| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ipdir | Structured version Visualization version GIF version | ||
| Description: Distributive law for inner product (right-distributivity). Equation I3 of [Ponnusamy] p. 362. (Contributed by NM, 25-Aug-2007.) (Revised by Mario Carneiro, 7-Oct-2015.) |
| Ref | Expression |
|---|---|
| phlsrng.f | ⊢ 𝐹 = (Scalar‘𝑊) |
| phllmhm.h | ⊢ , = (·𝑖‘𝑊) |
| phllmhm.v | ⊢ 𝑉 = (Base‘𝑊) |
| ipdir.g | ⊢ + = (+g‘𝑊) |
| ipdir.p | ⊢ ⨣ = (+g‘𝐹) |
| Ref | Expression |
|---|---|
| ipdir | ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → ((𝐴 + 𝐵) , 𝐶) = ((𝐴 , 𝐶) ⨣ (𝐵 , 𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | phlsrng.f | . . . . . 6 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 2 | phllmhm.h | . . . . . 6 ⊢ , = (·𝑖‘𝑊) | |
| 3 | phllmhm.v | . . . . . 6 ⊢ 𝑉 = (Base‘𝑊) | |
| 4 | eqid 2735 | . . . . . 6 ⊢ (𝑥 ∈ 𝑉 ↦ (𝑥 , 𝐶)) = (𝑥 ∈ 𝑉 ↦ (𝑥 , 𝐶)) | |
| 5 | 1, 2, 3, 4 | phllmhm 21592 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ 𝐶 ∈ 𝑉) → (𝑥 ∈ 𝑉 ↦ (𝑥 , 𝐶)) ∈ (𝑊 LMHom (ringLMod‘𝐹))) |
| 6 | 5 | 3ad2antr3 1191 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (𝑥 ∈ 𝑉 ↦ (𝑥 , 𝐶)) ∈ (𝑊 LMHom (ringLMod‘𝐹))) |
| 7 | lmghm 20989 | . . . 4 ⊢ ((𝑥 ∈ 𝑉 ↦ (𝑥 , 𝐶)) ∈ (𝑊 LMHom (ringLMod‘𝐹)) → (𝑥 ∈ 𝑉 ↦ (𝑥 , 𝐶)) ∈ (𝑊 GrpHom (ringLMod‘𝐹))) | |
| 8 | 6, 7 | syl 17 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (𝑥 ∈ 𝑉 ↦ (𝑥 , 𝐶)) ∈ (𝑊 GrpHom (ringLMod‘𝐹))) |
| 9 | simpr1 1195 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → 𝐴 ∈ 𝑉) | |
| 10 | simpr2 1196 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → 𝐵 ∈ 𝑉) | |
| 11 | ipdir.g | . . . 4 ⊢ + = (+g‘𝑊) | |
| 12 | ipdir.p | . . . . 5 ⊢ ⨣ = (+g‘𝐹) | |
| 13 | rlmplusg 21152 | . . . . 5 ⊢ (+g‘𝐹) = (+g‘(ringLMod‘𝐹)) | |
| 14 | 12, 13 | eqtri 2758 | . . . 4 ⊢ ⨣ = (+g‘(ringLMod‘𝐹)) |
| 15 | 3, 11, 14 | ghmlin 19204 | . . 3 ⊢ (((𝑥 ∈ 𝑉 ↦ (𝑥 , 𝐶)) ∈ (𝑊 GrpHom (ringLMod‘𝐹)) ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → ((𝑥 ∈ 𝑉 ↦ (𝑥 , 𝐶))‘(𝐴 + 𝐵)) = (((𝑥 ∈ 𝑉 ↦ (𝑥 , 𝐶))‘𝐴) ⨣ ((𝑥 ∈ 𝑉 ↦ (𝑥 , 𝐶))‘𝐵))) |
| 16 | 8, 9, 10, 15 | syl3anc 1373 | . 2 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → ((𝑥 ∈ 𝑉 ↦ (𝑥 , 𝐶))‘(𝐴 + 𝐵)) = (((𝑥 ∈ 𝑉 ↦ (𝑥 , 𝐶))‘𝐴) ⨣ ((𝑥 ∈ 𝑉 ↦ (𝑥 , 𝐶))‘𝐵))) |
| 17 | phllmod 21590 | . . . . 5 ⊢ (𝑊 ∈ PreHil → 𝑊 ∈ LMod) | |
| 18 | 3, 11 | lmodvacl 20832 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (𝐴 + 𝐵) ∈ 𝑉) |
