MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coltr Structured version   Visualization version   GIF version

Theorem coltr 26912
Description: A transitivity law for colinearity. (Contributed by Thierry Arnoux, 27-Nov-2019.)
Hypotheses
Ref Expression
tglineintmo.p 𝑃 = (Base‘𝐺)
tglineintmo.i 𝐼 = (Itv‘𝐺)
tglineintmo.l 𝐿 = (LineG‘𝐺)
tglineintmo.g (𝜑𝐺 ∈ TarskiG)
coltr.a (𝜑𝐴𝑃)
coltr.b (𝜑𝐵𝑃)
coltr.c (𝜑𝐶𝑃)
coltr.d (𝜑𝐷𝑃)
coltr.1 (𝜑𝐴 ∈ (𝐵𝐿𝐶))
coltr.2 (𝜑 → (𝐵 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷))
Assertion
Ref Expression
coltr (𝜑 → (𝐴 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷))

Proof of Theorem coltr
StepHypRef Expression
1 tglineintmo.p . . . . . . . 8 𝑃 = (Base‘𝐺)
2 tglineintmo.i . . . . . . . 8 𝐼 = (Itv‘𝐺)
3 tglineintmo.l . . . . . . . 8 𝐿 = (LineG‘𝐺)
4 tglineintmo.g . . . . . . . . 9 (𝜑𝐺 ∈ TarskiG)
54adantr 480 . . . . . . . 8 ((𝜑𝐶𝐷) → 𝐺 ∈ TarskiG)
6 coltr.c . . . . . . . . 9 (𝜑𝐶𝑃)
76adantr 480 . . . . . . . 8 ((𝜑𝐶𝐷) → 𝐶𝑃)
8 coltr.d . . . . . . . . 9 (𝜑𝐷𝑃)
98adantr 480 . . . . . . . 8 ((𝜑𝐶𝐷) → 𝐷𝑃)
10 simpr 484 . . . . . . . 8 ((𝜑𝐶𝐷) → 𝐶𝐷)
111, 2, 3, 5, 7, 9, 10tglinerflx1 26898 . . . . . . 7 ((𝜑𝐶𝐷) → 𝐶 ∈ (𝐶𝐿𝐷))
1211ex 412 . . . . . 6 (𝜑 → (𝐶𝐷𝐶 ∈ (𝐶𝐿𝐷)))
1312necon1bd 2960 . . . . 5 (𝜑 → (¬ 𝐶 ∈ (𝐶𝐿𝐷) → 𝐶 = 𝐷))
1413orrd 859 . . . 4 (𝜑 → (𝐶 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷))
1514adantr 480 . . 3 ((𝜑𝐴 = 𝐶) → (𝐶 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷))
16 simplr 765 . . . . . 6 (((𝜑𝐴 = 𝐶) ∧ 𝐶 ∈ (𝐶𝐿𝐷)) → 𝐴 = 𝐶)
17 simpr 484 . . . . . 6 (((𝜑𝐴 = 𝐶) ∧ 𝐶 ∈ (𝐶𝐿𝐷)) → 𝐶 ∈ (𝐶𝐿𝐷))
1816, 17eqeltrd 2839 . . . . 5 (((𝜑𝐴 = 𝐶) ∧ 𝐶 ∈ (𝐶𝐿𝐷)) → 𝐴 ∈ (𝐶𝐿𝐷))
1918ex 412 . . . 4 ((𝜑𝐴 = 𝐶) → (𝐶 ∈ (𝐶𝐿𝐷) → 𝐴 ∈ (𝐶𝐿𝐷)))
2019orim1d 962 . . 3 ((𝜑𝐴 = 𝐶) → ((𝐶 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷) → (𝐴 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷)))
2115, 20mpd 15 . 2 ((𝜑𝐴 = 𝐶) → (𝐴 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷))
22 coltr.2 . . . 4 (𝜑 → (𝐵 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷))
2322ad2antrr 722 . . 3 (((𝜑𝐴𝐶) ∧ ¬ (𝐴 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷)) → (𝐵 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷))
244ad2antrr 722 . . . 4 (((𝜑𝐴𝐶) ∧ ¬ (𝐴 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷)) → 𝐺 ∈ TarskiG)
25 coltr.a . . . . 5 (𝜑𝐴𝑃)
2625ad2antrr 722 . . . 4 (((𝜑𝐴𝐶) ∧ ¬ (𝐴 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷)) → 𝐴𝑃)
