Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > coltr | Structured version Visualization version GIF version |
Description: A transitivity law for colinearity. (Contributed by Thierry Arnoux, 27-Nov-2019.) |
Ref | Expression |
---|---|
tglineintmo.p | ⊢ 𝑃 = (Base‘𝐺) |
tglineintmo.i | ⊢ 𝐼 = (Itv‘𝐺) |
tglineintmo.l | ⊢ 𝐿 = (LineG‘𝐺) |
tglineintmo.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
coltr.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
coltr.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
coltr.c | ⊢ (𝜑 → 𝐶 ∈ 𝑃) |
coltr.d | ⊢ (𝜑 → 𝐷 ∈ 𝑃) |
coltr.1 | ⊢ (𝜑 → 𝐴 ∈ (𝐵𝐿𝐶)) |
coltr.2 | ⊢ (𝜑 → (𝐵 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷)) |
Ref | Expression |
---|---|
coltr | ⊢ (𝜑 → (𝐴 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tglineintmo.p | . . . . . . . 8 ⊢ 𝑃 = (Base‘𝐺) | |
2 | tglineintmo.i | . . . . . . . 8 ⊢ 𝐼 = (Itv‘𝐺) | |
3 | tglineintmo.l | . . . . . . . 8 ⊢ 𝐿 = (LineG‘𝐺) | |
4 | tglineintmo.g | . . . . . . . . 9 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
5 | 4 | adantr 481 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐶 ≠ 𝐷) → 𝐺 ∈ TarskiG) |
6 | coltr.c | . . . . . . . . 9 ⊢ (𝜑 → 𝐶 ∈ 𝑃) | |
7 | 6 | adantr 481 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐶 ≠ 𝐷) → 𝐶 ∈ 𝑃) |
8 | coltr.d | . . . . . . . . 9 ⊢ (𝜑 → 𝐷 ∈ 𝑃) | |
9 | 8 | adantr 481 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐶 ≠ 𝐷) → 𝐷 ∈ 𝑃) |
10 | simpr 485 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐶 ≠ 𝐷) → 𝐶 ≠ 𝐷) | |
11 | 1, 2, 3, 5, 7, 9, 10 | tglinerflx1 26994 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐶 ≠ 𝐷) → 𝐶 ∈ (𝐶𝐿𝐷)) |
12 | 11 | ex 413 | . . . . . 6 ⊢ (𝜑 → (𝐶 ≠ 𝐷 → 𝐶 ∈ (𝐶𝐿𝐷))) |
13 | 12 | necon1bd 2961 | . . . . 5 ⊢ (𝜑 → (¬ 𝐶 ∈ (𝐶𝐿𝐷) → 𝐶 = 𝐷)) |
14 | 13 | orrd 860 | . . . 4 ⊢ (𝜑 → (𝐶 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷)) |
15 | 14 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ 𝐴 = 𝐶) → (𝐶 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷)) |
16 | simplr 766 | . . . . . 6 ⊢ (((𝜑 ∧ 𝐴 = 𝐶) ∧ 𝐶 ∈ (𝐶𝐿𝐷)) → 𝐴 = 𝐶) | |
17 | simpr 485 | . . . . . 6 ⊢ (((𝜑 ∧ 𝐴 = 𝐶) ∧ 𝐶 ∈ (𝐶𝐿𝐷)) → 𝐶 ∈ (𝐶𝐿𝐷)) | |
18 | 16, 17 | eqeltrd 2839 | . . . . 5 ⊢ (((𝜑 ∧ 𝐴 = 𝐶) ∧ 𝐶 ∈ (𝐶𝐿𝐷)) → 𝐴 ∈ (𝐶𝐿𝐷)) |
19 | 18 | ex 413 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 = 𝐶) → (𝐶 ∈ (𝐶𝐿𝐷) → 𝐴 ∈ (𝐶𝐿𝐷))) |
20 | 19 | orim1d 963 | . . 3 ⊢ ((𝜑 ∧ 𝐴 = 𝐶) → ((𝐶 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷) → (𝐴 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷))) |
21 | 15, 20 | mpd 15 | . 2 ⊢ ((𝜑 ∧ 𝐴 = 𝐶) → (𝐴 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷)) |
22 | coltr.2 | . . . 4 ⊢ (𝜑 → (𝐵 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷)) | |
23 | 22 | ad2antrr 723 | . . 3 ⊢ (((𝜑 ∧ 𝐴 ≠ 𝐶) ∧ ¬ (𝐴 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷)) → (𝐵 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷)) |
24 | 4 | ad2antrr 723 | . . . 4 ⊢ (((𝜑 ∧ 𝐴 ≠ 𝐶) ∧ ¬ (𝐴 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷)) → 𝐺 ∈ TarskiG) |
25 | coltr.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
26 | 25 | ad2antrr 723 | . . . 4 ⊢ (((𝜑 ∧ 𝐴 ≠ 𝐶) ∧ ¬ (𝐴 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷)) → 𝐴 ∈ 𝑃) |
