| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ipass | Structured version Visualization version GIF version | ||
| Description: Associative law for inner product. Equation I2 of [Ponnusamy] p. 363. (Contributed by NM, 25-Aug-2007.) (Revised by Mario Carneiro, 7-Oct-2015.) |
| Ref | Expression |
|---|---|
| phlsrng.f | ⊢ 𝐹 = (Scalar‘𝑊) |
| phllmhm.h | ⊢ , = (·𝑖‘𝑊) |
| phllmhm.v | ⊢ 𝑉 = (Base‘𝑊) |
| ipdir.f | ⊢ 𝐾 = (Base‘𝐹) |
| ipass.s | ⊢ · = ( ·𝑠 ‘𝑊) |
| ipass.p | ⊢ × = (.r‘𝐹) |
| Ref | Expression |
|---|---|
| ipass | ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → ((𝐴 · 𝐵) , 𝐶) = (𝐴 × (𝐵 , 𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | phlsrng.f | . . . . 5 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 2 | phllmhm.h | . . . . 5 ⊢ , = (·𝑖‘𝑊) | |
| 3 | phllmhm.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑊) | |
| 4 | eqid 2730 | . . . . 5 ⊢ (𝑥 ∈ 𝑉 ↦ (𝑥 , 𝐶)) = (𝑥 ∈ 𝑉 ↦ (𝑥 , 𝐶)) | |
| 5 | 1, 2, 3, 4 | phllmhm 21548 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ 𝐶 ∈ 𝑉) → (𝑥 ∈ 𝑉 ↦ (𝑥 , 𝐶)) ∈ (𝑊 LMHom (ringLMod‘𝐹))) |
| 6 | 5 | 3ad2antr3 1191 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (𝑥 ∈ 𝑉 ↦ (𝑥 , 𝐶)) ∈ (𝑊 LMHom (ringLMod‘𝐹))) |
| 7 | simpr1 1195 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → 𝐴 ∈ 𝐾) | |
| 8 | simpr2 1196 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → 𝐵 ∈ 𝑉) | |
| 9 | ipdir.f | . . . 4 ⊢ 𝐾 = (Base‘𝐹) | |
| 10 | ipass.s | . . . 4 ⊢ · = ( ·𝑠 ‘𝑊) | |
| 11 | ipass.p | . . . . 5 ⊢ × = (.r‘𝐹) | |
| 12 | rlmvsca 21114 | . . . . 5 ⊢ (.r‘𝐹) = ( ·𝑠 ‘(ringLMod‘𝐹)) | |
| 13 | 11, 12 | eqtri 2753 | . . . 4 ⊢ × = ( ·𝑠 ‘(ringLMod‘𝐹)) |
| 14 | 1, 9, 3, 10, 13 | lmhmlin 20949 | . . 3 ⊢ (((𝑥 ∈ 𝑉 ↦ (𝑥 , 𝐶)) ∈ (𝑊 LMHom (ringLMod‘𝐹)) ∧ 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉) → ((𝑥 ∈ 𝑉 ↦ (𝑥 , 𝐶))‘(𝐴 · 𝐵)) = (𝐴 × ((𝑥 ∈ 𝑉 ↦ (𝑥 , 𝐶))‘𝐵))) |
| 15 | 6, 7, 8, 14 | syl3anc 1373 | . 2 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → ((𝑥 ∈ 𝑉 ↦ (𝑥 , 𝐶))‘(𝐴 · 𝐵)) = (𝐴 × ((𝑥 ∈ 𝑉 ↦ (𝑥 , 𝐶))‘𝐵))) |
| 16 | phllmod 21546 | . . . . 5 ⊢ (𝑊 ∈ PreHil → 𝑊 ∈ LMod) | |
| 17 | 16 | adantr 480 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → 𝑊 ∈ LMod) |
| 18 | 3, 1, 10, 9 | lmodvscl 20791 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉) → (𝐴 · 𝐵) ∈ 𝑉) |
| 19 | 17, 7, 8, 18 | syl3anc 1373 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (𝐴 · 𝐵) ∈ 𝑉) |
| 20 | oveq1 7397 | . . . 4 ⊢ (𝑥 = (𝐴 · 𝐵) → (𝑥 , 𝐶) = ((𝐴 · 𝐵) , 𝐶)) | |
| 21 | ovex 7423 | . . . 4 ⊢ (𝑥 , 𝐶) ∈ V | |
| 22 | 20, 4, 21 | fvmpt3i 6976 | . . 3 ⊢ ((𝐴 · 𝐵) ∈ 𝑉 → ((𝑥 ∈ 𝑉 ↦ (𝑥 , 𝐶))‘(𝐴 · 𝐵)) = ((𝐴 · 𝐵) , 𝐶)) |
| 23 | 19, 22 | syl 17 | . 2 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → ((𝑥 ∈ 𝑉 ↦ (𝑥 , 𝐶))‘(𝐴 · 𝐵)) = ((𝐴 · 𝐵) , 𝐶)) |
| 24 | oveq1 7397 | . . . . 5 ⊢ (𝑥 = 𝐵 → (𝑥 , 𝐶) = (𝐵 , 𝐶)) | |
| 25 | 24, 4, 21 | fvmpt3i 6976 | . . . 4 ⊢ (𝐵 ∈ 𝑉 → ((𝑥 ∈ 𝑉 ↦ (𝑥 , 𝐶))‘𝐵) = (𝐵 , 𝐶)) |
| 26 | 8, 25 | syl 17 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → ((𝑥 ∈ 𝑉 ↦ (𝑥 , 𝐶))‘𝐵) = (𝐵 , 𝐶)) |
| 27 | 26 | oveq2d 7406 | . 2 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (𝐴 × ((𝑥 ∈ 𝑉 ↦ (𝑥 , 𝐶))‘𝐵)) = (𝐴 × (𝐵 , 𝐶))) |
| 28 | 15, 23, 27 | 3eqtr3d 2773 | 1 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → ((𝐴 · 𝐵) , 𝐶) = (𝐴 × (𝐵 , 𝐶))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ↦ cmpt 5191 ‘cfv 6514 (class class class)co 7390 Basecbs 17186 .rcmulr 17228 Scalarcsca 17230 ·𝑠 cvsca 17231 ·𝑖cip 17232 LModclmod 20773 LMHom clmhm 20933 ringLModcrglmod 21086 PreHilcphl 21540 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-sets 17141 df-slot 17159 df-ndx 17171 df-sca 17243 df-vsca 17244 df-ip 17245 df-lmod 20775 df-lmhm 20936 df-lvec 21017 df-sra 21087 df-rgmod 21088 df-phl 21542 |
| This theorem is referenced by: ipassr 21562 phlssphl 21575 ocvlss 21588 cphass 25118 ipcau2 25141 tcphcphlem2 25143 |
| Copyright terms: Public domain | W3C validator |