| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ip0l | Structured version Visualization version GIF version | ||
| Description: Inner product with a zero first argument. Part of proof of Theorem 6.44 of [Ponnusamy] p. 361. (Contributed by NM, 5-Feb-2007.) (Revised by Mario Carneiro, 7-Oct-2015.) |
| Ref | Expression |
|---|---|
| phlsrng.f | ⊢ 𝐹 = (Scalar‘𝑊) |
| phllmhm.h | ⊢ , = (·𝑖‘𝑊) |
| phllmhm.v | ⊢ 𝑉 = (Base‘𝑊) |
| ip0l.z | ⊢ 𝑍 = (0g‘𝐹) |
| ip0l.o | ⊢ 0 = (0g‘𝑊) |
| Ref | Expression |
|---|---|
| ip0l | ⊢ ((𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉) → ( 0 , 𝐴) = 𝑍) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | phllmod 21556 | . . . . 5 ⊢ (𝑊 ∈ PreHil → 𝑊 ∈ LMod) | |
| 2 | lmodgrp 20789 | . . . . 5 ⊢ (𝑊 ∈ LMod → 𝑊 ∈ Grp) | |
| 3 | phllmhm.v | . . . . . 6 ⊢ 𝑉 = (Base‘𝑊) | |
| 4 | ip0l.o | . . . . . 6 ⊢ 0 = (0g‘𝑊) | |
| 5 | 3, 4 | grpidcl 18863 | . . . . 5 ⊢ (𝑊 ∈ Grp → 0 ∈ 𝑉) |
| 6 | 1, 2, 5 | 3syl 18 | . . . 4 ⊢ (𝑊 ∈ PreHil → 0 ∈ 𝑉) |
| 7 | 6 | adantr 480 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉) → 0 ∈ 𝑉) |
| 8 | oveq1 7360 | . . . 4 ⊢ (𝑥 = 0 → (𝑥 , 𝐴) = ( 0 , 𝐴)) | |
| 9 | eqid 2729 | . . . 4 ⊢ (𝑥 ∈ 𝑉 ↦ (𝑥 , 𝐴)) = (𝑥 ∈ 𝑉 ↦ (𝑥 , 𝐴)) | |
| 10 | ovex 7386 | . . . 4 ⊢ ( 0 , 𝐴) ∈ V | |
| 11 | 8, 9, 10 | fvmpt 6934 | . . 3 ⊢ ( 0 ∈ 𝑉 → ((𝑥 ∈ 𝑉 ↦ (𝑥 , 𝐴))‘ 0 ) = ( 0 , 𝐴)) |
| 12 | 7, 11 | syl 17 | . 2 ⊢ ((𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉) → ((𝑥 ∈ 𝑉 ↦ (𝑥 , 𝐴))‘ 0 ) = ( 0 , 𝐴)) |
| 13 | phlsrng.f | . . . 4 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 14 | phllmhm.h | . . . 4 ⊢ , = (·𝑖‘𝑊) | |
| 15 | 13, 14, 3, 9 | phllmhm 21558 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉) → (𝑥 ∈ 𝑉 ↦ (𝑥 , 𝐴)) ∈ (𝑊 LMHom (ringLMod‘𝐹))) |
| 16 | lmghm 20954 | . . 3 ⊢ ((𝑥 ∈ 𝑉 ↦ (𝑥 , 𝐴)) ∈ (𝑊 LMHom (ringLMod‘𝐹)) → (𝑥 ∈ 𝑉 ↦ (𝑥 , 𝐴)) ∈ (𝑊 GrpHom (ringLMod‘𝐹))) | |
| 17 | ip0l.z | . . . . 5 ⊢ 𝑍 = (0g‘𝐹) | |
| 18 | rlm0 21118 | . . . . 5 ⊢ (0g‘𝐹) = (0g‘(ringLMod‘𝐹)) | |
| 19 | 17, 18 | eqtri 2752 | . . . 4 ⊢ 𝑍 = (0g‘(ringLMod‘𝐹)) |
| 20 | 4, 19 | ghmid 19120 | . . 3 ⊢ ((𝑥 ∈ 𝑉 ↦ (𝑥 , 𝐴)) ∈ (𝑊 GrpHom (ringLMod‘𝐹)) → ((𝑥 ∈ 𝑉 ↦ (𝑥 , 𝐴))‘ 0 ) = 𝑍) |
| 21 | 15, 16, 20 | 3syl 18 | . 2 ⊢ ((𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉) → ((𝑥 ∈ 𝑉 ↦ (𝑥 , 𝐴))‘ 0 ) = 𝑍) |
| 22 | 12, 21 | eqtr3d 2766 | 1 ⊢ ((𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉) → ( 0 , 𝐴) = 𝑍) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ↦ cmpt 5176 ‘cfv 6486 (class class class)co 7353 Basecbs 17139 Scalarcsca 17183 ·𝑖cip 17185 0gc0g 17362 Grpcgrp 18831 GrpHom cghm 19110 LModclmod 20782 LMHom clmhm 20942 ringLModcrglmod 21095 PreHilcphl 21550 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-er 8632 df-map 8762 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11368 df-neg 11369 df-nn 12148 df-2 12210 df-3 12211 df-4 12212 df-5 12213 df-6 12214 df-7 12215 df-8 12216 df-sets 17094 df-slot 17112 df-ndx 17124 df-base 17140 df-plusg 17193 df-sca 17196 df-vsca 17197 df-ip 17198 df-0g 17364 df-mgm 18533 df-sgrp 18612 df-mnd 18628 df-grp 18834 df-ghm 19111 df-lmod 20784 df-lmhm 20945 df-lvec 21026 df-sra 21096 df-rgmod 21097 df-phl 21552 |
| This theorem is referenced by: ip0r 21563 ipeq0 21564 ocvlss 21598 cphip0l 25119 |
| Copyright terms: Public domain | W3C validator |