃)
3529adantr 480 . . . . . 6 ((𝜑𝐴𝐶) → 𝐵𝑃)
36 simpr 484 . . . . . 6 ((𝜑𝐴𝐶) → 𝐴𝐶)
37 coltr.1 . . . . . . . . . 10 (𝜑𝐴 ∈ (𝐵𝐿𝐶))
3837adantr 480 . . . . . . . . 9 ((𝜑𝐴𝐶) → 𝐴 ∈ (𝐵𝐿𝐶))
391, 3, 2, 32, 35, 34, 38tglngne 28521 . . . . . . . 8 ((𝜑𝐴𝐶) → 𝐵𝐶)
4039necomd 2981 . . . . . . 7 ((𝜑𝐴𝐶) → 𝐶𝐵)
411, 2, 3, 32, 34, 35, 33, 40, 38lncom 28593 . . . . . 6 ((𝜑𝐴𝐶) → 𝐴 ∈ (𝐶𝐿𝐵))
421, 2, 3, 32, 33, 34, 35, 36, 41, 40lnrot2 28595 . . . . 5 ((𝜑𝐴𝐶) → 𝐵 ∈ (𝐴𝐿𝐶))
4342adantr 480 . . . 4 (((𝜑𝐴𝐶) ∧ ¬ (𝐴 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷)) → 𝐵 ∈ (𝐴𝐿𝐶))
441, 3, 2, 4, 29, 6, 37tglngne 28521 . . . . 5 (𝜑𝐵𝐶)
4544ad2antrr 726 . . . 4 (((𝜑𝐴𝐶) ∧ ¬ (𝐴 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷)) → 𝐵𝐶)
461, 2, 3, 24, 26, 27, 28, 30, 31, 43, 45ncolncol 28617 . . 3 (((𝜑𝐴𝐶) ∧ ¬ (𝐴 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷)) → ¬ (𝐵 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷))
4723, 46condan 817 . 2 ((𝜑𝐴𝐶) → (𝐴 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷))
4821, 47pm2.61dane 3013 1 (𝜑 → (𝐴 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847   = wceq 1541  wcel 2110  wne 2926  cfv 6477  (class class class)co 7341  Basecbs 17112  TarskiGcstrkg 28398  Itvcitv 28404  LineGclng 28405
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-cnex 11054  ax-resscn 11055  ax-1cn 11056  ax-icn 11057  ax-addcl 11058  ax-addrcl 11059  ax-mulcl 11060  ax-mulrcl 11061  ax-mulcom 11062  ax-addass 11063  ax-mulass 11064  ax-distr 11065  ax-i2m1 11066  ax-1ne0 11067  ax-1rid 11068  ax-rnegex 11069  ax-rrecex 11070  ax-cnre 11071  ax-pre-lttri 11072  ax-pre-lttrn 11073  ax-pre-ltadd 11074  ax-pre-mulgt0 11075
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-tp 4579  df-op 4581  df-uni 4858  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-oadd 8384  df-er 8617  df-pm 8748  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-dju 9786  df-card 9824  df-pnf 11140  df-mnf 11141  df-xr 11142  df-ltxr 11143  df-le 11144  df-sub 11338  df-neg 11339  df-nn 12118  df-2 12180  df-3 12181  df-n0 12374  df-xnn0 12447  df-z 12461  df-uz 12725  df-fz 13400  df-fzo 13547  df-hash 14230  df-word 14413  df-concat 14470  df-s1 14496  df-s2 14747  df-s3 14748  df-trkgc 28419  df-trkgb 28420  df-trkgcb 28421  df-trkg 28424  df-cgrg 28482
This theorem is referenced by:  hlpasch  28727  colhp  28741
  Copyright terms: Public domain W3C validator