MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ipass Structured version   Visualization version   GIF version

Theorem ipass 20207
Description: Associative law for inner product. Equation I2 of [Ponnusamy] p. 363. (Contributed by NM, 25-Aug-2007.) (Revised by Mario Carneiro, 7-Oct-2015.)
Hypotheses
Ref Expression
phlsrng.f 𝐹 = (Scalar‘𝑊)
phllmhm.h , = (·𝑖𝑊)
phllmhm.v 𝑉 = (Base‘𝑊)
ipdir.f 𝐾 = (Base‘𝐹)
ipass.s · = ( ·𝑠𝑊)
ipass.p × = (.r𝐹)
Assertion
Ref Expression
ipass ((𝑊 ∈ PreHil ∧ (𝐴𝐾𝐵𝑉𝐶𝑉)) → ((𝐴 · 𝐵) , 𝐶) = (𝐴 × (𝐵 , 𝐶)))

Proof of Theorem ipass
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 phlsrng.f . . . . 5 𝐹 = (Scalar‘𝑊)
2 phllmhm.h . . . . 5 , = (·𝑖𝑊)
3 phllmhm.v . . . . 5 𝑉 = (Base‘𝑊)
4 eqid 2771 . . . . 5 (𝑥𝑉 ↦ (𝑥 , 𝐶)) = (𝑥𝑉 ↦ (𝑥 , 𝐶))
51, 2, 3, 4phllmhm 20194 . . . 4 ((𝑊 ∈ PreHil ∧ 𝐶𝑉) → (𝑥𝑉 ↦ (𝑥 , 𝐶)) ∈ (𝑊 LMHom (ringLMod‘𝐹)))
653ad2antr3 1205 . . 3 ((𝑊 ∈ PreHil ∧ (𝐴𝐾𝐵𝑉𝐶𝑉)) → (𝑥𝑉 ↦ (𝑥 , 𝐶)) ∈ (𝑊 LMHom (ringLMod‘𝐹)))
7 simpr1 1233 . . 3 ((𝑊 ∈ PreHil ∧ (𝐴𝐾𝐵𝑉𝐶𝑉)) → 𝐴𝐾)
8 simpr2 1235 . . 3 ((𝑊 ∈ PreHil ∧ (𝐴𝐾𝐵𝑉𝐶𝑉)) → 𝐵𝑉)
9 ipdir.f . . . 4 𝐾 = (Base‘𝐹)
10 ipass.s . . . 4 · = ( ·𝑠𝑊)
11 ipass.p . . . . 5 × = (.r𝐹)
12 rlmvsca 19417 . . . . 5 (.r𝐹) = ( ·𝑠 ‘(ringLMod‘𝐹))
1311, 12eqtri 2793 . . . 4 × = ( ·𝑠 ‘(ringLMod‘𝐹))
141, 9, 3, 10, 13lmhmlin 19248 . . 3 (((𝑥𝑉 ↦ (𝑥 , 𝐶)) ∈ (𝑊 LMHom (ringLMod‘𝐹)) ∧ 𝐴𝐾𝐵𝑉) → ((𝑥𝑉 ↦ (𝑥 , 𝐶))‘(𝐴 · 𝐵)) = (𝐴 × ((𝑥𝑉 ↦ (𝑥 , 𝐶))‘𝐵)))
156, 7, 8, 14syl3anc 1476 . 2 ((𝑊 ∈ PreHil ∧ (𝐴𝐾𝐵𝑉𝐶𝑉)) → ((𝑥𝑉 ↦ (𝑥 , 𝐶))‘(𝐴 · 𝐵)) = (𝐴 × ((𝑥𝑉 ↦ (𝑥 , 𝐶))‘𝐵)))
16 phllmod 20192 . . . . 5 (𝑊 ∈ PreHil → 𝑊 ∈ LMod)
1716adantr 466 . . . 4 ((𝑊 ∈ PreHil ∧ (𝐴𝐾𝐵𝑉𝐶𝑉)) → 𝑊 ∈ LMod)
183, 1, 10, 9lmodvscl 19090 . . . 4 ((𝑊 ∈ LMod ∧ 𝐴𝐾𝐵𝑉) → (𝐴 · 𝐵) ∈ 𝑉)
1917, 7, 8, 18syl3anc 1476 . . 3 ((𝑊 ∈ PreHil ∧ (𝐴𝐾𝐵𝑉𝐶𝑉)) → (𝐴 · 𝐵) ∈ 𝑉)
20 oveq1 6803 . . . 4 (𝑥 = (𝐴 · 𝐵) → (𝑥 , 𝐶) = ((𝐴 · 𝐵) , 𝐶))
21 ovex 6827 . . . 4 (𝑥 , 𝐶) ∈ V
2220, 4, 21fvmpt3i 6431 . . 3 ((𝐴 · 𝐵) ∈ 𝑉 → ((𝑥𝑉 ↦ (𝑥 , 𝐶))‘(𝐴 · 𝐵)) = ((𝐴 · 𝐵) , 𝐶))
2319, 22syl 17 . 2 ((𝑊 ∈ PreHil ∧ (𝐴𝐾𝐵𝑉𝐶𝑉)) → ((𝑥𝑉 ↦ (𝑥 , 𝐶))‘(𝐴 · 𝐵)) = ((𝐴 · 𝐵) , 𝐶))
24 oveq1 6803 . . . . 5 (𝑥 = 𝐵 → (𝑥 , 𝐶) = (𝐵 , 𝐶))
