![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ipdir | Structured version Visualization version GIF version |
Description: Distributive law for inner product (right-distributivity). Equation I3 of [Ponnusamy] p. 362. (Contributed by NM, 25-Aug-2007.) (Revised by Mario Carneiro, 7-Oct-2015.) |
Ref | Expression |
---|---|
phlsrng.f | ⊢ 𝐹 = (Scalar‘𝑊) |
phllmhm.h | ⊢ , = (·𝑖‘𝑊) |
phllmhm.v | ⊢ 𝑉 = (Base‘𝑊) |
ipdir.g | ⊢ + = (+g‘𝑊) |
ipdir.p | ⊢ ⨣ = (+g‘𝐹) |
Ref | Expression |
---|---|
ipdir | ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → ((𝐴 + 𝐵) , 𝐶) = ((𝐴 , 𝐶) ⨣ (𝐵 , 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | phlsrng.f | . . . . . 6 ⊢ 𝐹 = (Scalar‘𝑊) | |
2 | phllmhm.h | . . . . . 6 ⊢ , = (·𝑖‘𝑊) | |
3 | phllmhm.v | . . . . . 6 ⊢ 𝑉 = (Base‘𝑊) | |
4 | eqid 2725 | . . . . . 6 ⊢ (𝑥 ∈ 𝑉 ↦ (𝑥 , 𝐶)) = (𝑥 ∈ 𝑉 ↦ (𝑥 , 𝐶)) | |
5 | 1, 2, 3, 4 | phllmhm 21581 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ 𝐶 ∈ 𝑉) → (𝑥 ∈ 𝑉 ↦ (𝑥 , 𝐶)) ∈ (𝑊 LMHom (ringLMod‘𝐹))) |
6 | 5 | 3ad2antr3 1187 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (𝑥 ∈ 𝑉 ↦ (𝑥 , 𝐶)) ∈ (𝑊 LMHom (ringLMod‘𝐹))) |
7 | lmghm 20928 | . . . 4 ⊢ ((𝑥 ∈ 𝑉 ↦ (𝑥 , 𝐶)) ∈ (𝑊 LMHom (ringLMod‘𝐹)) → (𝑥 ∈ 𝑉 ↦ (𝑥 , 𝐶)) ∈ (𝑊 GrpHom (ringLMod‘𝐹))) | |
8 | 6, 7 | syl 17 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (𝑥 ∈ 𝑉 ↦ (𝑥 , 𝐶)) ∈ (𝑊 GrpHom (ringLMod‘𝐹))) |
9 | simpr1 1191 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → 𝐴 ∈ 𝑉) | |
10 | simpr2 1192 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → 𝐵 ∈ 𝑉) | |
11 | ipdir.g | . . . 4 ⊢ + = (+g‘𝑊) | |
12 | ipdir.p | . . . . 5 ⊢ ⨣ = (+g‘𝐹) | |
13 | rlmplusg 21099 | . . . . 5 ⊢ (+g‘𝐹) = (+g‘(ringLMod‘𝐹)) | |
14 | 12, 13 | eqtri 2753 | . . . 4 ⊢ ⨣ = (+g‘(ringLMod‘𝐹)) |
15 | 3, 11, 14 | ghmlin 19184 | . . 3 ⊢ (((𝑥 ∈ 𝑉 ↦ (𝑥 , 𝐶)) ∈ (𝑊 GrpHom (ringLMod‘𝐹)) ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → ((𝑥 ∈ 𝑉 ↦ (𝑥 , 𝐶))‘(𝐴 + 𝐵)) = (((𝑥 ∈ 𝑉 ↦ (𝑥 , 𝐶))‘𝐴) ⨣ ((𝑥 ∈ 𝑉 ↦ (𝑥 , 𝐶))‘𝐵))) |
16 | 8, 9, 10, 15 | syl3anc 1368 | . 2 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → ((𝑥 ∈ 𝑉 ↦ (𝑥 , 𝐶))‘(𝐴 + 𝐵)) = (((𝑥 ∈ 𝑉 ↦ (𝑥 , 𝐶))‘𝐴) ⨣ ((𝑥 ∈ 𝑉 ↦ (𝑥 , 𝐶))‘𝐵))) |
17 | phllmod 21579 | . . . . 5 ⊢ (𝑊 ∈ PreHil → 𝑊 ∈ LMod) | |
18 | 3, 11 | lmodvacl 20770 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (𝐴 + 𝐵) ∈ 𝑉) |
19 | 17, 18 | syl3an1 1160 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (𝐴 + 𝐵) ∈ 𝑉) |
20 | 19 | 3adant3r3 1181 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (𝐴 + 𝐵) ∈ 𝑉) |
21 | oveq1 7426 | . . . 4 ⊢ (𝑥 = (𝐴 + 𝐵) → (𝑥 , 𝐶) = ((𝐴 + 𝐵) , 𝐶)) | |
22 | ovex 7452 | . . . 4 ⊢ (𝑥 , 𝐶) ∈ V | |
