MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coltr Structured version   Visualization version   GIF version

Theorem coltr 28673
Description: A transitivity law for colinearity. (Contributed by Thierry Arnoux, 27-Nov-2019.)
Hypotheses
Ref Expression
tglineintmo.p 𝑃 = (Base‘𝐺)
tglineintmo.i 𝐼 = (Itv‘𝐺)
tglineintmo.l 𝐿 = (LineG‘𝐺)
tglineintmo.g (𝜑𝐺 ∈ TarskiG)
coltr.a (𝜑𝐴𝑃)
coltr.b (𝜑𝐵𝑃)
coltr.c (𝜑𝐶𝑃)
coltr.d (𝜑𝐷𝑃)
coltr.1 (𝜑𝐴 ∈ (𝐵𝐿𝐶))
coltr.2 (𝜑 → (𝐵 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷))
Assertion
Ref Expression
coltr (𝜑 → (𝐴 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷))

Proof of Theorem coltr
StepHypRef Expression
1 tglineintmo.p . . . . . . . 8 𝑃 = (Base‘𝐺)
2 tglineintmo.i . . . . . . . 8 𝐼 = (Itv‘𝐺)
3 tglineintmo.l . . . . . . . 8 𝐿 = (LineG‘𝐺)
4 tglineintmo.g . . . . . . . . 9 (𝜑𝐺 ∈ TarskiG)
54adantr 480 . . . . . . . 8 ((𝜑𝐶𝐷) → 𝐺 ∈ TarskiG)
6 coltr.c . . . . . . . . 9 (𝜑𝐶𝑃)
76adantr 480 . . . . . . . 8 ((𝜑𝐶𝐷) → 𝐶𝑃)
8 coltr.d . . . . . . . . 9 (𝜑𝐷𝑃)
98adantr 480 . . . . . . . 8 ((𝜑𝐶𝐷) → 𝐷𝑃)
10 simpr 484 . . . . . . . 8 ((𝜑𝐶𝐷) → 𝐶𝐷)
111, 2, 3, 5, 7, 9, 10tglinerflx1 28659 . . . . . . 7 ((𝜑𝐶𝐷) → 𝐶 ∈ (𝐶𝐿𝐷))
1211ex 412 . . . . . 6 (𝜑 → (𝐶𝐷𝐶 ∈ (𝐶𝐿𝐷)))
1312necon1bd 2964 . . . . 5 (𝜑 → (¬ 𝐶 ∈ (𝐶𝐿𝐷) → 𝐶 = 𝐷))
1413orrd 862 . . . 4 (𝜑 → (𝐶 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷))
1514adantr 480 . . 3 ((𝜑𝐴 = 𝐶) → (𝐶 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷))
16 simplr 768 . . . . . 6 (((𝜑𝐴 = 𝐶) ∧ 𝐶 ∈ (𝐶𝐿𝐷)) → 𝐴 = 𝐶)
17 simpr 484 . . . . . 6 (((𝜑𝐴 = 𝐶) ∧ 𝐶 ∈ (𝐶𝐿𝐷)) → 𝐶 ∈ (𝐶𝐿𝐷))
1816, 17eqeltrd 2844 . . . . 5 (((𝜑𝐴 = 𝐶) ∧ 𝐶 ∈ (𝐶𝐿𝐷)) → 𝐴 ∈ (𝐶𝐿𝐷))
1918ex 412 . . . 4 ((𝜑𝐴 = 𝐶) → (𝐶 ∈ (𝐶𝐿𝐷) → 𝐴 ∈ (𝐶𝐿𝐷)))
2019orim1d 966 . . 3 ((𝜑𝐴 = 𝐶) → ((𝐶 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷) → (𝐴 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷)))
2115, 20mpd 15 . 2 ((𝜑𝐴 = 𝐶) → (𝐴 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷))
22 coltr.2 . . . 4 (𝜑 → (𝐵 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷))
2322ad2antrr 725 . . 3 (((𝜑𝐴𝐶) ∧ ¬ (𝐴 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷)) → (𝐵 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷))
244ad2antrr 725 . . . 4 (((𝜑𝐴𝐶) ∧ ¬ (𝐴 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷)) → 𝐺 ∈ TarskiG)
25 coltr.a . . . . 5 (𝜑𝐴𝑃)
2625ad2antrr 725 . . . 4 (((𝜑𝐴𝐶) ∧ ¬ (𝐴 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷)) → 𝐴𝑃)
