Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > coltr | Structured version Visualization version GIF version |
Description: A transitivity law for colinearity. (Contributed by Thierry Arnoux, 27-Nov-2019.) |
Ref | Expression |
---|---|
tglineintmo.p | ⊢ 𝑃 = (Base‘𝐺) |
tglineintmo.i | ⊢ 𝐼 = (Itv‘𝐺) |
tglineintmo.l | ⊢ 𝐿 = (LineG‘𝐺) |
tglineintmo.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
coltr.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
coltr.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
coltr.c | ⊢ (𝜑 → 𝐶 ∈ 𝑃) |
coltr.d | ⊢ (𝜑 → 𝐷 ∈ 𝑃) |
coltr.1 | ⊢ (𝜑 → 𝐴 ∈ (𝐵𝐿𝐶)) |
coltr.2 | ⊢ (𝜑 → (𝐵 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷)) |
Ref | Expression |
---|---|
coltr | ⊢ (𝜑 → (𝐴 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tglineintmo.p | . . . . . . . 8 ⊢ 𝑃 = (Base‘𝐺) | |
2 | tglineintmo.i | . . . . . . . 8 ⊢ 𝐼 = (Itv‘𝐺) | |
3 | tglineintmo.l | . . . . . . . 8 ⊢ 𝐿 = (LineG‘𝐺) | |
4 | tglineintmo.g | . . . . . . . . 9 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
5 | 4 | adantr 484 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐶 ≠ 𝐷) → 𝐺 ∈ TarskiG) |
6 | coltr.c | . . . . . . . . 9 ⊢ (𝜑 → 𝐶 ∈ 𝑃) | |
7 | 6 | adantr 484 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐶 ≠ 𝐷) → 𝐶 ∈ 𝑃) |
8 | coltr.d | . . . . . . . . 9 ⊢ (𝜑 → 𝐷 ∈ 𝑃) | |
9 | 8 | adantr 484 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐶 ≠ 𝐷) → 𝐷 ∈ 𝑃) |
10 | simpr 488 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐶 ≠ 𝐷) → 𝐶 ≠ 𝐷) | |
11 | 1, 2, 3, 5, 7, 9, 10 | tglinerflx1 26579 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐶 ≠ 𝐷) → 𝐶 ∈ (𝐶𝐿𝐷)) |
12 | 11 | ex 416 | . . . . . 6 ⊢ (𝜑 → (𝐶 ≠ 𝐷 → 𝐶 ∈ (𝐶𝐿𝐷))) |
13 | 12 | necon1bd 2952 | . . . . 5 ⊢ (𝜑 → (¬ 𝐶 ∈ (𝐶𝐿𝐷) → 𝐶 = 𝐷)) |
14 | 13 | orrd 862 | . . . 4 ⊢ (𝜑 → (𝐶 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷)) |
15 | 14 | adantr 484 | . . 3 ⊢ ((𝜑 ∧ 𝐴 = 𝐶) → (𝐶 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷)) |
16 | simplr 769 | . . . . . 6 ⊢ (((𝜑 ∧ 𝐴 = 𝐶) ∧ 𝐶 ∈ (𝐶𝐿𝐷)) → 𝐴 = 𝐶) | |
17 | simpr 488 | . . . . . 6 ⊢ (((𝜑 ∧ 𝐴 = 𝐶) ∧ 𝐶 ∈ (𝐶𝐿𝐷)) → 𝐶 ∈ (𝐶𝐿𝐷)) | |
18 | 16, 17 | eqeltrd 2833 | . . . . 5 ⊢ (((𝜑 ∧ 𝐴 = 𝐶) ∧ 𝐶 ∈ (𝐶𝐿𝐷)) → 𝐴 ∈ (𝐶𝐿𝐷)) |
19 | 18 | ex 416 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 = 𝐶) → (𝐶 ∈ (𝐶𝐿𝐷) → 𝐴 ∈ (𝐶𝐿𝐷))) |
20 | 19 | orim1d 965 | . . 3 ⊢ ((𝜑 ∧ 𝐴 = 𝐶) → ((𝐶 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷) → (𝐴 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷))) |
21 | 15, 20 | mpd 15 | . 2 ⊢ ((𝜑 ∧ 𝐴 = 𝐶) → (𝐴 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷)) |
22 | coltr.2 | . . . 4 ⊢ (𝜑 → (𝐵 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷)) | |
23 | 22 | ad2antrr 726 | . . 3 ⊢ (((𝜑 ∧ 𝐴 ≠ 𝐶) ∧ ¬ (𝐴 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷)) → (𝐵 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷)) |
24 | 4 | ad2antrr 726 | . . . 4 ⊢ (((𝜑 ∧ 𝐴 ≠ 𝐶) ∧ ¬ (𝐴 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷)) → 𝐺 ∈ TarskiG) |
25 | coltr.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
26 | 25 | ad2antrr 726 | . . . 4 ⊢ (((𝜑 ∧ 𝐴 ≠ 𝐶) ∧ ¬ (𝐴 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷)) → 𝐴 ∈ 𝑃) |
27 | 6 | ad2antrr 726 | . . . 4 ⊢ (((𝜑 ∧ 𝐴 ≠ 𝐶) ∧ ¬ (𝐴 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷)) → 𝐶 ∈ 𝑃) |
28 | 8 | ad2antrr 726 | . . . 4 ⊢ (((𝜑 ∧ 𝐴 ≠ 𝐶) ∧ ¬ (𝐴 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷)) → 𝐷 ∈ 𝑃) |
29 | coltr.b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
30 | 29 | ad2antrr 726 | . . . 4 ⊢ (((𝜑 ∧ 𝐴 ≠ 𝐶) ∧ ¬ (𝐴 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷)) → 𝐵 ∈ 𝑃) |
31 | simpr 488 | . . . 4 ⊢ (((𝜑 ∧ 𝐴 ≠ 𝐶) ∧ ¬ (𝐴 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷)) → ¬ (𝐴 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷)) | |