23 | 21, 4, 22 | fvmpt3i 7009 | . . 3 ⊢ ((𝐴 + 𝐵) ∈ 𝑉 → ((𝑥 ∈ 𝑉 ↦ (𝑥 , 𝐶))‘(𝐴 + 𝐵)) = ((𝐴 + 𝐵) , 𝐶)) |
24 | 20, 23 | syl 17 | . 2 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → ((𝑥 ∈ 𝑉 ↦ (𝑥 , 𝐶))‘(𝐴 + 𝐵)) = ((𝐴 + 𝐵) , 𝐶)) |
25 | oveq1 7426 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥 , 𝐶) = (𝐴 , 𝐶)) | |
26 | 25, 4, 22 | fvmpt3i 7009 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ((𝑥 ∈ 𝑉 ↦ (𝑥 , 𝐶))‘𝐴) = (𝐴 , 𝐶)) |
27 | 9, 26 | syl 17 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → ((𝑥 ∈ 𝑉 ↦ (𝑥 , 𝐶))‘𝐴) = (𝐴 , 𝐶)) |
28 | oveq1 7426 | . . . . 5 ⊢ (𝑥 = 𝐵 → (𝑥 , 𝐶) = (𝐵 , 𝐶)) | |
29 | 28, 4, 22 | fvmpt3i 7009 | . . . 4 ⊢ (𝐵 ∈ 𝑉 → ((𝑥 ∈ 𝑉 ↦ (𝑥 , 𝐶))‘𝐵) = (𝐵 , 𝐶)) |
30 | 10, 29 | syl 17 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → ((𝑥 ∈ 𝑉 ↦ (𝑥 , 𝐶))‘𝐵) = (𝐵 , 𝐶)) |
31 | 27, 30 | oveq12d 7437 | . 2 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (((𝑥 ∈ 𝑉 ↦ (𝑥 , 𝐶))‘𝐴) ⨣ ((𝑥 ∈ 𝑉 ↦ (𝑥 , 𝐶))‘𝐵)) = ((𝐴 , 𝐶) ⨣ (𝐵 , 𝐶))) |
32 | 16, 24, 31 | 3eqtr3d 2773 | 1 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → ((𝐴 + 𝐵) , 𝐶) = ((𝐴 , 𝐶) ⨣ (𝐵 , 𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ↦ cmpt 5232 ‘cfv 6549 (class class class)co 7419 Basecbs 17183 +gcplusg 17236 Scalarcsca 17239 ·𝑖cip 17241 GrpHom cghm 19175 LModclmod 20755 LMHom clmhm 20916 ringLModcrglmod 21069 PreHilcphl 21573 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-cnex 11196 ax-resscn 11197 ax-1cn 11198 ax-icn 11199 ax-addcl 11200 ax-addrcl 11201 ax-mulcl 11202 ax-mulrcl 11203 ax-mulcom 11204 ax-addass 11205 ax-mulass 11206 ax-distr 11207 ax-i2m1 11208 ax-1ne0 11209 ax-1rid 11210 ax-rnegex 11211 ax-rrecex 11212 ax-cnre 11213 ax-pre-lttri 11214 ax-pre-lttrn 11215 ax-pre-ltadd 11216 ax-pre-mulgt0 11217 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6307 df-ord 6374 df-on 6375 df-lim 6376 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-riota 7375 df-ov 7422 df-oprab 7423 df-mpo 7424 df-om 7872 df-1st 7994 df-2nd 7995 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-er 8725 df-map 8847 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11282 df-mnf 11283 df-xr 11284 df-ltxr 11285 df-le 11286 df-sub 11478 df-neg 11479 df-nn 12246 df-2 12308 df-3 12309 df-4 12310 df-5 12311 df-6 12312 df-7 12313 df-8 12314 df-sets 17136 df-slot 17154 df-ndx 17166 df-plusg 17249 df-sca 17252 df-vsca 17253 df-ip 17254 df-mgm 18603 df-sgrp 18682 df-mnd 18698 df-grp 18901 df-ghm 19176 df-lmod 20757 df-lmhm 20919 df-lvec 21000 df-sra 21070 df-rgmod 21071 df-phl 21575 |
This theorem is referenced by: ipdi 21589 ip2di 21590 ipsubdir 21591 phlssphl 21608 ocvlss 21621 lsmcss 21641 cphdir 25177 |
Copyright terms: Public domain | W3C validator |