276ad2antrr 725 . . . 4 (((𝜑𝐴𝐶) ∧ ¬ (𝐴 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷)) → 𝐶𝑃)
288ad2antrr 725 . . . 4 (((𝜑𝐴𝐶) ∧ ¬ (𝐴 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷)) → 𝐷𝑃)
29 coltr.b . . . . 5 (𝜑𝐵𝑃)
3029ad2antrr 725 . . . 4 (((𝜑𝐴𝐶) ∧ ¬ (𝐴 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷)) → 𝐵𝑃)
31 simpr 484 . . . 4 (((𝜑𝐴𝐶) ∧ ¬ (𝐴 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷)) → ¬ (𝐴 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷))
324adantr 480 . . . . . 6 ((𝜑𝐴𝐶) → 𝐺 ∈ TarskiG)
3325adantr 480 . . . . . 6 ((𝜑𝐴𝐶) → 𝐴𝑃)
346adantr 480 . . . . . 6 ((𝜑𝐴𝐶) → 𝐶𝑃)
3529adantr 480 . . . . . 6 ((𝜑𝐴𝐶) → 𝐵𝑃)
36 simpr 484 . . . . . 6 ((𝜑𝐴𝐶) → 𝐴𝐶)
37 coltr.1 . . . . . . . . . 10 (𝜑𝐴 ∈ (𝐵𝐿𝐶))
3837adantr 480 . . . . . . . . 9 ((𝜑𝐴𝐶) → 𝐴 ∈ (𝐵𝐿𝐶))
391, 3, 2, 32, 35, 34, 38tglngne 28576 . . . . . . . 8 ((𝜑𝐴𝐶) → 𝐵𝐶)
4039necomd 3002 . . . . . . 7 ((𝜑𝐴𝐶) → 𝐶𝐵)
411, 2, 3, 32, 34, 35, 33, 40, 38lncom 28648 . . . . . 6 ((𝜑𝐴𝐶) → 𝐴 ∈ (𝐶𝐿𝐵))
421, 2, 3, 32, 33, 34, 35, 36, 41, 40lnrot2 28650 . . . . 5 ((𝜑𝐴𝐶) → 𝐵 ∈ (𝐴𝐿𝐶))
4342adantr 480 . . . 4 (((𝜑𝐴𝐶) ∧ ¬ (𝐴 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷)) → 𝐵 ∈ (𝐴𝐿𝐶))
441, 3, 2, 4, 29, 6, 37tglngne 28576 . . . . 5 (𝜑𝐵𝐶)
4544ad2antrr 725 . . . 4 (((𝜑𝐴𝐶) ∧ ¬ (𝐴 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷)) → 𝐵𝐶)
461, 2, 3, 24, 26, 27, 28, 30, 31, 43, 45ncolncol 28672 . . 3 (((𝜑𝐴𝐶) ∧ ¬ (𝐴 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷)) → ¬ (𝐵 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷))
4723, 46condan 817 . 2 ((𝜑𝐴𝐶) → (𝐴 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷))
4821, 47pm2.61dane 3035 1 (𝜑 → (𝐴 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 846   = wceq 1537  wcel 2108  wne 2946  cfv 6573  (class class class)co 7448  Basecbs 17258  TarskiGcstrkg 28453  Itvcitv 28459  LineGclng 28460
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-oadd 8526  df-er 8763  df-pm 8887  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-dju 9970  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-xnn0 12626  df-z 12640  df-uz 12904  df-fz 13568  df-fzo 13712  df-hash 14380  df-word 14563  df-concat 14619  df-s1 14644  df-s2 14897  df-s3 14898  df-trkgc 28474  df-trkgb 28475  df-trkgcb 28476  df-trkg 28479  df-cgrg 28537
This theorem is referenced by:  hlpasch  28782  colhp  28796
  Copyright terms: Public domain W3C validator