27 | 6 | ad2antrr 723 | . . . 4 ⊢ (((𝜑 ∧ 𝐴 ≠ 𝐶) ∧ ¬ (𝐴 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷)) → 𝐶 ∈ 𝑃) |
28 | 8 | ad2antrr 723 | . . . 4 ⊢ (((𝜑 ∧ 𝐴 ≠ 𝐶) ∧ ¬ (𝐴 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷)) → 𝐷 ∈ 𝑃) |
29 | coltr.b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
30 | 29 | ad2antrr 723 | . . . 4 ⊢ (((𝜑 ∧ 𝐴 ≠ 𝐶) ∧ ¬ (𝐴 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷)) → 𝐵 ∈ 𝑃) |
31 | simpr 485 | . . . 4 ⊢ (((𝜑 ∧ 𝐴 ≠ 𝐶) ∧ ¬ (𝐴 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷)) → ¬ (𝐴 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷)) | |
32 | 4 | adantr 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐶) → 𝐺 ∈ TarskiG) |
33 | 25 | adantr 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐶) → 𝐴 ∈ 𝑃) |
34 | 6 | adantr 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐶) → 𝐶 ∈ 𝑃) |
35 | 29 | adantr 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐶) → 𝐵 ∈ 𝑃) |
36 | simpr 485 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐶) → 𝐴 ≠ 𝐶) | |
37 | coltr.1 | . . . . . . . . . 10 ⊢ (𝜑 → 𝐴 ∈ (𝐵𝐿𝐶)) | |
38 | 37 | adantr 481 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐶) → 𝐴 ∈ (𝐵𝐿𝐶)) |
39 | 1, 3, 2, 32, 35, 34, 38 | tglngne 26911 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐶) → 𝐵 ≠ 𝐶) |
40 | 39 | necomd 2999 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐶) → 𝐶 ≠ 𝐵) |
41 | 1, 2, 3, 32, 34, 35, 33, 40, 38 | lncom 26983 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐶) → 𝐴 ∈ (𝐶𝐿𝐵)) |
42 | 1, 2, 3, 32, 33, 34, 35, 36, 41, 40 | lnrot2 26985 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐶) → 𝐵 ∈ (𝐴𝐿𝐶)) |
43 | 42 | adantr 481 | . . . 4 ⊢ (((𝜑 ∧ 𝐴 ≠ 𝐶) ∧ ¬ (𝐴 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷)) → 𝐵 ∈ (𝐴𝐿𝐶)) |
44 | 1, 3, 2, 4, 29, 6, 37 | tglngne 26911 | . . . . 5 ⊢ (𝜑 → 𝐵 ≠ 𝐶) |
45 | 44 | ad2antrr 723 | . . . 4 ⊢ (((𝜑 ∧ 𝐴 ≠ 𝐶) ∧ ¬ (𝐴 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷)) → 𝐵 ≠ 𝐶) |
46 | 1, 2, 3, 24, 26, 27, 28, 30, 31, 43, 45 | ncolncol 27007 | . . 3 ⊢ (((𝜑 ∧ 𝐴 ≠ 𝐶) ∧ ¬ (𝐴 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷)) → ¬ (𝐵 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷)) |
47 | 23, 46 | condan 815 | . 2 ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐶) → (𝐴 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷)) |
48 | 21, 47 | pm2.61dane 3032 | 1 ⊢ (𝜑 → (𝐴 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 ∨ wo 844 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 ‘cfv 6433 (class class class)co 7275 Basecbs 16912 TarskiGcstrkg 26788 Itvcitv 26794 LineGclng 26795 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-tp 4566 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-oadd 8301 df-er 8498 df-pm 8618 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-dju 9659 df-card 9697 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-2 12036 df-3 12037 df-n0 12234 df-xnn0 12306 df-z 12320 df-uz 12583 df-fz 13240 df-fzo 13383 df-hash 14045 df-word 14218 df-concat 14274 df-s1 14301 df-s2 14561 df-s3 14562 df-trkgc 26809 df-trkgb 26810 df-trkgcb 26811 df-trkg 26814 df-cgrg 26872 |
This theorem is referenced by: hlpasch 27117 colhp 27131 |
Copyright terms: Public domain | W3C validator |