![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ip0l | Structured version Visualization version GIF version |
Description: Inner product with a zero first argument. Part of proof of Theorem 6.44 of [Ponnusamy] p. 361. (Contributed by NM, 5-Feb-2007.) (Revised by Mario Carneiro, 7-Oct-2015.) |
Ref | Expression |
---|---|
phlsrng.f | ⊢ 𝐹 = (Scalar‘𝑊) |
phllmhm.h | ⊢ , = (·𝑖‘𝑊) |
phllmhm.v | ⊢ 𝑉 = (Base‘𝑊) |
ip0l.z | ⊢ 𝑍 = (0g‘𝐹) |
ip0l.o | ⊢ 0 = (0g‘𝑊) |
Ref | Expression |
---|---|
ip0l | ⊢ ((𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉) → ( 0 , 𝐴) = 𝑍) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | phllmod 21671 | . . . . 5 ⊢ (𝑊 ∈ PreHil → 𝑊 ∈ LMod) | |
2 | lmodgrp 20887 | . . . . 5 ⊢ (𝑊 ∈ LMod → 𝑊 ∈ Grp) | |
3 | phllmhm.v | . . . . . 6 ⊢ 𝑉 = (Base‘𝑊) | |
4 | ip0l.o | . . . . . 6 ⊢ 0 = (0g‘𝑊) | |
5 | 3, 4 | grpidcl 19005 | . . . . 5 ⊢ (𝑊 ∈ Grp → 0 ∈ 𝑉) |
6 | 1, 2, 5 | 3syl 18 | . . . 4 ⊢ (𝑊 ∈ PreHil → 0 ∈ 𝑉) |
7 | 6 | adantr 480 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉) → 0 ∈ 𝑉) |
8 | oveq1 7455 | . . . 4 ⊢ (𝑥 = 0 → (𝑥 , 𝐴) = ( 0 , 𝐴)) | |
9 | eqid 2740 | . . . 4 ⊢ (𝑥 ∈ 𝑉 ↦ (𝑥 , 𝐴)) = (𝑥 ∈ 𝑉 ↦ (𝑥 , 𝐴)) | |
10 | ovex 7481 | . . . 4 ⊢ ( 0 , 𝐴) ∈ V | |
11 | 8, 9, 10 | fvmpt 7029 | . . 3 ⊢ ( 0 ∈ 𝑉 → ((𝑥 ∈ 𝑉 ↦ (𝑥 , 𝐴))‘ 0 ) = ( 0 , 𝐴)) |
12 | 7, 11 | syl 17 | . 2 ⊢ ((𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉) → ((𝑥 ∈ 𝑉 ↦ (𝑥 , 𝐴))‘ 0 ) = ( 0 , 𝐴)) |
13 | phlsrng.f | . . . 4 ⊢ 𝐹 = (Scalar‘𝑊) | |
14 | phllmhm.h | . . . 4 ⊢ , = (·𝑖‘𝑊) | |
15 | 13, 14, 3, 9 | phllmhm 21673 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉) → (𝑥 ∈ 𝑉 ↦ (𝑥 , 𝐴)) ∈ (𝑊 LMHom (ringLMod‘𝐹))) |
16 | lmghm 21053 | . . 3 ⊢ ((𝑥 ∈ 𝑉 ↦ (𝑥 , 𝐴)) ∈ (𝑊 LMHom (ringLMod‘𝐹)) → (𝑥 ∈ 𝑉 ↦ (𝑥 , 𝐴)) ∈ (𝑊 GrpHom (ringLMod‘𝐹))) | |
17 | ip0l.z | . . . . 5 ⊢ 𝑍 = (0g‘𝐹) | |
18 | rlm0 21225 | . . . . 5 ⊢ (0g‘𝐹) = (0g‘(ringLMod‘𝐹)) | |
19 | 17, 18 | eqtri 2768 | . . . 4 ⊢ 𝑍 = (0g‘(ringLMod‘𝐹)) |
20 | 4, 19 | ghmid 19262 | . . 3 ⊢ ((𝑥 ∈ 𝑉 ↦ (𝑥 , 𝐴)) ∈ (𝑊 GrpHom (ringLMod‘𝐹)) → ((𝑥 ∈ 𝑉 ↦ (𝑥 , 𝐴))‘ 0 ) = 𝑍) |
21 | 15, 16, 20 | 3syl 18 | . 2 ⊢ ((𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉) → ((𝑥 ∈ 𝑉 ↦ (𝑥 , 𝐴))‘ 0 ) = 𝑍) |
22 | 12, 21 | eqtr3d 2782 | 1 ⊢ ((𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉) → ( 0 , 𝐴) = 𝑍) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ↦ cmpt 5249 ‘cfv 6573 (class class class)co 7448 Basecbs 17258 Scalarcsca 17314 ·𝑖cip 17316 0gc0g 17499 Grpcgrp 18973 GrpHom cghm 19252 LModclmod 20880 LMHom clmhm 21041 ringLModcrglmod 21194 PreHilcphl 21665 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-er 8763 df-map 8886 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-plusg 17324 df-sca 17327 df-vsca 17328 df-ip 17329 df-0g 17501 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-grp 18976 df-ghm 19253 df-lmod 20882 df-lmhm 21044 df-lvec 21125 df-sra 21195 df-rgmod 21196 df-phl 21667 |
This theorem is referenced by: ip0r 21678 ipeq0 21679 ocvlss 21713 cphip0l 25255 |
Copyright terms: Public domain | W3C validator |