Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > phllmhm | Structured version Visualization version GIF version |
Description: The inner product of a pre-Hilbert space is linear in its left argument. (Contributed by Mario Carneiro, 7-Oct-2015.) |
Ref | Expression |
---|---|
phlsrng.f | ⊢ 𝐹 = (Scalar‘𝑊) |
phllmhm.h | ⊢ , = (·𝑖‘𝑊) |
phllmhm.v | ⊢ 𝑉 = (Base‘𝑊) |
phllmhm.g | ⊢ 𝐺 = (𝑥 ∈ 𝑉 ↦ (𝑥 , 𝐴)) |
Ref | Expression |
---|---|
phllmhm | ⊢ ((𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉) → 𝐺 ∈ (𝑊 LMHom (ringLMod‘𝐹))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | phllmhm.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑊) | |
2 | phlsrng.f | . . . . 5 ⊢ 𝐹 = (Scalar‘𝑊) | |
3 | phllmhm.h | . . . . 5 ⊢ , = (·𝑖‘𝑊) | |
4 | eqid 2738 | . . . . 5 ⊢ (0g‘𝑊) = (0g‘𝑊) | |
5 | eqid 2738 | . . . . 5 ⊢ (*𝑟‘𝐹) = (*𝑟‘𝐹) | |
6 | eqid 2738 | . . . . 5 ⊢ (0g‘𝐹) = (0g‘𝐹) | |
7 | 1, 2, 3, 4, 5, 6 | isphl 20833 | . . . 4 ⊢ (𝑊 ∈ PreHil ↔ (𝑊 ∈ LVec ∧ 𝐹 ∈ *-Ring ∧ ∀𝑦 ∈ 𝑉 ((𝑥 ∈ 𝑉 ↦ (𝑥 , 𝑦)) ∈ (𝑊 LMHom (ringLMod‘𝐹)) ∧ ((𝑦 , 𝑦) = (0g‘𝐹) → 𝑦 = (0g‘𝑊)) ∧ ∀𝑥 ∈ 𝑉 ((*𝑟‘𝐹)‘(𝑦 , 𝑥)) = (𝑥 , 𝑦)))) |
8 | 7 | simp3bi 1146 | . . 3 ⊢ (𝑊 ∈ PreHil → ∀𝑦 ∈ 𝑉 ((𝑥 ∈ 𝑉 ↦ (𝑥 , 𝑦)) ∈ (𝑊 LMHom (ringLMod‘𝐹)) ∧ ((𝑦 , 𝑦) = (0g‘𝐹) → 𝑦 = (0g‘𝑊)) ∧ ∀𝑥 ∈ 𝑉 ((*𝑟‘𝐹)‘(𝑦 , 𝑥)) = (𝑥 , 𝑦))) |
9 | simp1 1135 | . . . 4 ⊢ (((𝑥 ∈ 𝑉 ↦ (𝑥 , 𝑦)) ∈ (𝑊 LMHom (ringLMod‘𝐹)) ∧ ((𝑦 , 𝑦) = (0g‘𝐹) → 𝑦 = (0g‘𝑊)) ∧ ∀𝑥 ∈ 𝑉 ((*𝑟‘𝐹)‘(𝑦 , 𝑥)) = (𝑥 , 𝑦)) → (𝑥 ∈ 𝑉 ↦ (𝑥 , 𝑦)) ∈ (𝑊 LMHom (ringLMod‘𝐹))) | |
10 | 9 | ralimi 3087 | . . 3 ⊢ (∀𝑦 ∈ 𝑉 ((𝑥 ∈ 𝑉 ↦ (𝑥 , 𝑦)) ∈ (𝑊 LMHom (ringLMod‘𝐹)) ∧ ((𝑦 , 𝑦) = (0g‘𝐹) → 𝑦 = (0g‘𝑊)) ∧ ∀𝑥 ∈ 𝑉 ((*𝑟‘𝐹)‘(𝑦 , 𝑥)) = (𝑥 , 𝑦)) → ∀𝑦 ∈ 𝑉 (𝑥 ∈ 𝑉 ↦ (𝑥 , 𝑦)) ∈ (𝑊 LMHom (ringLMod‘𝐹))) |
11 | 8, 10 | syl 17 | . 2 ⊢ (𝑊 ∈ PreHil → ∀𝑦 ∈ 𝑉 (𝑥 ∈ 𝑉 ↦ (𝑥 , 𝑦)) ∈ (𝑊 LMHom (ringLMod‘𝐹))) |
12 | oveq2 7283 | . . . . . 6 ⊢ (𝑦 = 𝐴 → (𝑥 , 𝑦) = (𝑥 , 𝐴)) | |
13 | 12 | mpteq2dv 5176 | . . . . 5 ⊢ (𝑦 = 𝐴 → (𝑥 ∈ 𝑉 ↦ (𝑥 , 𝑦)) = (𝑥 ∈ 𝑉 ↦ (𝑥 , 𝐴))) |
14 | phllmhm.g | . . . . 5 ⊢ 𝐺 = (𝑥 ∈ 𝑉 ↦ (𝑥 , 𝐴)) | |
15 | 13, 14 | eqtr4di 2796 | . . . 4 ⊢ (𝑦 = 𝐴 → (𝑥 ∈ 𝑉 ↦ (𝑥 , 𝑦)) = 𝐺) |
16 | 15 | eleq1d 2823 | . . 3 ⊢ (𝑦 = 𝐴 → ((𝑥 ∈ 𝑉 ↦ (𝑥 , 𝑦)) ∈ (𝑊 LMHom (ringLMod‘𝐹)) ↔ 𝐺 ∈ (𝑊 LMHom (ringLMod‘𝐹)))) |
17 | 16 | rspccva 3560 | . 2 ⊢ ((∀𝑦 ∈ 𝑉 (𝑥 ∈ 𝑉 ↦ (𝑥 , 𝑦)) ∈ (𝑊 LMHom (ringLMod‘𝐹)) ∧ 𝐴 ∈ 𝑉) → 𝐺 ∈ (𝑊 LMHom (ringLMod‘𝐹))) |
18 | 11, 17 | sylan 580 | 1 ⊢ ((𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉) → 𝐺 ∈ (𝑊 LMHom (ringLMod‘𝐹))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ∀wral 3064 ↦ cmpt 5157 ‘cfv 6433 (class class class)co 7275 Basecbs 16912 *𝑟cstv 16964 Scalarcsca 16965 ·𝑖cip 16967 0gc0g 17150 *-Ringcsr 20104 LMHom clmhm 20281 LVecclvec 20364 ringLModcrglmod 20431 PreHilcphl 20829 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-nul 5230 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-iota 6391 df-fv 6441 df-ov 7278 df-phl 20831 |
This theorem is referenced by: ipcl 20838 ip0l 20841 ipdir 20844 ipass 20850 |
Copyright terms: Public domain | W3C validator |