276ad2antrr 722 . . . 4 (((𝜑𝐴𝐶) ∧ ¬ (𝐴 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷)) → 𝐶𝑃)
288ad2antrr 722 . . . 4 (((𝜑𝐴𝐶) ∧ ¬ (𝐴 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷)) → 𝐷𝑃)
29 coltr.b . . . . 5 (𝜑𝐵𝑃)
3029ad2antrr 722 . . . 4 (((𝜑𝐴𝐶) ∧ ¬ (𝐴 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷)) → 𝐵𝑃)
31 simpr 484 . . . 4 (((𝜑𝐴𝐶) ∧ ¬ (𝐴 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷)) → ¬ (𝐴 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷))
324adantr 480 . . . . . 6 ((𝜑𝐴𝐶) → 𝐺 ∈ TarskiG)
3325adantr 480 . . . . . 6 ((𝜑𝐴𝐶) → 𝐴𝑃)
346adantr 480 . . . . . 6 ((𝜑𝐴𝐶) → 𝐶𝑃)
3529adantr 480 . . . . . 6 ((𝜑𝐴𝐶) → 𝐵𝑃)
36 simpr 484 . . . . . 6 ((𝜑𝐴𝐶) → 𝐴𝐶)
37 coltr.1 . . . . . . . . . 10 (𝜑𝐴 ∈ (𝐵𝐿𝐶))
3837adantr 480 . . . . . . . . 9 ((𝜑𝐴𝐶) → 𝐴 ∈ (𝐵𝐿𝐶))
391, 3, 2, 32, 35, 34, 38tglngne 26815 . . . . . . . 8 ((𝜑𝐴𝐶) → 𝐵𝐶)
4039necomd 2998 . . . . . . 7 ((𝜑𝐴𝐶) → 𝐶𝐵)
411, 2, 3, 32, 34, 35, 33, 40, 38lncom 26887 . . . . . 6 ((𝜑𝐴𝐶) → 𝐴 ∈ (𝐶𝐿𝐵))
421, 2, 3, 32, 33, 34, 35, 36, 41, 40lnrot2 26889 . . . . 5 ((𝜑𝐴𝐶) → 𝐵 ∈ (𝐴𝐿𝐶))
4342adantr 480 . . . 4 (((𝜑𝐴𝐶) ∧ ¬ (𝐴 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷)) → 𝐵 ∈ (𝐴𝐿𝐶))
441, 3, 2, 4, 29, 6, 37tglngne 26815 . . . . 5 (𝜑𝐵𝐶)
4544ad2antrr 722 . . . 4 (((𝜑𝐴𝐶) ∧ ¬ (𝐴 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷)) → 𝐵𝐶)
461, 2, 3, 24, 26, 27, 28, 30, 31, 43, 45ncolncol 26911 . . 3 (((𝜑𝐴𝐶) ∧ ¬ (𝐴 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷)) → ¬ (𝐵 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷))
4723, 46condan 814 . 2 ((𝜑𝐴𝐶) → (𝐴 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷))
4821, 47pm2.61dane 3031 1 (𝜑 → (𝐴 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 843   = wceq 1539  wcel 2108  wne 2942  cfv 6418  (class class class)co 7255  Basecbs 16840  TarskiGcstrkg 26693  Itvcitv 26699  LineGclng 26700
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-oadd 8271  df-er 8456  df-pm 8576  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-dju 9590  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-xnn0 12236  df-z 12250  df-uz 12512  df-fz 13169  df-fzo 13312  df-hash 13973  df-word 14146  df-concat 14202  df-s1 14229  df-s2 14489  df-s3 14490  df-trkgc 26713  df-trkgb 26714  df-trkgcb 26715  df-trkg 26718  df-cgrg 26776
This theorem is referenced by:  hlpasch  27021  colhp  27035
  Copyright terms: Public domain W3C validator