MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  phllmhm Structured version   Visualization version   GIF version

Theorem phllmhm 21673
Description: The inner product of a pre-Hilbert space is linear in its left argument. (Contributed by Mario Carneiro, 7-Oct-2015.)
Hypotheses
Ref Expression
phlsrng.f 𝐹 = (Scalar‘𝑊)
phllmhm.h , = (·𝑖𝑊)
phllmhm.v 𝑉 = (Base‘𝑊)
phllmhm.g 𝐺 = (𝑥𝑉 ↦ (𝑥 , 𝐴))
Assertion
Ref Expression
phllmhm ((𝑊 ∈ PreHil ∧ 𝐴𝑉) → 𝐺 ∈ (𝑊 LMHom (ringLMod‘𝐹)))
Distinct variable groups:   𝑥,𝐴   𝑥, ,   𝑥,𝑉   𝑥,𝑊
Allowed substitution hints:   𝐹(𝑥)   𝐺(𝑥)

Proof of Theorem phllmhm
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 phllmhm.v . . . . 5 𝑉 = (Base‘𝑊)
2 phlsrng.f . . . . 5 𝐹 = (Scalar‘𝑊)
3 phllmhm.h . . . . 5 , = (·𝑖𝑊)
4 eqid 2740 . . . . 5 (0g𝑊) = (0g𝑊)
5 eqid 2740 . . . . 5 (*𝑟𝐹) = (*𝑟𝐹)
6 eqid 2740 . . . . 5 (0g𝐹) = (0g𝐹)
71, 2, 3, 4, 5, 6isphl 21669 . . . 4 (𝑊 ∈ PreHil ↔ (𝑊 ∈ LVec ∧ 𝐹 ∈ *-Ring ∧ ∀𝑦𝑉 ((𝑥𝑉 ↦ (𝑥 , 𝑦)) ∈ (𝑊 LMHom (ringLMod‘𝐹)) ∧ ((𝑦 , 𝑦) = (0g𝐹) → 𝑦 = (0g𝑊)) ∧ ∀𝑥𝑉 ((*𝑟𝐹)‘(𝑦 , 𝑥)) = (𝑥 , 𝑦))))
87simp3bi 1147 . . 3 (𝑊 ∈ PreHil → ∀𝑦𝑉 ((𝑥𝑉 ↦ (𝑥 , 𝑦)) ∈ (𝑊 LMHom (ringLMod‘𝐹)) ∧ ((𝑦 , 𝑦) = (0g𝐹) → 𝑦 = (0g𝑊)) ∧ ∀𝑥𝑉 ((*𝑟𝐹)‘(𝑦 , 𝑥)) = (𝑥 , 𝑦)))
9 simp1 1136 . . . 4 (((𝑥𝑉 ↦ (𝑥 , 𝑦)) ∈ (𝑊 LMHom (ringLMod‘𝐹)) ∧ ((𝑦 , 𝑦) = (0g𝐹) → 𝑦 = (0g𝑊)) ∧ ∀𝑥𝑉 ((*𝑟𝐹)‘(𝑦 , 𝑥)) = (𝑥 , 𝑦)) → (𝑥𝑉 ↦ (𝑥 , 𝑦)) ∈ (𝑊 LMHom (ringLMod‘𝐹)))
109ralimi 3089 . . 3 (∀𝑦𝑉 ((𝑥𝑉 ↦ (𝑥 , 𝑦)) ∈ (𝑊 LMHom (ringLMod‘𝐹)) ∧ ((𝑦 , 𝑦) = (0g𝐹) → 𝑦 = (0g𝑊)) ∧ ∀𝑥𝑉 ((*𝑟𝐹)‘(𝑦 , 𝑥)) = (𝑥 , 𝑦)) → ∀𝑦𝑉 (𝑥𝑉 ↦ (𝑥 , 𝑦)) ∈ (𝑊 LMHom (ringLMod‘𝐹)))
118, 10syl 17 . 2 (𝑊 ∈ PreHil → ∀𝑦𝑉 (𝑥𝑉 ↦ (𝑥 , 𝑦)) ∈ (𝑊 LMHom (ringLMod‘𝐹)))
12 oveq2 7456 . . . . . 6 (𝑦 = 𝐴 → (𝑥 , 𝑦) = (𝑥 , 𝐴))
1312mpteq2dv 5268 . . . . 5 (𝑦 = 𝐴 → (𝑥𝑉 ↦ (𝑥 , 𝑦)) = (𝑥𝑉 ↦ (𝑥 , 𝐴)))
14 phllmhm.g . . . . 5 𝐺 = (𝑥𝑉 ↦ (𝑥 , 𝐴))
1513, 14eqtr4di 2798 . . . 4 (𝑦 = 𝐴 → (𝑥𝑉 ↦ (𝑥 , 𝑦)) = 𝐺)
1615eleq1d 2829 . . 3 (𝑦 = 𝐴 → ((𝑥𝑉 ↦ (𝑥 , 𝑦)) ∈ (𝑊 LMHom (ringLMod‘𝐹)) ↔ 𝐺 ∈ (𝑊 LMHom (ringLMod‘𝐹))))
1716rspccva 3634 . 2 ((∀𝑦𝑉 (𝑥𝑉 ↦ (𝑥 , 𝑦)) ∈ (𝑊 LMHom (ringLMod‘𝐹)) ∧ 𝐴𝑉) → 𝐺 ∈ (𝑊 LMHom (ringLMod‘𝐹)))
1811, 17sylan 579 1 ((𝑊 ∈ PreHil ∧ 𝐴𝑉) → 𝐺 ∈ (𝑊 LMHom (ringLMod‘𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  wral 3067  cmpt 5249  cfv 6573  (class class class)co 7448  Basecbs 17258  *𝑟cstv 17313  Scalarcsca 17314  ·𝑖cip 17316  0gc0g 17499  *-Ringcsr 20861   LMHom clmhm 21041  LVecclvec 21124  ringLModcrglmod 21194  PreHilcphl 21665
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-nul 5324
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-iota 6525  df-fv 6581  df-ov 7451  df-phl 21667
This theorem is referenced by:  ipcl  21674  ip0l  21677  ipdir  21680  ipass  21686
  Copyright terms: Public domain W3C validator