![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > coltr | Structured version Visualization version GIF version |
Description: A transitivity law for colinearity. (Contributed by Thierry Arnoux, 27-Nov-2019.) |
Ref | Expression |
---|---|
tglineintmo.p | ⊢ 𝑃 = (Base‘𝐺) |
tglineintmo.i | ⊢ 𝐼 = (Itv‘𝐺) |
tglineintmo.l | ⊢ 𝐿 = (LineG‘𝐺) |
tglineintmo.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
coltr.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
coltr.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
coltr.c | ⊢ (𝜑 → 𝐶 ∈ 𝑃) |
coltr.d | ⊢ (𝜑 → 𝐷 ∈ 𝑃) |
coltr.1 | ⊢ (𝜑 → 𝐴 ∈ (𝐵𝐿𝐶)) |
coltr.2 | ⊢ (𝜑 → (𝐵 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷)) |
Ref | Expression |
---|---|
coltr | ⊢ (𝜑 → (𝐴 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tglineintmo.p | . . . . . . . 8 ⊢ 𝑃 = (Base‘𝐺) | |
2 | tglineintmo.i | . . . . . . . 8 ⊢ 𝐼 = (Itv‘𝐺) | |
3 | tglineintmo.l | . . . . . . . 8 ⊢ 𝐿 = (LineG‘𝐺) | |
4 | tglineintmo.g | . . . . . . . . 9 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
5 | 4 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐶 ≠ 𝐷) → 𝐺 ∈ TarskiG) |
6 | coltr.c | . . . . . . . . 9 ⊢ (𝜑 → 𝐶 ∈ 𝑃) | |
7 | 6 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐶 ≠ 𝐷) → 𝐶 ∈ 𝑃) |
8 | coltr.d | . . . . . . . . 9 ⊢ (𝜑 → 𝐷 ∈ 𝑃) | |
9 | 8 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐶 ≠ 𝐷) → 𝐷 ∈ 𝑃) |
10 | simpr 484 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐶 ≠ 𝐷) → 𝐶 ≠ 𝐷) | |
11 | 1, 2, 3, 5, 7, 9, 10 | tglinerflx1 28659 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐶 ≠ 𝐷) → 𝐶 ∈ (𝐶𝐿𝐷)) |
12 | 11 | ex 412 | . . . . . 6 ⊢ (𝜑 → (𝐶 ≠ 𝐷 → 𝐶 ∈ (𝐶𝐿𝐷))) |
13 | 12 | necon1bd 2964 | . . . . 5 ⊢ (𝜑 → (¬ 𝐶 ∈ (𝐶𝐿𝐷) → 𝐶 = 𝐷)) |
14 | 13 | orrd 862 | . . . 4 ⊢ (𝜑 → (𝐶 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷)) |
15 | 14 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐴 = 𝐶) → (𝐶 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷)) |
16 | simplr 768 | . . . . . 6 ⊢ (((𝜑 ∧ 𝐴 = 𝐶) ∧ 𝐶 ∈ (𝐶𝐿𝐷)) → 𝐴 = 𝐶) | |
17 | simpr 484 | . . . . . 6 ⊢ (((𝜑 ∧ 𝐴 = 𝐶) ∧ 𝐶 ∈ (𝐶𝐿𝐷)) → 𝐶 ∈ (𝐶𝐿𝐷)) | |
18 | 16, 17 | eqeltrd 2844 | . . . . 5 ⊢ (((𝜑 ∧ 𝐴 = 𝐶) ∧ 𝐶 ∈ (𝐶𝐿𝐷)) → 𝐴 ∈ (𝐶𝐿𝐷)) |
19 | 18 | ex 412 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 = 𝐶) → (𝐶 ∈ (𝐶𝐿𝐷) → 𝐴 ∈ (𝐶𝐿𝐷))) |
20 | 19 | orim1d 966 | . . 3 ⊢ ((𝜑 ∧ 𝐴 = 𝐶) → ((𝐶 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷) → (𝐴 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷))) |
21 | 15, 20 | mpd 15 | . 2 ⊢ ((𝜑 ∧ 𝐴 = 𝐶) → (𝐴 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷)) |
22 | coltr.2 | . . . 4 ⊢ (𝜑 → (𝐵 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷)) | |
23 | 22 | ad2antrr 725 | . . 3 ⊢ (((𝜑 ∧ 𝐴 ≠ 𝐶) ∧ ¬ (𝐴 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷)) → (𝐵 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷)) |
24 | 4 | ad2antrr 725 | . . . 4 ⊢ (((𝜑 ∧ 𝐴 ≠ 𝐶) ∧ ¬ (𝐴 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷)) → 𝐺 ∈ TarskiG) |
25 | coltr.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
26 | 25 | ad2antrr 725 | . . . 4 ⊢ (((𝜑 ∧ 𝐴 ≠ 𝐶) ∧ ¬ (𝐴 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷)) → 𝐴 ∈ 𝑃) |
