MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  phllmhm Structured version   Visualization version   GIF version

Theorem phllmhm 20943
Description: The inner product of a pre-Hilbert space is linear in its left argument. (Contributed by Mario Carneiro, 7-Oct-2015.)
Hypotheses
Ref Expression
phlsrng.f 𝐹 = (Scalar‘𝑊)
phllmhm.h , = (·𝑖𝑊)
phllmhm.v 𝑉 = (Base‘𝑊)
phllmhm.g 𝐺 = (𝑥𝑉 ↦ (𝑥 , 𝐴))
Assertion
Ref Expression
phllmhm ((𝑊 ∈ PreHil ∧ 𝐴𝑉) → 𝐺 ∈ (𝑊 LMHom (ringLMod‘𝐹)))
Distinct variable groups:   𝑥,𝐴   𝑥, ,   𝑥,𝑉   𝑥,𝑊
Allowed substitution hints:   𝐹(𝑥)   𝐺(𝑥)

Proof of Theorem phllmhm
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 phllmhm.v . . . . 5 𝑉 = (Base‘𝑊)
2 phlsrng.f . . . . 5 𝐹 = (Scalar‘𝑊)
3 phllmhm.h . . . . 5 , = (·𝑖𝑊)
4 eqid 2736 . . . . 5 (0g𝑊) = (0g𝑊)
5 eqid 2736 . . . . 5 (*𝑟𝐹) = (*𝑟𝐹)
6 eqid 2736 . . . . 5 (0g𝐹) = (0g𝐹)
71, 2, 3, 4, 5, 6isphl 20939 . . . 4 (𝑊 ∈ PreHil ↔ (𝑊 ∈ LVec ∧ 𝐹 ∈ *-Ring ∧ ∀𝑦𝑉 ((𝑥𝑉 ↦ (𝑥 , 𝑦)) ∈ (𝑊 LMHom (ringLMod‘𝐹)) ∧ ((𝑦 , 𝑦) = (0g𝐹) → 𝑦 = (0g𝑊)) ∧ ∀𝑥𝑉 ((*𝑟𝐹)‘(𝑦 , 𝑥)) = (𝑥 , 𝑦))))
87simp3bi 1146 . . 3 (𝑊 ∈ PreHil → ∀𝑦𝑉 ((𝑥𝑉 ↦ (𝑥 , 𝑦)) ∈ (𝑊 LMHom (ringLMod‘𝐹)) ∧ ((𝑦 , 𝑦) = (0g𝐹) → 𝑦 = (0g𝑊)) ∧ ∀𝑥𝑉 ((*𝑟𝐹)‘(𝑦 , 𝑥)) = (𝑥 , 𝑦)))
9 simp1 1135 . . . 4 (((𝑥𝑉 ↦ (𝑥 , 𝑦)) ∈ (𝑊 LMHom (ringLMod‘𝐹)) ∧ ((𝑦 , 𝑦) = (0g𝐹) → 𝑦 = (0g𝑊)) ∧ ∀𝑥𝑉 ((*𝑟𝐹)‘(𝑦 , 𝑥)) = (𝑥 , 𝑦)) → (𝑥𝑉 ↦ (𝑥 , 𝑦)) ∈ (𝑊 LMHom (ringLMod‘𝐹)))
109ralimi 3082 . . 3 (∀𝑦𝑉 ((𝑥𝑉 ↦ (𝑥 , 𝑦)) ∈ (𝑊 LMHom (ringLMod‘𝐹)) ∧ ((𝑦 , 𝑦) = (0g𝐹) → 𝑦 = (0g𝑊)) ∧ ∀𝑥𝑉 ((*𝑟𝐹)‘(𝑦 , 𝑥)) = (𝑥 , 𝑦)) → ∀𝑦𝑉 (𝑥𝑉 ↦ (𝑥 , 𝑦)) ∈ (𝑊 LMHom (ringLMod‘𝐹)))
118, 10syl 17 . 2 (𝑊 ∈ PreHil → ∀𝑦𝑉 (𝑥𝑉 ↦ (𝑥 , 𝑦)) ∈ (𝑊 LMHom (ringLMod‘𝐹)))
12 oveq2 7345 . . . . . 6 (𝑦 = 𝐴 → (𝑥 , 𝑦) = (𝑥 , 𝐴))
1312mpteq2dv 5194 . . . . 5 (𝑦 = 𝐴 → (𝑥𝑉 ↦ (𝑥 , 𝑦)) = (𝑥𝑉 ↦ (𝑥 , 𝐴)))
14 phllmhm.g . . . . 5 𝐺 = (𝑥𝑉 ↦ (𝑥 , 𝐴))
1513, 14eqtr4di 2794 . . . 4 (𝑦 = 𝐴 → (𝑥𝑉 ↦ (𝑥 , 𝑦)) = 𝐺)
1615eleq1d 2821 . . 3 (𝑦 = 𝐴 → ((𝑥𝑉 ↦ (𝑥 , 𝑦)) ∈ (𝑊 LMHom (ringLMod‘𝐹)) ↔ 𝐺 ∈ (𝑊 LMHom (ringLMod‘𝐹))))
1716rspccva 3569 . 2 ((∀𝑦𝑉 (𝑥𝑉 ↦ (𝑥 , 𝑦)) ∈ (𝑊 LMHom (ringLMod‘𝐹)) ∧ 𝐴𝑉) → 𝐺 ∈ (𝑊 LMHom (ringLMod‘𝐹)))
1811, 17sylan 580 1 ((𝑊 ∈ PreHil ∧ 𝐴𝑉) → 𝐺 ∈ (𝑊 LMHom (ringLMod‘𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1540  wcel 2105  wral 3061  cmpt 5175  cfv 6479  (class class class)co 7337  Basecbs 17009  *𝑟cstv 17061  Scalarcsca 17062  ·𝑖cip 17064  0gc0g 17247  *-Ringcsr 20210   LMHom clmhm 20387  LVecclvec 20470  ringLModcrglmod 20537  PreHilcphl 20935
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2707  ax-nul 5250
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-sb 2067  df-clab 2714  df-cleq 2728  df-clel 2814  df-ne 2941  df-ral 3062  df-rab 3404  df-v 3443  df-sbc 3728  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4270  df-if 4474  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4853  df-br 5093  df-opab 5155  df-mpt 5176  df-iota 6431  df-fv 6487  df-ov 7340  df-phl 20937
This theorem is referenced by:  ipcl  20944  ip0l  20947  ipdir  20950  ipass  20956
  Copyright terms: Public domain W3C validator