Step | Hyp | Ref
| Expression |
1 | | phllmhm.v |
. . . . 5
⊢ 𝑉 = (Base‘𝑊) |
2 | | phlsrng.f |
. . . . 5
⊢ 𝐹 = (Scalar‘𝑊) |
3 | | phllmhm.h |
. . . . 5
⊢ , =
(·𝑖‘𝑊) |
4 | | eqid 2736 |
. . . . 5
⊢
(0g‘𝑊) = (0g‘𝑊) |
5 | | eqid 2736 |
. . . . 5
⊢
(*𝑟‘𝐹) = (*𝑟‘𝐹) |
6 | | eqid 2736 |
. . . . 5
⊢
(0g‘𝐹) = (0g‘𝐹) |
7 | 1, 2, 3, 4, 5, 6 | isphl 20939 |
. . . 4
⊢ (𝑊 ∈ PreHil ↔ (𝑊 ∈ LVec ∧ 𝐹 ∈ *-Ring ∧
∀𝑦 ∈ 𝑉 ((𝑥 ∈ 𝑉 ↦ (𝑥 , 𝑦)) ∈ (𝑊 LMHom (ringLMod‘𝐹)) ∧ ((𝑦 , 𝑦) = (0g‘𝐹) → 𝑦 = (0g‘𝑊)) ∧ ∀𝑥 ∈ 𝑉 ((*𝑟‘𝐹)‘(𝑦 , 𝑥)) = (𝑥 , 𝑦)))) |
8 | 7 | simp3bi 1146 |
. . 3
⊢ (𝑊 ∈ PreHil →
∀𝑦 ∈ 𝑉 ((𝑥 ∈ 𝑉 ↦ (𝑥 , 𝑦)) ∈ (𝑊 LMHom (ringLMod‘𝐹)) ∧ ((𝑦 , 𝑦) = (0g‘𝐹) → 𝑦 = (0g‘𝑊)) ∧ ∀𝑥 ∈ 𝑉 ((*𝑟‘𝐹)‘(𝑦 , 𝑥)) = (𝑥 , 𝑦))) |
9 | | simp1 1135 |
. . . 4
⊢ (((𝑥 ∈ 𝑉 ↦ (𝑥 , 𝑦)) ∈ (𝑊 LMHom (ringLMod‘𝐹)) ∧ ((𝑦 , 𝑦) = (0g‘𝐹) → 𝑦 = (0g‘𝑊)) ∧ ∀𝑥 ∈ 𝑉 ((*𝑟‘𝐹)‘(𝑦 , 𝑥)) = (𝑥 , 𝑦)) → (𝑥 ∈ 𝑉 ↦ (𝑥 , 𝑦)) ∈ (𝑊 LMHom (ringLMod‘𝐹))) |
10 | 9 | ralimi 3082 |
. . 3
⊢
(∀𝑦 ∈
𝑉 ((𝑥 ∈ 𝑉 ↦ (𝑥 , 𝑦)) ∈ (𝑊 LMHom (ringLMod‘𝐹)) ∧ ((𝑦 , 𝑦) = (0g‘𝐹) → 𝑦 = (0g‘𝑊)) ∧ ∀𝑥 ∈ 𝑉 ((*𝑟‘𝐹)‘(𝑦 , 𝑥)) = (𝑥 , 𝑦)) → ∀𝑦 ∈ 𝑉 (𝑥 ∈ 𝑉 ↦ (𝑥 , 𝑦)) ∈ (𝑊 LMHom (ringLMod‘𝐹))) |
11 | 8, 10 | syl 17 |
. 2
⊢ (𝑊 ∈ PreHil →
∀𝑦 ∈ 𝑉 (𝑥 ∈ 𝑉 ↦ (𝑥 , 𝑦)) ∈ (𝑊 LMHom (ringLMod‘𝐹))) |
12 | | oveq2 7345 |
. . . . . 6
⊢ (𝑦 = 𝐴 → (𝑥 , 𝑦) = (𝑥 , 𝐴)) |
13 | 12 | mpteq2dv 5194 |
. . . . 5
⊢ (𝑦 = 𝐴 → (𝑥 ∈ 𝑉 ↦ (𝑥 , 𝑦)) = (𝑥 ∈ 𝑉 ↦ (𝑥 , 𝐴))) |
14 | | phllmhm.g |
. . . . 5
⊢ 𝐺 = (𝑥 ∈ 𝑉 ↦ (𝑥 , 𝐴)) |
15 | 13, 14 | eqtr4di 2794 |
. . . 4
⊢ (𝑦 = 𝐴 → (𝑥 ∈ 𝑉 ↦ (𝑥 , 𝑦)) = 𝐺) |
16 | 15 | eleq1d 2821 |
. . 3
⊢ (𝑦 = 𝐴 → ((𝑥 ∈ 𝑉 ↦ (𝑥 , 𝑦)) ∈ (𝑊 LMHom (ringLMod‘𝐹)) ↔ 𝐺 ∈ (𝑊 LMHom (ringLMod‘𝐹)))) |
17 | 16 | rspccva 3569 |
. 2
⊢
((∀𝑦 ∈
𝑉 (𝑥 ∈ 𝑉 ↦ (𝑥 , 𝑦)) ∈ (𝑊 LMHom (ringLMod‘𝐹)) ∧ 𝐴 ∈ 𝑉) → 𝐺 ∈ (𝑊 LMHom (ringLMod‘𝐹))) |
18 | 11, 17 | sylan 580 |
1
⊢ ((𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉) → 𝐺 ∈ (𝑊 LMHom (ringLMod‘𝐹))) |