| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ipdir | Structured version Visualization version GIF version | ||
| Description: Distributive law for inner product (right-distributivity). Equation I3 of [Ponnusamy] p. 362. (Contributed by NM, 25-Aug-2007.) (Revised by Mario Carneiro, 7-Oct-2015.) |
| Ref | Expression |
|---|---|
| phlsrng.f | ⊢ 𝐹 = (Scalar‘𝑊) |
| phllmhm.h | ⊢ , = (·𝑖‘𝑊) |
| phllmhm.v | ⊢ 𝑉 = (Base‘𝑊) |
| ipdir.g | ⊢ + = (+g‘𝑊) |
| ipdir.p | ⊢ ⨣ = (+g‘𝐹) |
| Ref | Expression |
|---|---|
| ipdir | ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → ((𝐴 + 𝐵) , 𝐶) = ((𝐴 , 𝐶) ⨣ (𝐵 , 𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | phlsrng.f | . . . . . 6 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 2 | phllmhm.h | . . . . . 6 ⊢ , = (·𝑖‘𝑊) | |
| 3 | phllmhm.v | . . . . . 6 ⊢ 𝑉 = (Base‘𝑊) | |
| 4 | eqid 2729 | . . . . . 6 ⊢ (𝑥 ∈ 𝑉 ↦ (𝑥 , 𝐶)) = (𝑥 ∈ 𝑉 ↦ (𝑥 , 𝐶)) | |
| 5 | 1, 2, 3, 4 | phllmhm 21517 | . . . . 5 ⊢ ((𝑊 ∈ PreHil ∧ 𝐶 ∈ 𝑉) → (𝑥 ∈ 𝑉 ↦ (𝑥 , 𝐶)) ∈ (𝑊 LMHom (ringLMod‘𝐹))) |
| 6 | 5 | 3ad2antr3 1191 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (𝑥 ∈ 𝑉 ↦ (𝑥 , 𝐶)) ∈ (𝑊 LMHom (ringLMod‘𝐹))) |
| 7 | lmghm 20914 | . . . 4 ⊢ ((𝑥 ∈ 𝑉 ↦ (𝑥 , 𝐶)) ∈ (𝑊 LMHom (ringLMod‘𝐹)) → (𝑥 ∈ 𝑉 ↦ (𝑥 , 𝐶)) ∈ (𝑊 GrpHom (ringLMod‘𝐹))) | |
| 8 | 6, 7 | syl 17 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (𝑥 ∈ 𝑉 ↦ (𝑥 , 𝐶)) ∈ (𝑊 GrpHom (ringLMod‘𝐹))) |
| 9 | simpr1 1195 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → 𝐴 ∈ 𝑉) | |
| 10 | simpr2 1196 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → 𝐵 ∈ 𝑉) | |
| 11 | ipdir.g | . . . 4 ⊢ + = (+g‘𝑊) | |
| 12 | ipdir.p | . . . . 5 ⊢ ⨣ = (+g‘𝐹) | |
| 13 | rlmplusg 21077 | . . . . 5 ⊢ (+g‘𝐹) = (+g‘(ringLMod‘𝐹)) | |
| 14 | 12, 13 | eqtri 2752 | . . . 4 ⊢ ⨣ = (+g‘(ringLMod‘𝐹)) |
| 15 | 3, 11, 14 | ghmlin 19129 | . . 3 ⊢ (((𝑥 ∈ 𝑉 ↦ (𝑥 , 𝐶)) ∈ (𝑊 GrpHom (ringLMod‘𝐹)) ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → ((𝑥 ∈ 𝑉 ↦ (𝑥 , 𝐶))‘(𝐴 + 𝐵)) = (((𝑥 ∈ 𝑉 ↦ (𝑥 , 𝐶))‘𝐴) ⨣ ((𝑥 ∈ 𝑉 ↦ (𝑥 , 𝐶))‘𝐵))) |
| 16 | 8, 9, 10, 15 | syl3anc 1373 | . 2 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → ((𝑥 ∈ 𝑉 ↦ (𝑥 , 𝐶))‘(𝐴 + 𝐵)) = (((𝑥 ∈ 𝑉 ↦ (𝑥 , 𝐶))‘𝐴) ⨣ ((𝑥 ∈ 𝑉 ↦ (𝑥 , 𝐶))‘𝐵))) |
| 17 | phllmod 21515 | . . . . 5 ⊢ (𝑊 ∈ PreHil → 𝑊 ∈ LMod) | |