27 | 6 | ad2antrr 725 | . . . 4 ⊢ (((𝜑 ∧ 𝐴 ≠ 𝐶) ∧ ¬ (𝐴 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷)) → 𝐶 ∈ 𝑃) |
28 | 8 | ad2antrr 725 | . . . 4 ⊢ (((𝜑 ∧ 𝐴 ≠ 𝐶) ∧ ¬ (𝐴 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷)) → 𝐷 ∈ 𝑃) |
29 | coltr.b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
30 | 29 | ad2antrr 725 | . . . 4 ⊢ (((𝜑 ∧ 𝐴 ≠ 𝐶) ∧ ¬ (𝐴 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷)) → 𝐵 ∈ 𝑃) |
31 | simpr 484 | . . . 4 ⊢ (((𝜑 ∧ 𝐴 ≠ 𝐶) ∧ ¬ (𝐴 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷)) → ¬ (𝐴 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷)) | |
32 | 4 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐶) → 𝐺 ∈ TarskiG) |
33 | 25 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐶) → 𝐴 ∈ 𝑃) |
34 | 6 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐶) → 𝐶 ∈ 𝑃) |
35 | 29 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐶) → 𝐵 ∈ 𝑃) |
36 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐶) → 𝐴 ≠ 𝐶) | |
37 | coltr.1 | . . . . . . . . . 10 ⊢ (𝜑 → 𝐴 ∈ (𝐵𝐿𝐶)) | |
38 | 37 | adantr 480 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐶) → 𝐴 ∈ (𝐵𝐿𝐶)) |
39 | 1, 3, 2, 32, 35, 34, 38 | tglngne 28576 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐶) → 𝐵 ≠ 𝐶) |
40 | 39 | necomd 3002 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐶) → 𝐶 ≠ 𝐵) |
41 | 1, 2, 3, 32, 34, 35, 33, 40, 38 | lncom 28648 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐶) → 𝐴 ∈ (𝐶𝐿𝐵)) |
42 | 1, 2, 3, 32, 33, 34, 35, 36, 41, 40 | lnrot2 28650 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐶) → 𝐵 ∈ (𝐴𝐿𝐶)) |
43 | 42 | adantr 480 | . . . 4 ⊢ (((𝜑 ∧ 𝐴 ≠ 𝐶) ∧ ¬ (𝐴 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷)) → 𝐵 ∈ (𝐴𝐿𝐶)) |
44 | 1, 3, 2, 4, 29, 6, 37 | tglngne 28576 | . . . . 5 ⊢ (𝜑 → 𝐵 ≠ 𝐶) |
45 | 44 | ad2antrr 725 | . . . 4 ⊢ (((𝜑 ∧ 𝐴 ≠ 𝐶) ∧ ¬ (𝐴 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷)) → 𝐵 ≠ 𝐶) |
46 | 1, 2, 3, 24, 26, 27, 28, 30, 31, 43, 45 | ncolncol 28672 | . . 3 ⊢ (((𝜑 ∧ 𝐴 ≠ 𝐶) ∧ ¬ (𝐴 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷)) → ¬ (𝐵 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷)) |
47 | 23, 46 | condan 817 | . 2 ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐶) → (𝐴 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷)) |
48 | 21, 47 | pm2.61dane 3035 | 1 ⊢ (𝜑 → (𝐴 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 846 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 ‘cfv 6573 (class class class)co 7448 Basecbs 17258 TarskiGcstrkg 28453 Itvcitv 28459 LineGclng 28460 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-oadd 8526 df-er 8763 df-pm 8887 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-dju 9970 df-card 10008 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-3 12357 df-n0 12554 df-xnn0 12626 df-z 12640 df-uz 12904 df-fz 13568 df-fzo 13712 df-hash 14380 df-word 14563 df-concat 14619 df-s1 14644 df-s2 14897 df-s3 14898 df-trkgc 28474 df-trkgb 28475 df-trkgcb 28476 df-trkg 28479 df-cgrg 28537 |
This theorem is referenced by: hlpasch 28782 colhp 28796 |
Copyright terms: Public domain | W3C validator |