Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ip0l | Structured version Visualization version GIF version |
Description: Inner product with a zero first argument. Part of proof of Theorem 6.44 of [Ponnusamy] p. 361. (Contributed by NM, 5-Feb-2007.) (Revised by Mario Carneiro, 7-Oct-2015.) |
Ref | Expression |
---|---|
phlsrng.f | ⊢ 𝐹 = (Scalar‘𝑊) |
phllmhm.h | ⊢ , = (·𝑖‘𝑊) |
phllmhm.v | ⊢ 𝑉 = (Base‘𝑊) |
ip0l.z | ⊢ 𝑍 = (0g‘𝐹) |
ip0l.o | ⊢ 0 = (0g‘𝑊) |
Ref | Expression |
---|---|
ip0l | ⊢ ((𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉) → ( 0 , 𝐴) = 𝑍) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | phllmod 20779 | . . . . 5 ⊢ (𝑊 ∈ PreHil → 𝑊 ∈ LMod) | |
2 | lmodgrp 20074 | . . . . 5 ⊢ (𝑊 ∈ LMod → 𝑊 ∈ Grp) | |
3 | phllmhm.v | . . . . . 6 ⊢ 𝑉 = (Base‘𝑊) | |
4 | ip0l.o | . . . . . 6 ⊢ 0 = (0g‘𝑊) | |
5 | 3, 4 | grpidcl 18551 | . . . . 5 ⊢ (𝑊 ∈ Grp → 0 ∈ 𝑉) |
6 | 1, 2, 5 | 3syl 18 | . . . 4 ⊢ (𝑊 ∈ PreHil → 0 ∈ 𝑉) |
7 | 6 | adantr 480 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉) → 0 ∈ 𝑉) |
8 | oveq1 7267 | . . . 4 ⊢ (𝑥 = 0 → (𝑥 , 𝐴) = ( 0 , 𝐴)) | |
9 | eqid 2737 | . . . 4 ⊢ (𝑥 ∈ 𝑉 ↦ (𝑥 , 𝐴)) = (𝑥 ∈ 𝑉 ↦ (𝑥 , 𝐴)) | |
10 | ovex 7293 | . . . 4 ⊢ ( 0 , 𝐴) ∈ V | |
11 | 8, 9, 10 | fvmpt 6862 | . . 3 ⊢ ( 0 ∈ 𝑉 → ((𝑥 ∈ 𝑉 ↦ (𝑥 , 𝐴))‘ 0 ) = ( 0 , 𝐴)) |
12 | 7, 11 | syl 17 | . 2 ⊢ ((𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉) → ((𝑥 ∈ 𝑉 ↦ (𝑥 , 𝐴))‘ 0 ) = ( 0 , 𝐴)) |
13 | phlsrng.f | . . . 4 ⊢ 𝐹 = (Scalar‘𝑊) | |
14 | phllmhm.h | . . . 4 ⊢ , = (·𝑖‘𝑊) | |
15 | 13, 14, 3, 9 | phllmhm 20781 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉) → (𝑥 ∈ 𝑉 ↦ (𝑥 , 𝐴)) ∈ (𝑊 LMHom (ringLMod‘𝐹))) |
16 | lmghm 20237 | . . 3 ⊢ ((𝑥 ∈ 𝑉 ↦ (𝑥 , 𝐴)) ∈ (𝑊 LMHom (ringLMod‘𝐹)) → (𝑥 ∈ 𝑉 ↦ (𝑥 , 𝐴)) ∈ (𝑊 GrpHom (ringLMod‘𝐹))) | |
17 | ip0l.z | . . . . 5 ⊢ 𝑍 = (0g‘𝐹) | |
18 | rlm0 20411 | . . . . 5 ⊢ (0g‘𝐹) = (0g‘(ringLMod‘𝐹)) | |
19 | 17, 18 | eqtri 2765 | . . . 4 ⊢ 𝑍 = (0g‘(ringLMod‘𝐹)) |
20 | 4, 19 | ghmid 18784 | . . 3 ⊢ ((𝑥 ∈ 𝑉 ↦ (𝑥 , 𝐴)) ∈ (𝑊 GrpHom (ringLMod‘𝐹)) → ((𝑥 ∈ 𝑉 ↦ (𝑥 , 𝐴))‘ 0 ) = 𝑍) |
21 | 15, 16, 20 | 3syl 18 | . 2 ⊢ ((𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉) → ((𝑥 ∈ 𝑉 ↦ (𝑥 , 𝐴))‘ 0 ) = 𝑍) |
