MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coltr Structured version   Visualization version   GIF version

Theorem coltr 26593
Description: A transitivity law for colinearity. (Contributed by Thierry Arnoux, 27-Nov-2019.)
Hypotheses
Ref Expression
tglineintmo.p 𝑃 = (Base‘𝐺)
tglineintmo.i 𝐼 = (Itv‘𝐺)
tglineintmo.l 𝐿 = (LineG‘𝐺)
tglineintmo.g (𝜑𝐺 ∈ TarskiG)
coltr.a (𝜑𝐴𝑃)
coltr.b (𝜑𝐵𝑃)
coltr.c (𝜑𝐶𝑃)
coltr.d (𝜑𝐷𝑃)
coltr.1 (𝜑𝐴 ∈ (𝐵𝐿𝐶))
coltr.2 (𝜑 → (𝐵 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷))
Assertion
Ref Expression
coltr (𝜑 → (𝐴 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷))

Proof of Theorem coltr
StepHypRef Expression
1 tglineintmo.p . . . . . . . 8 𝑃 = (Base‘𝐺)
2 tglineintmo.i . . . . . . . 8 𝐼 = (Itv‘𝐺)
3 tglineintmo.l . . . . . . . 8 𝐿 = (LineG‘𝐺)
4 tglineintmo.g . . . . . . . . 9 (𝜑𝐺 ∈ TarskiG)
54adantr 484 . . . . . . . 8 ((𝜑𝐶𝐷) → 𝐺 ∈ TarskiG)
6 coltr.c . . . . . . . . 9 (𝜑𝐶𝑃)
76adantr 484 . . . . . . . 8 ((𝜑𝐶𝐷) → 𝐶𝑃)
8 coltr.d . . . . . . . . 9 (𝜑𝐷𝑃)
98adantr 484 . . . . . . . 8 ((𝜑𝐶𝐷) → 𝐷𝑃)
10 simpr 488 . . . . . . . 8 ((𝜑𝐶𝐷) → 𝐶𝐷)
111, 2, 3, 5, 7, 9, 10tglinerflx1 26579 . . . . . . 7 ((𝜑𝐶𝐷) → 𝐶 ∈ (𝐶𝐿𝐷))
1211ex 416 . . . . . 6 (𝜑 → (𝐶𝐷𝐶 ∈ (𝐶𝐿𝐷)))
1312necon1bd 2952 . . . . 5 (𝜑 → (¬ 𝐶 ∈ (𝐶𝐿𝐷) → 𝐶 = 𝐷))
1413orrd 862 . . . 4 (𝜑 → (𝐶 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷))
1514adantr 484 . . 3 ((𝜑𝐴 = 𝐶) → (𝐶 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷))
16 simplr 769 . . . . . 6 (((𝜑𝐴 = 𝐶) ∧ 𝐶 ∈ (𝐶𝐿𝐷)) → 𝐴 = 𝐶)
17 simpr 488 . . . . . 6 (((𝜑𝐴 = 𝐶) ∧ 𝐶 ∈ (𝐶𝐿𝐷)) → 𝐶 ∈ (𝐶𝐿𝐷))
1816, 17eqeltrd 2833 . . . . 5 (((𝜑𝐴 = 𝐶) ∧ 𝐶 ∈ (𝐶𝐿𝐷)) → 𝐴 ∈ (𝐶𝐿𝐷))
1918ex 416 . . . 4 ((𝜑𝐴 = 𝐶) → (𝐶 ∈ (𝐶𝐿𝐷) → 𝐴 ∈ (𝐶𝐿𝐷)))
2019orim1d 965 . . 3 ((𝜑𝐴 = 𝐶) → ((𝐶 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷) → (𝐴 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷)))
2115, 20mpd 15 . 2 ((𝜑𝐴 = 𝐶) → (𝐴 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷))
22 coltr.2 . . . 4 (𝜑 → (𝐵 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷))
2322ad2antrr 726 . . 3 (((𝜑𝐴𝐶) ∧ ¬ (𝐴 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷)) → (𝐵 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷))
244ad2antrr 726 . . . 4 (((𝜑𝐴𝐶) ∧ ¬ (𝐴 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷)) → 𝐺 ∈ TarskiG)
25 coltr.a . . . . 5 (𝜑𝐴𝑃)
2625ad2antrr 726 . . . 4 (((𝜑𝐴𝐶) ∧ ¬ (𝐴 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷)) → 𝐴𝑃)
276ad2antrr 726 . . . 4 (((𝜑𝐴𝐶) ∧ ¬ (𝐴 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷)) → 𝐶𝑃)
288ad2antrr 726 . . . 4 (((𝜑𝐴𝐶) ∧ ¬ (𝐴 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷)) → 𝐷𝑃)
29 coltr.b . . . . 5 (𝜑𝐵𝑃)
3029ad2antrr 726 . . . 4 (((𝜑𝐴𝐶) ∧ ¬ (𝐴 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷)) → 𝐵𝑃)
31 simpr 488 . . . 4 (((𝜑𝐴𝐶) ∧ ¬ (𝐴 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷)) → ¬ (𝐴 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷))
324adantr 484 . . . . . 6 ((𝜑𝐴𝐶) → 𝐺 ∈ TarskiG)
3325adantr 484 . . . . . 6 ((𝜑𝐴𝐶) → 𝐴𝑃)
346adantr 484 . . . . . 6 ((𝜑𝐴𝐶) → 𝐶𝑃)
