Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > coltr | Structured version Visualization version GIF version |
Description: A transitivity law for colinearity. (Contributed by Thierry Arnoux, 27-Nov-2019.) |
Ref | Expression |
---|---|
tglineintmo.p | ⊢ 𝑃 = (Base‘𝐺) |
tglineintmo.i | ⊢ 𝐼 = (Itv‘𝐺) |
tglineintmo.l | ⊢ 𝐿 = (LineG‘𝐺) |
tglineintmo.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
coltr.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
coltr.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
coltr.c | ⊢ (𝜑 → 𝐶 ∈ 𝑃) |
coltr.d | ⊢ (𝜑 → 𝐷 ∈ 𝑃) |
coltr.1 | ⊢ (𝜑 → 𝐴 ∈ (𝐵𝐿𝐶)) |
coltr.2 | ⊢ (𝜑 → (𝐵 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷)) |
Ref | Expression |
---|---|
coltr | ⊢ (𝜑 → (𝐴 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tglineintmo.p | . . . . . . . 8 ⊢ 𝑃 = (Base‘𝐺) | |
2 | tglineintmo.i | . . . . . . . 8 ⊢ 𝐼 = (Itv‘𝐺) | |
3 | tglineintmo.l | . . . . . . . 8 ⊢ 𝐿 = (LineG‘𝐺) | |
4 | tglineintmo.g | . . . . . . . . 9 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
5 | 4 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐶 ≠ 𝐷) → 𝐺 ∈ TarskiG) |
6 | coltr.c | . . . . . . . . 9 ⊢ (𝜑 → 𝐶 ∈ 𝑃) | |
7 | 6 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐶 ≠ 𝐷) → 𝐶 ∈ 𝑃) |
8 | coltr.d | . . . . . . . . 9 ⊢ (𝜑 → 𝐷 ∈ 𝑃) | |
9 | 8 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐶 ≠ 𝐷) → 𝐷 ∈ 𝑃) |
10 | simpr 484 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐶 ≠ 𝐷) → 𝐶 ≠ 𝐷) | |
11 | 1, 2, 3, 5, 7, 9, 10 | tglinerflx1 26898 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐶 ≠ 𝐷) → 𝐶 ∈ (𝐶𝐿𝐷)) |
12 | 11 | ex 412 | . . . . . 6 ⊢ (𝜑 → (𝐶 ≠ 𝐷 → 𝐶 ∈ (𝐶𝐿𝐷))) |
13 | 12 | necon1bd 2960 | . . . . 5 ⊢ (𝜑 → (¬ 𝐶 ∈ (𝐶𝐿𝐷) → 𝐶 = 𝐷)) |
14 | 13 | orrd 859 | . . . 4 ⊢ (𝜑 → (𝐶 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷)) |
15 | 14 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐴 = 𝐶) → (𝐶 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷)) |
16 | simplr 765 | . . . . . 6 ⊢ (((𝜑 ∧ 𝐴 = 𝐶) ∧ 𝐶 ∈ (𝐶𝐿𝐷)) → 𝐴 = 𝐶) | |
17 | simpr 484 | . . . . . 6 ⊢ (((𝜑 ∧ 𝐴 = 𝐶) ∧ 𝐶 ∈ (𝐶𝐿𝐷)) → 𝐶 ∈ (𝐶𝐿𝐷)) | |
18 | 16, 17 | eqeltrd 2839 | . . . . 5 ⊢ (((𝜑 ∧ 𝐴 = 𝐶) ∧ 𝐶 ∈ (𝐶𝐿𝐷)) → 𝐴 ∈ (𝐶𝐿𝐷)) |
19 | 18 | ex 412 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 = 𝐶) → (𝐶 ∈ (𝐶𝐿𝐷) → 𝐴 ∈ (𝐶𝐿𝐷))) |
20 | 19 | orim1d 962 | . . 3 ⊢ ((𝜑 ∧ 𝐴 = 𝐶) → ((𝐶 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷) → (𝐴 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷))) |
21 | 15, 20 | mpd 15 | . 2 ⊢ ((𝜑 ∧ 𝐴 = 𝐶) → (𝐴 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷)) |
22 | coltr.2 | . . . 4 ⊢ (𝜑 → (𝐵 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷)) | |
23 | 22 | ad2antrr 722 | . . 3 ⊢ (((𝜑 ∧ 𝐴 ≠ 𝐶) ∧ ¬ (𝐴 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷)) → (𝐵 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷)) |
24 | 4 | ad2antrr 722 | . . . 4 ⊢ (((𝜑 ∧ 𝐴 ≠ 𝐶) ∧ ¬ (𝐴 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷)) → 𝐺 ∈ TarskiG) |
25 | coltr.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
26 | 25 | ad2antrr 722 | . . . 4 ⊢ (((𝜑 ∧ 𝐴 ≠ 𝐶) ∧ ¬ (𝐴 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷)) → 𝐴 ∈ 𝑃) |