32 | 4 | adantr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐶) → 𝐺 ∈ TarskiG) |
33 | 25 | adantr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐶) → 𝐴 ∈ 𝑃) |
34 | 6 | adantr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐶) → 𝐶 ∈ 𝑃) |
35 | 29 | adantr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐶) → 𝐵 ∈ 𝑃) |
36 | simpr 488 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐶) → 𝐴 ≠ 𝐶) | |
37 | coltr.1 | . . . . . . . . . 10 ⊢ (𝜑 → 𝐴 ∈ (𝐵𝐿𝐶)) | |
38 | 37 | adantr 484 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐶) → 𝐴 ∈ (𝐵𝐿𝐶)) |
39 | 1, 3, 2, 32, 35, 34, 38 | tglngne 26496 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐶) → 𝐵 ≠ 𝐶) |
40 | 39 | necomd 2989 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐶) → 𝐶 ≠ 𝐵) |
41 | 1, 2, 3, 32, 34, 35, 33, 40, 38 | lncom 26568 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐶) → 𝐴 ∈ (𝐶𝐿𝐵)) |
42 | 1, 2, 3, 32, 33, 34, 35, 36, 41, 40 | lnrot2 26570 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐶) → 𝐵 ∈ (𝐴𝐿𝐶)) |
43 | 42 | adantr 484 | . . . 4 ⊢ (((𝜑 ∧ 𝐴 ≠ 𝐶) ∧ ¬ (𝐴 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷)) → 𝐵 ∈ (𝐴𝐿𝐶)) |
44 | 1, 3, 2, 4, 29, 6, 37 | tglngne 26496 | . . . . 5 ⊢ (𝜑 → 𝐵 ≠ 𝐶) |
45 | 44 | ad2antrr 726 | . . . 4 ⊢ (((𝜑 ∧ 𝐴 ≠ 𝐶) ∧ ¬ (𝐴 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷)) → 𝐵 ≠ 𝐶) |
46 | 1, 2, 3, 24, 26, 27, 28, 30, 31, 43, 45 | ncolncol 26592 | . . 3 ⊢ (((𝜑 ∧ 𝐴 ≠ 𝐶) ∧ ¬ (𝐴 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷)) → ¬ (𝐵 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷)) |
47 | 23, 46 | condan 818 | . 2 ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐶) → (𝐴 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷)) |
48 | 21, 47 | pm2.61dane 3021 | 1 ⊢ (𝜑 → (𝐴 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 399 ∨ wo 846 = wceq 1542 ∈ wcel 2114 ≠ wne 2934 ‘cfv 6339 (class class class)co 7170 Basecbs 16586 TarskiGcstrkg 26376 Itvcitv 26382 LineGclng 26383 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2710 ax-rep 5154 ax-sep 5167 ax-nul 5174 ax-pow 5232 ax-pr 5296 ax-un 7479 ax-cnex 10671 ax-resscn 10672 ax-1cn 10673 ax-icn 10674 ax-addcl 10675 ax-addrcl 10676 ax-mulcl 10677 ax-mulrcl 10678 ax-mulcom 10679 ax-addass 10680 ax-mulass 10681 ax-distr 10682 ax-i2m1 10683 ax-1ne0 10684 ax-1rid 10685 ax-rnegex 10686 ax-rrecex 10687 ax-cnre 10688 ax-pre-lttri 10689 ax-pre-lttrn 10690 ax-pre-ltadd 10691 ax-pre-mulgt0 10692 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-nel 3039 df-ral 3058 df-rex 3059 df-reu 3060 df-rab 3062 df-v 3400 df-sbc 3681 df-csb 3791 df-dif 3846 df-un 3848 df-in 3850 df-ss 3860 df-pss 3862 df-nul 4212 df-if 4415 df-pw 4490 df-sn 4517 df-pr 4519 df-tp 4521 df-op 4523 df-uni 4797 df-int 4837 df-iun 4883 df-br 5031 df-opab 5093 df-mpt 5111 df-tr 5137 df-id 5429 df-eprel 5434 df-po 5442 df-so 5443 df-fr 5483 df-we 5485 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-pred 6129 df-ord 6175 df-on 6176 df-lim 6177 df-suc 6178 df-iota 6297 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-riota 7127 df-ov 7173 df-oprab 7174 df-mpo 7175 df-om 7600 df-1st 7714 df-2nd 7715 df-wrecs 7976 df-recs 8037 df-rdg 8075 df-1o 8131 df-oadd 8135 df-er 8320 df-pm 8440 df-en 8556 df-dom 8557 df-sdom 8558 df-fin 8559 df-dju 9403 df-card 9441 df-pnf 10755 df-mnf 10756 df-xr 10757 df-ltxr 10758 df-le 10759 df-sub 10950 df-neg 10951 df-nn 11717 df-2 11779 df-3 11780 df-n0 11977 df-xnn0 12049 df-z 12063 df-uz 12325 df-fz 12982 df-fzo 13125 df-hash 13783 df-word 13956 df-concat 14012 df-s1 14039 df-s2 14299 df-s3 14300 df-trkgc 26394 df-trkgb 26395 df-trkgcb 26396 df-trkg 26399 df-cgrg 26457 |
This theorem is referenced by: hlpasch 26702 colhp 26716 |
Copyright terms: Public domain | W3C validator |