| 19 | 17, 18 | syl3an1 1163 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (𝐴 + 𝐵) ∈ 𝑉) |
| 20 | 19 | 3adant3r3 1185 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (𝐴 + 𝐵) ∈ 𝑉) |
| 21 | oveq1 7412 | . . . 4 ⊢ (𝑥 = (𝐴 + 𝐵) → (𝑥 , 𝐶) = ((𝐴 + 𝐵) , 𝐶)) | |
| 22 | ovex 7438 | . . . 4 ⊢ (𝑥 , 𝐶) ∈ V | |
| 23 | 21, 4, 22 | fvmpt3i 6991 | . . 3 ⊢ ((𝐴 + 𝐵) ∈ 𝑉 → ((𝑥 ∈ 𝑉 ↦ (𝑥 , 𝐶))‘(𝐴 + 𝐵)) = ((𝐴 + 𝐵) , 𝐶)) |
| 24 | 20, 23 | syl 17 | . 2 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → ((𝑥 ∈ 𝑉 ↦ (𝑥 , 𝐶))‘(𝐴 + 𝐵)) = ((𝐴 + 𝐵) , 𝐶)) |
| 25 | oveq1 7412 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥 , 𝐶) = (𝐴 , 𝐶)) | |
| 26 | 25, 4, 22 | fvmpt3i 6991 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ((𝑥 ∈ 𝑉 ↦ (𝑥 , 𝐶))‘𝐴) = (𝐴 , 𝐶)) |
| 27 | 9, 26 | syl 17 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → ((𝑥 ∈ 𝑉 ↦ (𝑥 , 𝐶))‘𝐴) = (𝐴 , 𝐶)) |
| 28 | oveq1 7412 | . . . . 5 ⊢ (𝑥 = 𝐵 → (𝑥 , 𝐶) = (𝐵 , 𝐶)) | |
| 29 | 28, 4, 22 | fvmpt3i 6991 | . . . 4 ⊢ (𝐵 ∈ 𝑉 → ((𝑥 ∈ 𝑉 ↦ (𝑥 , 𝐶))‘𝐵) = (𝐵 , 𝐶)) |
| 30 | 10, 29 | syl 17 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → ((𝑥 ∈ 𝑉 ↦ (𝑥 , 𝐶))‘𝐵) = (𝐵 , 𝐶)) |
| 31 | 27, 30 | oveq12d 7423 | . 2 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (((𝑥 ∈ 𝑉 ↦ (𝑥 , 𝐶))‘𝐴) ⨣ ((𝑥 ∈ 𝑉 ↦ (𝑥 , 𝐶))‘𝐵)) = ((𝐴 , 𝐶) ⨣ (𝐵 , 𝐶))) |
| 32 | 16, 24, 31 | 3eqtr3d 2778 | 1 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → ((𝐴 + 𝐵) , 𝐶) = ((𝐴 , 𝐶) ⨣ (𝐵 , 𝐶))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 ↦ cmpt 5201 ‘cfv 6531 (class class class)co 7405 Basecbs 17228 +gcplusg 17271 Scalarcsca 17274 ·𝑖cip 17276 GrpHom cghm 19195 LModclmod 20817 LMHom clmhm 20977 ringLModcrglmod 21130 PreHilcphl 21584 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8719 df-map 8842 df-en 8960 df-dom 8961 df-sdom 8962 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-7 12308 df-8 12309 df-sets 17183 df-slot 17201 df-ndx 17213 df-plusg 17284 df-sca 17287 df-vsca 17288 df-ip 17289 df-mgm 18618 df-sgrp 18697 df-mnd 18713 df-grp 18919 df-ghm 19196 df-lmod 20819 df-lmhm 20980 df-lvec 21061 df-sra 21131 df-rgmod 21132 df-phl 21586 |
| This theorem is referenced by: ipdi 21600 ip2di 21601 ipsubdir 21602 phlssphl 21619 ocvlss 21632 lsmcss 21652 cphdir 25157 |
| Copyright terms: Public domain | W3C validator |