![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > coltr | Structured version Visualization version GIF version |
Description: A transitivity law for colinearity. (Contributed by Thierry Arnoux, 27-Nov-2019.) |
Ref | Expression |
---|---|
tglineintmo.p | ⊢ 𝑃 = (Base‘𝐺) |
tglineintmo.i | ⊢ 𝐼 = (Itv‘𝐺) |
tglineintmo.l | ⊢ 𝐿 = (LineG‘𝐺) |
tglineintmo.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
coltr.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
coltr.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
coltr.c | ⊢ (𝜑 → 𝐶 ∈ 𝑃) |
coltr.d | ⊢ (𝜑 → 𝐷 ∈ 𝑃) |
coltr.1 | ⊢ (𝜑 → 𝐴 ∈ (𝐵𝐿𝐶)) |
coltr.2 | ⊢ (𝜑 → (𝐵 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷)) |
Ref | Expression |
---|---|
coltr | ⊢ (𝜑 → (𝐴 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tglineintmo.p | . . . . . . . 8 ⊢ 𝑃 = (Base‘𝐺) | |
2 | tglineintmo.i | . . . . . . . 8 ⊢ 𝐼 = (Itv‘𝐺) | |
3 | tglineintmo.l | . . . . . . . 8 ⊢ 𝐿 = (LineG‘𝐺) | |
4 | tglineintmo.g | . . . . . . . . 9 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
5 | 4 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐶 ≠ 𝐷) → 𝐺 ∈ TarskiG) |
6 | coltr.c | . . . . . . . . 9 ⊢ (𝜑 → 𝐶 ∈ 𝑃) | |
7 | 6 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐶 ≠ 𝐷) → 𝐶 ∈ 𝑃) |
8 | coltr.d | . . . . . . . . 9 ⊢ (𝜑 → 𝐷 ∈ 𝑃) | |
9 | 8 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐶 ≠ 𝐷) → 𝐷 ∈ 𝑃) |
10 | simpr 484 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐶 ≠ 𝐷) → 𝐶 ≠ 𝐷) | |
11 | 1, 2, 3, 5, 7, 9, 10 | tglinerflx1 28656 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐶 ≠ 𝐷) → 𝐶 ∈ (𝐶𝐿𝐷)) |
12 | 11 | ex 412 | . . . . . 6 ⊢ (𝜑 → (𝐶 ≠ 𝐷 → 𝐶 ∈ (𝐶𝐿𝐷))) |
13 | 12 | necon1bd 2956 | . . . . 5 ⊢ (𝜑 → (¬ 𝐶 ∈ (𝐶𝐿𝐷) → 𝐶 = 𝐷)) |
14 | 13 | orrd 863 | . . . 4 ⊢ (𝜑 → (𝐶 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷)) |
15 | 14 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐴 = 𝐶) → (𝐶 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷)) |
16 | simplr 769 | . . . . . 6 ⊢ (((𝜑 ∧ 𝐴 = 𝐶) ∧ 𝐶 ∈ (𝐶𝐿𝐷)) → 𝐴 = 𝐶) | |
17 | simpr 484 | . . . . . 6 ⊢ (((𝜑 ∧ 𝐴 = 𝐶) ∧ 𝐶 ∈ (𝐶𝐿𝐷)) → 𝐶 ∈ (𝐶𝐿𝐷)) | |
18 | 16, 17 | eqeltrd 2839 | . . . . 5 ⊢ (((𝜑 ∧ 𝐴 = 𝐶) ∧ 𝐶 ∈ (𝐶𝐿𝐷)) → 𝐴 ∈ (𝐶𝐿𝐷)) |
19 | 18 | ex 412 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 = 𝐶) → (𝐶 ∈ (𝐶𝐿𝐷) → 𝐴 ∈ (𝐶𝐿𝐷))) |
20 | 19 | orim1d 967 | . . 3 ⊢ ((𝜑 ∧ 𝐴 = 𝐶) → ((𝐶 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷) → (𝐴 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷))) |
21 | 15, 20 | mpd 15 | . 2 ⊢ ((𝜑 ∧ 𝐴 = 𝐶) → (𝐴 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷)) |
22 | coltr.2 | . . . 4 ⊢ (𝜑 → (𝐵 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷)) | |
23 | 22 | ad2antrr 726 | . . 3 ⊢ (((𝜑 ∧ 𝐴 ≠ 𝐶) ∧ ¬ (𝐴 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷)) → (𝐵 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷)) |
24 | 4 | ad2antrr 726 | . . . 4 ⊢ (((𝜑 ∧ 𝐴 ≠ 𝐶) ∧ ¬ (𝐴 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷)) → 𝐺 ∈ TarskiG) |
25 | coltr.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
26 | 25 | ad2antrr 726 | . . . 4 ⊢ (((𝜑 ∧ 𝐴 ≠ 𝐶) ∧ ¬ (𝐴 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷)) → 𝐴 ∈ 𝑃) |