2524, 4, 21fvmpt3i 6431 . . . 4 (𝐵𝑉 → ((𝑥𝑉 ↦ (𝑥 , 𝐶))‘𝐵) = (𝐵 , 𝐶))
268, 25syl 17 . . 3 ((𝑊 ∈ PreHil ∧ (𝐴𝐾𝐵𝑉𝐶𝑉)) → ((𝑥𝑉 ↦ (𝑥 , 𝐶))‘𝐵) = (𝐵 , 𝐶))
2726oveq2d 6812 . 2 ((𝑊 ∈ PreHil ∧ (𝐴𝐾𝐵𝑉𝐶𝑉)) → (𝐴 × ((𝑥𝑉 ↦ (𝑥 , 𝐶))‘𝐵)) = (𝐴 × (𝐵 , 𝐶)))
2815, 23, 273eqtr3d 2813 1 ((𝑊 ∈ PreHil ∧ (𝐴𝐾𝐵𝑉𝐶𝑉)) → ((𝐴 · 𝐵) , 𝐶) = (𝐴 × (𝐵 , 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382  w3a 1071   = wceq 1631  wcel 2145  cmpt 4864  cfv 6030  (class class class)co 6796  Basecbs 16064  .rcmulr 16150  Scalarcsca 16152   ·𝑠 cvsca 16153  ·𝑖cip 16154  LModclmod 19073   LMHom clmhm 19232  ringLModcrglmod 19384  PreHilcphl 20186
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4905  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7100  ax-cnex 10198  ax-resscn 10199  ax-1cn 10200  ax-icn 10201  ax-addcl 10202  ax-addrcl 10203  ax-mulcl 10204  ax-mulrcl 10205  ax-mulcom 10206  ax-addass 10207  ax-mulass 10208  ax-distr 10209  ax-i2m1 10210  ax-1ne0 10211  ax-1rid 10212  ax-rnegex 10213  ax-rrecex 10214  ax-cnre 10215  ax-pre-lttri 10216  ax-pre-lttrn 10217  ax-pre-ltadd 10218  ax-pre-mulgt0 10219
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4576  df-iun 4657  df-br 4788  df-opab 4848  df-mpt 4865  df-tr 4888  df-id 5158  df-eprel 5163  df-po 5171  df-so 5172  df-fr 5209  df-we 5211  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-pred 5822  df-ord 5868  df-on 5869  df-lim 5870  df-suc 5871  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-riota 6757  df-ov 6799  df-oprab 6800  df-mpt2 6801  df-om 7217  df-wrecs 7563  df-recs 7625  df-rdg 7663  df-er 7900  df-en 8114  df-dom 8115  df-sdom 8116  df-pnf 10282  df-mnf 10283  df-xr 10284  df-ltxr 10285  df-le 10286  df-sub 10474  df-neg 10475  df-nn 11227  df-2 11285  df-3 11286  df-4 11287  df-5 11288  df-6 11289  df-7 11290  df-8 11291  df-ndx 16067  df-slot 16068  df-sets 16071  df-vsca 16166  df-ip 16167  df-lmod 19075  df-lmhm 19235  df-lvec 19316  df-sra 19387  df-rgmod 19388  df-phl 20188
This theorem is referenced by:  ipassr  20208  ocvlss  20233  cphass  23230  ipcau2  23252  tchcphlem2  23254
  Copyright terms: Public domain W3C validator