![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > phllmhm | Structured version Visualization version GIF version |
Description: The inner product of a pre-Hilbert space is linear in its left argument. (Contributed by Mario Carneiro, 7-Oct-2015.) |
Ref | Expression |
---|---|
phlsrng.f | ⊢ 𝐹 = (Scalar‘𝑊) |
phllmhm.h | ⊢ , = (·𝑖‘𝑊) |
phllmhm.v | ⊢ 𝑉 = (Base‘𝑊) |
phllmhm.g | ⊢ 𝐺 = (𝑥 ∈ 𝑉 ↦ (𝑥 , 𝐴)) |
Ref | Expression |
---|---|
phllmhm | ⊢ ((𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉) → 𝐺 ∈ (𝑊 LMHom (ringLMod‘𝐹))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | phllmhm.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑊) | |
2 | phlsrng.f | . . . . 5 ⊢ 𝐹 = (Scalar‘𝑊) | |
3 | phllmhm.h | . . . . 5 ⊢ , = (·𝑖‘𝑊) | |
4 | eqid 2778 | . . . . 5 ⊢ (0g‘𝑊) = (0g‘𝑊) | |
5 | eqid 2778 | . . . . 5 ⊢ (*𝑟‘𝐹) = (*𝑟‘𝐹) | |
6 | eqid 2778 | . . . . 5 ⊢ (0g‘𝐹) = (0g‘𝐹) | |
7 | 1, 2, 3, 4, 5, 6 | isphl 20371 | . . . 4 ⊢ (𝑊 ∈ PreHil ↔ (𝑊 ∈ LVec ∧ 𝐹 ∈ *-Ring ∧ ∀𝑦 ∈ 𝑉 ((𝑥 ∈ 𝑉 ↦ (𝑥 , 𝑦)) ∈ (𝑊 LMHom (ringLMod‘𝐹)) ∧ ((𝑦 , 𝑦) = (0g‘𝐹) → 𝑦 = (0g‘𝑊)) ∧ ∀𝑥 ∈ 𝑉 ((*𝑟‘𝐹)‘(𝑦 , 𝑥)) = (𝑥 , 𝑦)))) |
8 | 7 | simp3bi 1138 | . . 3 ⊢ (𝑊 ∈ PreHil → ∀𝑦 ∈ 𝑉 ((𝑥 ∈ 𝑉 ↦ (𝑥 , 𝑦)) ∈ (𝑊 LMHom (ringLMod‘𝐹)) ∧ ((𝑦 , 𝑦) = (0g‘𝐹) → 𝑦 = (0g‘𝑊)) ∧ ∀𝑥 ∈ 𝑉 ((*𝑟‘𝐹)‘(𝑦 , 𝑥)) = (𝑥 , 𝑦))) |
9 | simp1 1127 | . . . 4 ⊢ (((𝑥 ∈ 𝑉 ↦ (𝑥 , 𝑦)) ∈ (𝑊 LMHom (ringLMod‘𝐹)) ∧ ((𝑦 , 𝑦) = (0g‘𝐹) → 𝑦 = (0g‘𝑊)) ∧ ∀𝑥 ∈ 𝑉 ((*𝑟‘𝐹)‘(𝑦 , 𝑥)) = (𝑥 , 𝑦)) → (𝑥 ∈ 𝑉 ↦ (𝑥 , 𝑦)) ∈ (𝑊 LMHom (ringLMod‘𝐹))) | |
10 | 9 | ralimi 3134 | . . 3 ⊢ (∀𝑦 ∈ 𝑉 ((𝑥 ∈ 𝑉 ↦ (𝑥 , 𝑦)) ∈ (𝑊 LMHom (ringLMod‘𝐹)) ∧ ((𝑦 , 𝑦) = (0g‘𝐹) → 𝑦 = (0g‘𝑊)) ∧ ∀𝑥 ∈ 𝑉 ((*𝑟‘𝐹)‘(𝑦 , 𝑥)) = (𝑥 , 𝑦)) → ∀𝑦 ∈ 𝑉 (𝑥 ∈ 𝑉 ↦ (𝑥 , 𝑦)) ∈ (𝑊 LMHom (ringLMod‘𝐹))) |
11 | 8, 10 | syl 17 | . 2 ⊢ (𝑊 ∈ PreHil → ∀𝑦 ∈ 𝑉 (𝑥 ∈ 𝑉 ↦ (𝑥 , 𝑦)) ∈ (𝑊 LMHom (ringLMod‘𝐹))) |
12 | oveq2 6930 | . . . . . 6 ⊢ (𝑦 = 𝐴 → (𝑥 , 𝑦) = (𝑥 , 𝐴)) | |
13 | 12 | mpteq2dv 4980 | . . . . 5 ⊢ (𝑦 = 𝐴 → (𝑥 ∈ 𝑉 ↦ (𝑥 , 𝑦)) = (𝑥 ∈ 𝑉 ↦ (𝑥 , 𝐴))) |
14 | phllmhm.g | . . . . 5 ⊢ 𝐺 = (𝑥 ∈ 𝑉 ↦ (𝑥 , 𝐴)) | |
15 | 13, 14 | syl6eqr 2832 | . . . 4 ⊢ (𝑦 = 𝐴 → (𝑥 ∈ 𝑉 ↦ (𝑥 , 𝑦)) = 𝐺) |
16 | 15 | eleq1d 2844 | . . 3 ⊢ (𝑦 = 𝐴 → ((𝑥 ∈ 𝑉 ↦ (𝑥 , 𝑦)) ∈ (𝑊 LMHom (ringLMod‘𝐹)) ↔ 𝐺 ∈ (𝑊 LMHom (ringLMod‘𝐹)))) |
17 | 16 | rspccva 3510 | . 2 ⊢ ((∀𝑦 ∈ 𝑉 (𝑥 ∈ 𝑉 ↦ (𝑥 , 𝑦)) ∈ (𝑊 LMHom (ringLMod‘𝐹)) ∧ 𝐴 ∈ 𝑉) → 𝐺 ∈ (𝑊 LMHom (ringLMod‘𝐹))) |
18 | 11, 17 | sylan 575 | 1 ⊢ ((𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉) → 𝐺 ∈ (𝑊 LMHom (ringLMod‘𝐹))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 ∧ w3a 1071 = wceq 1601 ∈ wcel 2107 ∀wral 3090 ↦ cmpt 4965 ‘cfv 6135 (class class class)co 6922 Basecbs 16255 *𝑟cstv 16340 Scalarcsca 16341 ·𝑖cip 16343 0gc0g 16486 *-Ringcsr 19236 LMHom clmhm 19414 LVecclvec 19497 ringLModcrglmod 19566 PreHilcphl 20367 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-nul 5025 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ral 3095 df-rex 3096 df-rab 3099 df-v 3400 df-sbc 3653 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-nul 4142 df-if 4308 df-sn 4399 df-pr 4401 df-op 4405 df-uni 4672 df-br 4887 df-opab 4949 df-mpt 4966 df-iota 6099 df-fv 6143 df-ov 6925 df-phl 20369 |
This theorem is referenced by: ipcl 20376 ip0l 20379 ipdir 20382 ipass 20388 |
Copyright terms: Public domain | W3C validator |