27 | 6 | ad2antrr 726 | . . . 4 ⊢ (((𝜑 ∧ 𝐴 ≠ 𝐶) ∧ ¬ (𝐴 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷)) → 𝐶 ∈ 𝑃) |
28 | 8 | ad2antrr 726 | . . . 4 ⊢ (((𝜑 ∧ 𝐴 ≠ 𝐶) ∧ ¬ (𝐴 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷)) → 𝐷 ∈ 𝑃) |
29 | coltr.b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
30 | 29 | ad2antrr 726 | . . . 4 ⊢ (((𝜑 ∧ 𝐴 ≠ 𝐶) ∧ ¬ (𝐴 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷)) → 𝐵 ∈ 𝑃) |
31 | simpr 484 | . . . 4 ⊢ (((𝜑 ∧ 𝐴 ≠ 𝐶) ∧ ¬ (𝐴 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷)) → ¬ (𝐴 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷)) | |
32 | 4 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐶) → 𝐺 ∈ TarskiG) |
33 | 25 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐶) → 𝐴 ∈ 𝑃) |
34 | 6 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐶) → 𝐶 ∈ 𝑃) |
35 | 29 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐶) → 𝐵 ∈ 𝑃) |
36 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐶) → 𝐴 ≠ 𝐶) | |
37 | coltr.1 | . . . . . . . . . 10 ⊢ (𝜑 → 𝐴 ∈ (𝐵𝐿𝐶)) | |
38 | 37 | adantr 480 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐶) → 𝐴 ∈ (𝐵𝐿𝐶)) |
39 | 1, 3, 2, 32, 35, 34, 38 | tglngne 28573 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐶) → 𝐵 ≠ 𝐶) |
40 | 39 | necomd 2994 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐶) → 𝐶 ≠ 𝐵) |
41 | 1, 2, 3, 32, 34, 35, 33, 40, 38 | lncom 28645 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐶) → 𝐴 ∈ (𝐶𝐿𝐵)) |
42 | 1, 2, 3, 32, 33, 34, 35, 36, 41, 40 | lnrot2 28647 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐶) → 𝐵 ∈ (𝐴𝐿𝐶)) |
43 | 42 | adantr 480 | . . . 4 ⊢ (((𝜑 ∧ 𝐴 ≠ 𝐶) ∧ ¬ (𝐴 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷)) → 𝐵 ∈ (𝐴𝐿𝐶)) |
44 | 1, 3, 2, 4, 29, 6, 37 | tglngne 28573 | . . . . 5 ⊢ (𝜑 → 𝐵 ≠ 𝐶) |
45 | 44 | ad2antrr 726 | . . . 4 ⊢ (((𝜑 ∧ 𝐴 ≠ 𝐶) ∧ ¬ (𝐴 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷)) → 𝐵 ≠ 𝐶) |
46 | 1, 2, 3, 24, 26, 27, 28, 30, 31, 43, 45 | ncolncol 28669 | . . 3 ⊢ (((𝜑 ∧ 𝐴 ≠ 𝐶) ∧ ¬ (𝐴 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷)) → ¬ (𝐵 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷)) |
47 | 23, 46 | condan 818 | . 2 ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐶) → (𝐴 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷)) |
48 | 21, 47 | pm2.61dane 3027 | 1 ⊢ (𝜑 → (𝐴 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1537 ∈ wcel 2106 ≠ wne 2938 ‘cfv 6563 (class class class)co 7431 Basecbs 17245 TarskiGcstrkg 28450 Itvcitv 28456 LineGclng 28457 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-tp 4636 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-oadd 8509 df-er 8744 df-pm 8868 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-dju 9939 df-card 9977 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-nn 12265 df-2 12327 df-3 12328 df-n0 12525 df-xnn0 12598 df-z 12612 df-uz 12877 df-fz 13545 df-fzo 13692 df-hash 14367 df-word 14550 df-concat 14606 df-s1 14631 df-s2 14884 df-s3 14885 df-trkgc 28471 df-trkgb 28472 df-trkgcb 28473 df-trkg 28476 df-cgrg 28534 |
This theorem is referenced by: hlpasch 28779 colhp 28793 |
Copyright terms: Public domain | W3C validator |