|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > ipass | Structured version Visualization version GIF version | ||
| Description: Associative law for inner product. Equation I2 of [Ponnusamy] p. 363. (Contributed by NM, 25-Aug-2007.) (Revised by Mario Carneiro, 7-Oct-2015.) | 
| Ref | Expression | 
|---|---|
| phlsrng.f | ⊢ 𝐹 = (Scalar‘𝑊) | 
| phllmhm.h | ⊢ , = (·𝑖‘𝑊) | 
| phllmhm.v | ⊢ 𝑉 = (Base‘𝑊) | 
| ipdir.f | ⊢ 𝐾 = (Base‘𝐹) | 
| ipass.s | ⊢ · = ( ·𝑠 ‘𝑊) | 
| ipass.p | ⊢ × = (.r‘𝐹) | 
| Ref | Expression | 
|---|---|
| ipass | ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → ((𝐴 · 𝐵) , 𝐶) = (𝐴 × (𝐵 , 𝐶))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | phlsrng.f | . . . . 5 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 2 | phllmhm.h | . . . . 5 ⊢ , = (·𝑖‘𝑊) | |
| 3 | phllmhm.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑊) | |
| 4 | eqid 2737 | . . . . 5 ⊢ (𝑥 ∈ 𝑉 ↦ (𝑥 , 𝐶)) = (𝑥 ∈ 𝑉 ↦ (𝑥 , 𝐶)) | |
| 5 | 1, 2, 3, 4 | phllmhm 21650 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ 𝐶 ∈ 𝑉) → (𝑥 ∈ 𝑉 ↦ (𝑥 , 𝐶)) ∈ (𝑊 LMHom (ringLMod‘𝐹))) | 
| 6 | 5 | 3ad2antr3 1191 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (𝑥 ∈ 𝑉 ↦ (𝑥 , 𝐶)) ∈ (𝑊 LMHom (ringLMod‘𝐹))) | 
| 7 | simpr1 1195 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → 𝐴 ∈ 𝐾) | |
| 8 | simpr2 1196 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → 𝐵 ∈ 𝑉) | |
| 9 | ipdir.f | . . . 4 ⊢ 𝐾 = (Base‘𝐹) | |
| 10 | ipass.s | . . . 4 ⊢ · = ( ·𝑠 ‘𝑊) | |
| 11 | ipass.p | . . . . 5 ⊢ × = (.r‘𝐹) | |
| 12 | rlmvsca 21207 | . . . . 5 ⊢ (.r‘𝐹) = ( ·𝑠 ‘(ringLMod‘𝐹)) | |
| 13 | 11, 12 | eqtri 2765 | . . . 4 ⊢ × = ( ·𝑠 ‘(ringLMod‘𝐹)) | 
| 14 | 1, 9, 3, 10, 13 | lmhmlin 21034 | . . 3 ⊢ (((𝑥 ∈ 𝑉 ↦ (𝑥 , 𝐶)) ∈ (𝑊 LMHom (ringLMod‘𝐹)) ∧ 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉) → ((𝑥 ∈ 𝑉 ↦ (𝑥 , 𝐶))‘(𝐴 · 𝐵)) = (𝐴 × ((𝑥 ∈ 𝑉 ↦ (𝑥 , 𝐶))‘𝐵))) | 
| 15 | 6, 7, 8, 14 | syl3anc 1373 | . 2 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → ((𝑥 ∈ 𝑉 ↦ (𝑥 , 𝐶))‘(𝐴 · 𝐵)) = (𝐴 × ((𝑥 ∈ 𝑉 ↦ (𝑥 , 𝐶))‘𝐵))) | 
| 16 | phllmod 21648 | . . . . 5 ⊢ (𝑊 ∈ PreHil → 𝑊 ∈ LMod) | |
| 17 | 16 | adantr 480 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → 𝑊 ∈ LMod) | 
| 18 | 3, 1, 10, 9 | lmodvscl 20876 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉) → (𝐴 · 𝐵) ∈ 𝑉) | 
| 19 | 17, 7, 8, 18 | syl3anc 1373 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (𝐴 · 𝐵) ∈ 𝑉) | 
| 20 | oveq1 7438 | . . . 4 ⊢ (𝑥 = (𝐴 · 𝐵) → (𝑥 , 𝐶) = ((𝐴 · 𝐵) , 𝐶)) | |
| 21 | ovex 7464 | . . . 4 ⊢ (𝑥 , 𝐶) ∈ V | |
| 22 | 20, 4, 21 | fvmpt3i 7021 | . . 3 ⊢ ((𝐴 · 𝐵) ∈ 𝑉 → ((𝑥 ∈ 𝑉 ↦ (𝑥 , 𝐶))‘(𝐴 · 𝐵)) = ((𝐴 · 𝐵) , 𝐶)) | 
| 23 | 19, 22 | syl 17 | . 2 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → ((𝑥 ∈ 𝑉 ↦ (𝑥 , 𝐶))‘(𝐴 · 𝐵)) = ((𝐴 · 𝐵) , 𝐶)) | 
| 24 | oveq1 7438 | . . . . 5 ⊢ (𝑥 = 𝐵 → (𝑥 , 𝐶) = (𝐵 , 𝐶)) | |
| 25 | 24, 4, 21 | fvmpt3i 7021 | . . . 4 ⊢ (𝐵 ∈ 𝑉 → ((𝑥 ∈ 𝑉 ↦ (𝑥 , 𝐶))‘𝐵) = (𝐵 , 𝐶)) | 
| 26 | 8, 25 | syl 17 | . . 3 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → ((𝑥 ∈ 𝑉 ↦ (𝑥 , 𝐶))‘𝐵) = (𝐵 , 𝐶)) | 
| 27 | 26 | oveq2d 7447 | . 2 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → (𝐴 × ((𝑥 ∈ 𝑉 ↦ (𝑥 , 𝐶))‘𝐵)) = (𝐴 × (𝐵 , 𝐶))) | 
| 28 | 15, 23, 27 | 3eqtr3d 2785 | 1 ⊢ ((𝑊 ∈ PreHil ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → ((𝐴 · 𝐵) , 𝐶) = (𝐴 × (𝐵 , 𝐶))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1540 ∈ wcel 2108 ↦ cmpt 5225 ‘cfv 6561 (class class class)co 7431 Basecbs 17247 .rcmulr 17298 Scalarcsca 17300 ·𝑠 cvsca 17301 ·𝑖cip 17302 LModclmod 20858 LMHom clmhm 21018 ringLModcrglmod 21171 PreHilcphl 21642 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-nn 12267 df-2 12329 df-3 12330 df-4 12331 df-5 12332 df-6 12333 df-7 12334 df-8 12335 df-sets 17201 df-slot 17219 df-ndx 17231 df-sca 17313 df-vsca 17314 df-ip 17315 df-lmod 20860 df-lmhm 21021 df-lvec 21102 df-sra 21172 df-rgmod 21173 df-phl 21644 | 
| This theorem is referenced by: ipassr 21664 phlssphl 21677 ocvlss 21690 cphass 25245 ipcau2 25268 tcphcphlem2 25270 | 
| Copyright terms: Public domain | W3C validator |