MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ipdir Structured version   Visualization version   GIF version

Theorem ipdir 21548
Description: Distributive law for inner product (right-distributivity). Equation I3 of [Ponnusamy] p. 362. (Contributed by NM, 25-Aug-2007.) (Revised by Mario Carneiro, 7-Oct-2015.)
Hypotheses
Ref Expression
phlsrng.f 𝐹 = (Scalar‘𝑊)
phllmhm.h , = (·𝑖𝑊)
phllmhm.v 𝑉 = (Base‘𝑊)
ipdir.g + = (+g𝑊)
ipdir.p = (+g𝐹)
Assertion
Ref Expression
ipdir ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → ((𝐴 + 𝐵) , 𝐶) = ((𝐴 , 𝐶) (𝐵 , 𝐶)))

Proof of Theorem ipdir
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 phlsrng.f . . . . . 6 𝐹 = (Scalar‘𝑊)
2 phllmhm.h . . . . . 6 , = (·𝑖𝑊)
3 phllmhm.v . . . . . 6 𝑉 = (Base‘𝑊)
4 eqid 2729 . . . . . 6 (𝑥𝑉 ↦ (𝑥 , 𝐶)) = (𝑥𝑉 ↦ (𝑥 , 𝐶))
51, 2, 3, 4phllmhm 21541 . . . . 5 ((𝑊 ∈ PreHil ∧ 𝐶𝑉) → (𝑥𝑉 ↦ (𝑥 , 𝐶)) ∈ (𝑊 LMHom (ringLMod‘𝐹)))
653ad2antr3 1191 . . . 4 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → (𝑥𝑉 ↦ (𝑥 , 𝐶)) ∈ (𝑊 LMHom (ringLMod‘𝐹)))
7 lmghm 20938 . . . 4 ((𝑥𝑉 ↦ (𝑥 , 𝐶)) ∈ (𝑊 LMHom (ringLMod‘𝐹)) → (𝑥𝑉 ↦ (𝑥 , 𝐶)) ∈ (𝑊 GrpHom (ringLMod‘𝐹)))
86, 7syl 17 . . 3 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → (𝑥𝑉 ↦ (𝑥 , 𝐶)) ∈ (𝑊 GrpHom (ringLMod‘𝐹)))
9 simpr1 1195 . . 3 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → 𝐴𝑉)
10 simpr2 1196 . . 3 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → 𝐵𝑉)
11 ipdir.g . . . 4 + = (+g𝑊)
12 ipdir.p . . . . 5 = (+g𝐹)
13 rlmplusg 21101 . . . . 5 (+g𝐹) = (+g‘(ringLMod‘𝐹))
1412, 13eqtri 2752 . . . 4 = (+g‘(ringLMod‘𝐹))
153, 11, 14ghmlin 19153 . . 3 (((𝑥𝑉 ↦ (𝑥 , 𝐶)) ∈ (𝑊 GrpHom (ringLMod‘𝐹)) ∧ 𝐴𝑉𝐵𝑉) → ((𝑥𝑉 ↦ (𝑥 , 𝐶))‘(𝐴 + 𝐵)) = (((𝑥𝑉 ↦ (𝑥 , 𝐶))‘𝐴) ((𝑥𝑉 ↦ (𝑥 , 𝐶))‘𝐵)))
168, 9, 10, 15syl3anc 1373 . 2 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → ((𝑥𝑉 ↦ (𝑥 , 𝐶))‘(𝐴 + 𝐵)) = (((𝑥𝑉 ↦ (𝑥 , 𝐶))‘𝐴) ((𝑥𝑉 ↦ (𝑥 , 𝐶))‘𝐵)))
17 phllmod 21539 . . . . 5 (𝑊 ∈ PreHil → 𝑊 ∈ LMod)
183, 11lmodvacl 20781 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐴𝑉𝐵𝑉) → (𝐴 + 𝐵) ∈ 𝑉)
1917, 18syl3an1 1163 . . . 4 ((𝑊 ∈ PreHil ∧ 𝐴𝑉𝐵𝑉) → (𝐴 + 𝐵) ∈ 𝑉)
20193adant3r3 1185 . . 3 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → (𝐴 + 𝐵) ∈ 𝑉)
21 oveq1 7394 . . . 4 (𝑥 = (𝐴 + 𝐵) → (𝑥 , 𝐶) = ((𝐴 + 𝐵) , 𝐶))
22 ovex 7420 . . . 4 (𝑥 , 𝐶) ∈ V
2321, 4, 22fvmpt3i 6973 . . 3 ((𝐴 + 𝐵) ∈ 𝑉 → ((𝑥𝑉 ↦ (𝑥 , 𝐶))‘(𝐴 + 𝐵)) = ((𝐴 + 𝐵) , 𝐶))
2420, 23syl 17 . 2 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → ((𝑥𝑉 ↦ (𝑥 , 𝐶))‘(𝐴 + 𝐵)) = ((𝐴 + 𝐵) , 𝐶))
25 oveq1 7394 . . . . 5 (𝑥 = 𝐴 → (𝑥 , 𝐶) = (𝐴 , 𝐶))
2625, 4, 22fvmpt3i 6973 . . . 4 (𝐴𝑉 → ((𝑥𝑉 ↦ (𝑥 , 𝐶))‘𝐴) = (𝐴 , 𝐶))
279, 26syl 17 . . 3 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → ((𝑥𝑉 ↦ (𝑥 , 𝐶))‘𝐴) = (𝐴 , 𝐶))
28 oveq1 7394 . . . . 5 (𝑥 = 𝐵 → (𝑥 , 𝐶) = (𝐵 , 𝐶))
2928, 4, 22fvmpt3i 6973 . . . 4 (𝐵𝑉 → ((𝑥𝑉 ↦ (𝑥 , 𝐶))‘𝐵) = (𝐵 , 𝐶))
3010, 29syl 17 . . 3 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → ((𝑥𝑉 ↦ (𝑥 , 𝐶))‘𝐵) = (𝐵 , 𝐶))
3127, 30oveq12d 7405 . 2 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → (((𝑥𝑉 ↦ (𝑥 , 𝐶))‘𝐴) ((𝑥𝑉 ↦ (𝑥 , 𝐶))‘𝐵)) = ((𝐴 , 𝐶) (𝐵 , 𝐶)))
3216, 24, 313eqtr3d 2772 1 ((𝑊 ∈ PreHil ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → ((𝐴 + 𝐵) , 𝐶) = ((𝐴 , 𝐶) (𝐵 , 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  cmpt 5188  cfv 6511  (class class class)co 7387  Basecbs 17179  +gcplusg 17220  Scalarcsca 17223  ·𝑖cip 17225   GrpHom cghm 19144  LModclmod 20766   LMHom clmhm 20926  ringLModcrglmod 21079  PreHilcphl 21533
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-sets 17134  df-slot 17152  df-ndx 17164  df-plusg 17233  df-sca 17236  df-vsca 17237  df-ip 17238  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-grp 18868  df-ghm 19145  df-lmod 20768  df-lmhm 20929  df-lvec 21010  df-sra 21080  df-rgmod 21081  df-phl 21535
This theorem is referenced by:  ipdi  21549  ip2di  21550  ipsubdir  21551  phlssphl  21568  ocvlss  21581  lsmcss  21601  cphdir  25105
  Copyright terms: Public domain W3C validator