22 | 12, 21 | eqtr3d 2779 | 1 ⊢ ((𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉) → ( 0 , 𝐴) = 𝑍) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ↦ cmpt 5158 ‘cfv 6423 (class class class)co 7260 Basecbs 16856 Scalarcsca 16909 ·𝑖cip 16911 0gc0g 17094 Grpcgrp 18521 GrpHom cghm 18775 LModclmod 20067 LMHom clmhm 20225 ringLModcrglmod 20375 PreHilcphl 20773 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 ax-rep 5210 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7571 ax-cnex 10874 ax-resscn 10875 ax-1cn 10876 ax-icn 10877 ax-addcl 10878 ax-addrcl 10879 ax-mulcl 10880 ax-mulrcl 10881 ax-mulcom 10882 ax-addass 10883 ax-mulass 10884 ax-distr 10885 ax-i2m1 10886 ax-1ne0 10887 ax-1rid 10888 ax-rnegex 10889 ax-rrecex 10890 ax-cnre 10891 ax-pre-lttri 10892 ax-pre-lttrn 10893 ax-pre-ltadd 10894 ax-pre-mulgt0 10895 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3067 df-rex 3068 df-reu 3069 df-rmo 3070 df-rab 3071 df-v 3429 df-sbc 3717 df-csb 3834 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-pss 3907 df-nul 4259 df-if 4462 df-pw 4537 df-sn 4564 df-pr 4566 df-tp 4568 df-op 4570 df-uni 4842 df-iun 4928 df-br 5076 df-opab 5138 df-mpt 5159 df-tr 5193 df-id 5485 df-eprel 5491 df-po 5499 df-so 5500 df-fr 5540 df-we 5542 df-xp 5591 df-rel 5592 df-cnv 5593 df-co 5594 df-dm 5595 df-rn 5596 df-res 5597 df-ima 5598 df-pred 6196 df-ord 6259 df-on 6260 df-lim 6261 df-suc 6262 df-iota 6381 df-fun 6425 df-fn 6426 df-f 6427 df-f1 6428 df-fo 6429 df-f1o 6430 df-fv 6431 df-riota 7217 df-ov 7263 df-oprab 7264 df-mpo 7265 df-om 7693 df-2nd 7810 df-frecs 8073 df-wrecs 8104 df-recs 8178 df-rdg 8217 df-er 8461 df-en 8697 df-dom 8698 df-sdom 8699 df-pnf 10958 df-mnf 10959 df-xr 10960 df-ltxr 10961 df-le 10962 df-sub 11153 df-neg 11154 df-nn 11920 df-2 11982 df-3 11983 df-4 11984 df-5 11985 df-6 11986 df-7 11987 df-8 11988 df-sets 16809 df-slot 16827 df-ndx 16839 df-base 16857 df-plusg 16919 df-sca 16922 df-vsca 16923 df-ip 16924 df-0g 17096 df-mgm 18270 df-sgrp 18319 df-mnd 18330 df-grp 18524 df-ghm 18776 df-lmod 20069 df-lmhm 20228 df-lvec 20309 df-sra 20378 df-rgmod 20379 df-phl 20775 |
This theorem is referenced by: ip0r 20786 ipeq0 20787 ocvlss 20821 cphip0l 24309 |
Copyright terms: Public domain | W3C validator |