27 | 6 | ad2antrr 722 | . . . 4 ⊢ (((𝜑 ∧ 𝐴 ≠ 𝐶) ∧ ¬ (𝐴 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷)) → 𝐶 ∈ 𝑃) |
28 | 8 | ad2antrr 722 | . . . 4 ⊢ (((𝜑 ∧ 𝐴 ≠ 𝐶) ∧ ¬ (𝐴 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷)) → 𝐷 ∈ 𝑃) |
29 | coltr.b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
30 | 29 | ad2antrr 722 | . . . 4 ⊢ (((𝜑 ∧ 𝐴 ≠ 𝐶) ∧ ¬ (𝐴 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷)) → 𝐵 ∈ 𝑃) |
31 | simpr 484 | . . . 4 ⊢ (((𝜑 ∧ 𝐴 ≠ 𝐶) ∧ ¬ (𝐴 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷)) → ¬ (𝐴 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷)) | |
32 | 4 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐶) → 𝐺 ∈ TarskiG) |
33 | 25 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐶) → 𝐴 ∈ 𝑃) |
34 | 6 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐶) → 𝐶 ∈ 𝑃) |
35 | 29 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐶) → 𝐵 ∈ 𝑃) |
36 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐶) → 𝐴 ≠ 𝐶) | |
37 | coltr.1 | . . . . . . . . . 10 ⊢ (𝜑 → 𝐴 ∈ (𝐵𝐿𝐶)) | |
38 | 37 | adantr 480 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐶) → 𝐴 ∈ (𝐵𝐿𝐶)) |
39 | 1, 3, 2, 32, 35, 34, 38 | tglngne 26815 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐶) → 𝐵 ≠ 𝐶) |
40 | 39 | necomd 2998 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐶) → 𝐶 ≠ 𝐵) |
41 | 1, 2, 3, 32, 34, 35, 33, 40, 38 | lncom 26887 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐶) → 𝐴 ∈ (𝐶𝐿𝐵)) |
42 | 1, 2, 3, 32, 33, 34, 35, 36, 41, 40 | lnrot2 26889 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐶) → 𝐵 ∈ (𝐴𝐿𝐶)) |
43 | 42 | adantr 480 | . . . 4 ⊢ (((𝜑 ∧ 𝐴 ≠ 𝐶) ∧ ¬ (𝐴 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷)) → 𝐵 ∈ (𝐴𝐿𝐶)) |
44 | 1, 3, 2, 4, 29, 6, 37 | tglngne 26815 | . . . . 5 ⊢ (𝜑 → 𝐵 ≠ 𝐶) |
45 | 44 | ad2antrr 722 | . . . 4 ⊢ (((𝜑 ∧ 𝐴 ≠ 𝐶) ∧ ¬ (𝐴 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷)) → 𝐵 ≠ 𝐶) |
46 | 1, 2, 3, 24, 26, 27, 28, 30, 31, 43, 45 | ncolncol 26911 | . . 3 ⊢ (((𝜑 ∧ 𝐴 ≠ 𝐶) ∧ ¬ (𝐴 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷)) → ¬ (𝐵 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷)) |
47 | 23, 46 | condan 814 | . 2 ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐶) → (𝐴 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷)) |
48 | 21, 47 | pm2.61dane 3031 | 1 ⊢ (𝜑 → (𝐴 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 843 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 TarskiGcstrkg 26693 Itvcitv 26699 LineGclng 26700 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-oadd 8271 df-er 8456 df-pm 8576 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-dju 9590 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-3 11967 df-n0 12164 df-xnn0 12236 df-z 12250 df-uz 12512 df-fz 13169 df-fzo 13312 df-hash 13973 df-word 14146 df-concat 14202 df-s1 14229 df-s2 14489 df-s3 14490 df-trkgc 26713 df-trkgb 26714 df-trkgcb 26715 df-trkg 26718 df-cgrg 26776 |
This theorem is referenced by: hlpasch 27021 colhp 27035 |
Copyright terms: Public domain | W3C validator |