![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ip0l | Structured version Visualization version GIF version |
Description: Inner product with a zero first argument. Part of proof of Theorem 6.44 of [Ponnusamy] p. 361. (Contributed by NM, 5-Feb-2007.) (Revised by Mario Carneiro, 7-Oct-2015.) |
Ref | Expression |
---|---|
phlsrng.f | β’ πΉ = (Scalarβπ) |
phllmhm.h | β’ , = (Β·πβπ) |
phllmhm.v | β’ π = (Baseβπ) |
ip0l.z | β’ π = (0gβπΉ) |
ip0l.o | β’ 0 = (0gβπ) |
Ref | Expression |
---|---|
ip0l | β’ ((π β PreHil β§ π΄ β π) β ( 0 , π΄) = π) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | phllmod 21183 | . . . . 5 β’ (π β PreHil β π β LMod) | |
2 | lmodgrp 20478 | . . . . 5 β’ (π β LMod β π β Grp) | |
3 | phllmhm.v | . . . . . 6 β’ π = (Baseβπ) | |
4 | ip0l.o | . . . . . 6 β’ 0 = (0gβπ) | |
5 | 3, 4 | grpidcl 18850 | . . . . 5 β’ (π β Grp β 0 β π) |
6 | 1, 2, 5 | 3syl 18 | . . . 4 β’ (π β PreHil β 0 β π) |
7 | 6 | adantr 482 | . . 3 β’ ((π β PreHil β§ π΄ β π) β 0 β π) |
8 | oveq1 7416 | . . . 4 β’ (π₯ = 0 β (π₯ , π΄) = ( 0 , π΄)) | |
9 | eqid 2733 | . . . 4 β’ (π₯ β π β¦ (π₯ , π΄)) = (π₯ β π β¦ (π₯ , π΄)) | |
10 | ovex 7442 | . . . 4 β’ ( 0 , π΄) β V | |
11 | 8, 9, 10 | fvmpt 6999 | . . 3 β’ ( 0 β π β ((π₯ β π β¦ (π₯ , π΄))β 0 ) = ( 0 , π΄)) |
12 | 7, 11 | syl 17 | . 2 β’ ((π β PreHil β§ π΄ β π) β ((π₯ β π β¦ (π₯ , π΄))β 0 ) = ( 0 , π΄)) |
13 | phlsrng.f | . . . 4 β’ πΉ = (Scalarβπ) | |
14 | phllmhm.h | . . . 4 β’ , = (Β·πβπ) | |
15 | 13, 14, 3, 9 | phllmhm 21185 | . . 3 β’ ((π β PreHil β§ π΄ β π) β (π₯ β π β¦ (π₯ , π΄)) β (π LMHom (ringLModβπΉ))) |
16 | lmghm 20642 | . . 3 β’ ((π₯ β π β¦ (π₯ , π΄)) β (π LMHom (ringLModβπΉ)) β (π₯ β π β¦ (π₯ , π΄)) β (π GrpHom (ringLModβπΉ))) | |
17 | ip0l.z | . . . . 5 β’ π = (0gβπΉ) | |
18 | rlm0 20819 | . . . . 5 β’ (0gβπΉ) = (0gβ(ringLModβπΉ)) | |
19 | 17, 18 | eqtri 2761 | . . . 4 β’ π = (0gβ(ringLModβπΉ)) |
20 | 4, 19 | ghmid 19098 | . . 3 β’ ((π₯ β π β¦ (π₯ , π΄)) β (π GrpHom (ringLModβπΉ)) β ((π₯ β π β¦ (π₯ , π΄))β 0 ) = π) |
21 | 15, 16, 20 | 3syl 18 | . 2 β’ ((π β PreHil β§ π΄ β π) β ((π₯ β π β¦ (π₯ , π΄))β 0 ) = π) |
22 | 12, 21 | eqtr3d 2775 | 1 β’ ((π β PreHil β§ π΄ β π) β ( 0 , π΄) = π) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 397 = wceq 1542 β wcel 2107 β¦ cmpt 5232 βcfv 6544 (class class class)co 7409 Basecbs 17144 Scalarcsca 17200 Β·πcip 17202 0gc0g 17385 Grpcgrp 18819 GrpHom cghm 19089 LModclmod 20471 LMHom clmhm 20630 ringLModcrglmod 20782 PreHilcphl 21177 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-cnex 11166 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 ax-pre-mulgt0 11187 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-om 7856 df-2nd 7976 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-er 8703 df-en 8940 df-dom 8941 df-sdom 8942 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-sub 11446 df-neg 11447 df-nn 12213 df-2 12275 df-3 12276 df-4 12277 df-5 12278 df-6 12279 df-7 12280 df-8 12281 df-sets 17097 df-slot 17115 df-ndx 17127 df-base 17145 df-plusg 17210 df-sca 17213 df-vsca 17214 df-ip 17215 df-0g 17387 df-mgm 18561 df-sgrp 18610 df-mnd 18626 df-grp 18822 df-ghm 19090 df-lmod 20473 df-lmhm 20633 df-lvec 20714 df-sra 20785 df-rgmod 20786 df-phl 21179 |
This theorem is referenced by: ip0r 21190 ipeq0 21191 ocvlss 21225 cphip0l 24719 |
Copyright terms: Public domain | W3C validator |