3529adantr 484 . . . . . 6 ((𝜑𝐴𝐶) → 𝐵𝑃)
36 simpr 488 . . . . . 6 ((𝜑𝐴𝐶) → 𝐴𝐶)
37 coltr.1 . . . . . . . . . 10 (𝜑𝐴 ∈ (𝐵𝐿𝐶))
3837adantr 484 . . . . . . . . 9 ((𝜑𝐴𝐶) → 𝐴 ∈ (𝐵𝐿𝐶))
391, 3, 2, 32, 35, 34, 38tglngne 26496 . . . . . . . 8 ((𝜑𝐴𝐶) → 𝐵𝐶)
4039necomd 2989 . . . . . . 7 ((𝜑𝐴𝐶) → 𝐶𝐵)
411, 2, 3, 32, 34, 35, 33, 40, 38lncom 26568 . . . . . 6 ((𝜑𝐴𝐶) → 𝐴 ∈ (𝐶𝐿𝐵))
421, 2, 3, 32, 33, 34, 35, 36, 41, 40lnrot2 26570 . . . . 5 ((𝜑𝐴𝐶) → 𝐵 ∈ (𝐴𝐿𝐶))
4342adantr 484 . . . 4 (((𝜑𝐴𝐶) ∧ ¬ (𝐴 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷)) → 𝐵 ∈ (𝐴𝐿𝐶))
441, 3, 2, 4, 29, 6, 37tglngne 26496 . . . . 5 (𝜑𝐵𝐶)
4544ad2antrr 726 . . . 4 (((𝜑𝐴𝐶) ∧ ¬ (𝐴 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷)) → 𝐵𝐶)
461, 2, 3, 24, 26, 27, 28, 30, 31, 43, 45ncolncol 26592 . . 3 (((𝜑𝐴𝐶) ∧ ¬ (𝐴 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷)) → ¬ (𝐵 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷))
4723, 46condan 818 . 2 ((𝜑𝐴𝐶) → (𝐴 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷))
4821, 47pm2.61dane 3021 1 (𝜑 → (𝐴 ∈ (𝐶𝐿𝐷) ∨ 𝐶 = 𝐷))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399  wo 846   = wceq 1542  wcel 2114  wne 2934  cfv 6339  (class class class)co 7170  Basecbs 16586  TarskiGcstrkg 26376  Itvcitv 26382  LineGclng 26383
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296  ax-un 7479  ax-cnex 10671  ax-resscn 10672  ax-1cn 10673  ax-icn 10674  ax-addcl 10675  ax-addrcl 10676  ax-mulcl 10677  ax-mulrcl 10678  ax-mulcom 10679  ax-addass 10680  ax-mulass 10681  ax-distr 10682  ax-i2m1 10683  ax-1ne0 10684  ax-1rid 10685  ax-rnegex 10686  ax-rrecex 10687  ax-cnre 10688  ax-pre-lttri 10689  ax-pre-lttrn 10690  ax-pre-ltadd 10691  ax-pre-mulgt0 10692
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-reu 3060  df-rab 3062  df-v 3400  df-sbc 3681  df-csb 3791  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-pss 3862  df-nul 4212  df-if 4415  df-pw 4490  df-sn 4517  df-pr 4519  df-tp 4521  df-op 4523  df-uni 4797  df-int 4837  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5429  df-eprel 5434  df-po 5442  df-so 5443  df-fr 5483  df-we 5485  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-pred 6129  df-ord 6175  df-on 6176  df-lim 6177  df-suc 6178  df-iota 6297  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-riota 7127  df-ov 7173  df-oprab 7174  df-mpo 7175  df-om 7600  df-1st 7714  df-2nd 7715  df-wrecs 7976  df-recs 8037  df-rdg 8075  df-1o 8131  df-oadd 8135  df-er 8320  df-pm 8440  df-en 8556  df-dom 8557  df-sdom 8558  df-fin 8559  df-dju 9403  df-card 9441  df-pnf 10755  df-mnf 10756  df-xr 10757  df-ltxr 10758  df-le 10759  df-sub 10950  df-neg 10951  df-nn 11717  df-2 11779  df-3 11780  df-n0 11977  df-xnn0 12049  df-z 12063  df-uz 12325  df-fz 12982  df-fzo 13125  df-hash 13783  df-word 13956  df-concat 14012  df-s1 14039  df-s2 14299  df-s3 14300  df-trkgc 26394  df-trkgb 26395  df-trkgcb 26396  df-trkg 26399  df-cgrg 26457
This theorem is referenced by:  hlpasch  26702  colhp  26716
  Copyright terms: Public domain W3C validator