| 18 | 3, 11 | lmodvacl 20757 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (𝐴 + 𝐵) ∈ 𝑉) |
| 19 | 17, 18 | syl3an1 1163 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (𝐴 + 𝐵) ∈ 𝑉) |
| 20 | 19 | 3adant3r3 1185 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (𝐴 + 𝐵) ∈ 𝑉) |
| 21 | oveq1 7376 | . . . 4 ⊢ (𝑥 = (𝐴 + 𝐵) → (𝑥 , 𝐶) = ((𝐴 + 𝐵) , 𝐶)) | |
| 22 | ovex 7402 | . . . 4 ⊢ (𝑥 , 𝐶) ∈ V | |
| 23 | 21, 4, 22 | fvmpt3i 6955 | . . 3 ⊢ ((𝐴 + 𝐵) ∈ 𝑉 → ((𝑥 ∈ 𝑉 ↦ (𝑥 , 𝐶))‘(𝐴 + 𝐵)) = ((𝐴 + 𝐵) , 𝐶)) |
| 24 | 20, 23 | syl 17 | . 2 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → ((𝑥 ∈ 𝑉 ↦ (𝑥 , 𝐶))‘(𝐴 + 𝐵)) = ((𝐴 + 𝐵) , 𝐶)) |
| 25 | oveq1 7376 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥 , 𝐶) = (𝐴 , 𝐶)) | |
| 26 | 25, 4, 22 | fvmpt3i 6955 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ((𝑥 ∈ 𝑉 ↦ (𝑥 , 𝐶))‘𝐴) = (𝐴 , 𝐶)) |
| 27 | 9, 26 | syl 17 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → ((𝑥 ∈ 𝑉 ↦ (𝑥 , 𝐶))‘𝐴) = (𝐴 , 𝐶)) |
| 28 | oveq1 7376 | . . . . 5 ⊢ (𝑥 = 𝐵 → (𝑥 , 𝐶) = (𝐵 , 𝐶)) | |
| 29 | 28, 4, 22 | fvmpt3i 6955 | . . . 4 ⊢ (𝐵 ∈ 𝑉 → ((𝑥 ∈ 𝑉 ↦ (𝑥 , 𝐶))‘𝐵) = (𝐵 , 𝐶)) |
| 30 | 10, 29 | syl 17 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → ((𝑥 ∈ 𝑉 ↦ (𝑥 , 𝐶))‘𝐵) = (𝐵 , 𝐶)) |
| 31 | 27, 30 | oveq12d 7387 | . 2 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (((𝑥 ∈ 𝑉 ↦ (𝑥 , 𝐶))‘𝐴) ⨣ ((𝑥 ∈ 𝑉 ↦ (𝑥 , 𝐶))‘𝐵)) = ((𝐴 , 𝐶) ⨣ (𝐵 , 𝐶))) |
| 32 | 16, 24, 31 | 3eqtr3d 2772 | 1 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → ((𝐴 + 𝐵) , 𝐶) = ((𝐴 , 𝐶) ⨣ (𝐵 , 𝐶))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ↦ cmpt 5183 ‘cfv 6499 (class class class)co 7369 Basecbs 17155 +gcplusg 17196 Scalarcsca 17199 ·𝑖cip 17201 GrpHom cghm 19120 LModclmod 20742 LMHom clmhm 20902 ringLModcrglmod 21055 PreHilcphl 21509 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-map 8778 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-sets 17110 df-slot 17128 df-ndx 17140 df-plusg 17209 df-sca 17212 df-vsca 17213 df-ip 17214 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-grp 18844 df-ghm 19121 df-lmod 20744 df-lmhm 20905 df-lvec 20986 df-sra 21056 df-rgmod 21057 df-phl 21511 |
| This theorem is referenced by: ipdi 21525 ip2di 21526 ipsubdir 21527 phlssphl 21544 ocvlss 21557 lsmcss 21577 cphdir 25081 |
| Copyright terms: Public domain | W3C validator |