MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ipass Structured version   Visualization version   GIF version

Theorem ipass 21681
Description: Associative law for inner product. Equation I2 of [Ponnusamy] p. 363. (Contributed by NM, 25-Aug-2007.) (Revised by Mario Carneiro, 7-Oct-2015.)
Hypotheses
Ref Expression
phlsrng.f 𝐹 = (Scalar‘𝑊)
phllmhm.h , = (·𝑖𝑊)
phllmhm.v 𝑉 = (Base‘𝑊)
ipdir.f 𝐾 = (Base‘𝐹)
ipass.s · = ( ·𝑠𝑊)
ipass.p × = (.r𝐹)
Assertion
Ref Expression
ipass ((𝑊 ∈ PreHil ∧ (𝐴𝐾𝐵𝑉𝐶𝑉)) → ((𝐴 · 𝐵) , 𝐶) = (𝐴 × (𝐵 , 𝐶)))

Proof of Theorem ipass
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 phlsrng.f . . . . 5 𝐹 = (Scalar‘𝑊)
2 phllmhm.h . . . . 5 , = (·𝑖𝑊)
3 phllmhm.v . . . . 5 𝑉 = (Base‘𝑊)
4 eqid 2735 . . . . 5 (𝑥𝑉 ↦ (𝑥 , 𝐶)) = (𝑥𝑉 ↦ (𝑥 , 𝐶))
51, 2, 3, 4phllmhm 21668 . . . 4 ((𝑊 ∈ PreHil ∧ 𝐶𝑉) → (𝑥𝑉 ↦ (𝑥 , 𝐶)) ∈ (𝑊 LMHom (ringLMod‘𝐹)))
653ad2antr3 1189 . . 3 ((𝑊 ∈ PreHil ∧ (𝐴𝐾𝐵𝑉𝐶𝑉)) → (𝑥𝑉 ↦ (𝑥 , 𝐶)) ∈ (𝑊 LMHom (ringLMod‘𝐹)))
7 simpr1 1193 . . 3 ((𝑊 ∈ PreHil ∧ (𝐴𝐾𝐵𝑉𝐶𝑉)) → 𝐴𝐾)
8 simpr2 1194 . . 3 ((𝑊 ∈ PreHil ∧ (𝐴𝐾𝐵𝑉𝐶𝑉)) → 𝐵𝑉)
9 ipdir.f . . . 4 𝐾 = (Base‘𝐹)
10 ipass.s . . . 4 · = ( ·𝑠𝑊)
11 ipass.p . . . . 5 × = (.r𝐹)
12 rlmvsca 21225 . . . . 5 (.r𝐹) = ( ·𝑠 ‘(ringLMod‘𝐹))
1311, 12eqtri 2763 . . . 4 × = ( ·𝑠 ‘(ringLMod‘𝐹))
141, 9, 3, 10, 13lmhmlin 21052 . . 3 (((𝑥𝑉 ↦ (𝑥 , 𝐶)) ∈ (𝑊 LMHom (ringLMod‘𝐹)) ∧ 𝐴𝐾𝐵𝑉) → ((𝑥𝑉 ↦ (𝑥 , 𝐶))‘(𝐴 · 𝐵)) = (𝐴 × ((𝑥𝑉 ↦ (𝑥 , 𝐶))‘𝐵)))
156, 7, 8, 14syl3anc 1370 . 2 ((𝑊 ∈ PreHil ∧ (𝐴𝐾𝐵𝑉𝐶𝑉)) → ((𝑥𝑉 ↦ (𝑥 , 𝐶))‘(𝐴 · 𝐵)) = (𝐴 × ((𝑥𝑉 ↦ (𝑥 , 𝐶))‘𝐵)))
16 phllmod 21666 . . . . 5 (𝑊 ∈ PreHil → 𝑊 ∈ LMod)
1716adantr 480 . . . 4 ((𝑊 ∈ PreHil ∧ (𝐴𝐾𝐵𝑉𝐶𝑉)) → 𝑊 ∈ LMod)
183, 1, 10, 9lmodvscl 20893 . . . 4 ((𝑊 ∈ LMod ∧ 𝐴𝐾𝐵𝑉) → (𝐴 · 𝐵) ∈ 𝑉)
1917, 7, 8, 18syl3anc 1370 . . 3 ((𝑊 ∈ PreHil ∧ (𝐴𝐾𝐵𝑉𝐶𝑉)) → (𝐴 · 𝐵) ∈ 𝑉)
20 oveq1 7438 . . . 4 (𝑥 = (𝐴 · 𝐵) → (𝑥 , 𝐶) = ((𝐴 · 𝐵) , 𝐶))
21 ovex 7464 . . . 4 (𝑥 , 𝐶) ∈ V
2220, 4, 21fvmpt3i 7021 . . 3 ((𝐴 · 𝐵) ∈ 𝑉 → ((𝑥𝑉 ↦ (𝑥 , 𝐶))‘(𝐴 · 𝐵)) = ((𝐴 · 𝐵) , 𝐶))
2319, 22syl 17 . 2 ((𝑊 ∈ PreHil ∧ (𝐴𝐾𝐵𝑉𝐶𝑉)) → ((𝑥𝑉 ↦ (𝑥 , 𝐶))‘(𝐴 · 𝐵)) = ((𝐴 · 𝐵) , 𝐶))
24 oveq1 7438 . . . . 5 (𝑥 = 𝐵 → (𝑥 , 𝐶) = (𝐵 , 𝐶))
2524, 4, 21fvmpt3i 7021 . . . 4 (𝐵𝑉 → ((𝑥𝑉 ↦ (𝑥 , 𝐶))‘𝐵) = (𝐵 , 𝐶))
268, 25syl 17 . . 3 ((𝑊 ∈ PreHil ∧ (𝐴𝐾𝐵𝑉𝐶𝑉)) → ((𝑥𝑉 ↦ (𝑥 , 𝐶))‘𝐵) = (𝐵 , 𝐶))
2726oveq2d 7447 . 2 ((𝑊 ∈ PreHil ∧ (𝐴𝐾𝐵𝑉𝐶𝑉)) → (𝐴 × ((𝑥𝑉 ↦ (𝑥 , 𝐶))‘𝐵)) = (𝐴 × (𝐵 , 𝐶)))
2815, 23, 273eqtr3d 2783 1 ((𝑊 ∈ PreHil ∧ (𝐴𝐾𝐵𝑉𝐶𝑉)) → ((𝐴 · 𝐵) , 𝐶) = (𝐴 × (𝐵 , 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1537  wcel 2106  cmpt 5231  cfv 6563  (class class class)co 7431  Basecbs 17245  .rcmulr 17299  Scalarcsca 17301   ·𝑠 cvsca 17302  ·𝑖cip 17303  LModclmod 20875   LMHom clmhm 21036  ringLModcrglmod 21189  PreHilcphl 21660
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-sets 17198  df-slot 17216  df-ndx 17228  df-sca 17314  df-vsca 17315  df-ip 17316  df-lmod 20877  df-lmhm 21039  df-lvec 21120  df-sra 21190  df-rgmod 21191  df-phl 21662
This theorem is referenced by:  ipassr  21682  phlssphl  21695  ocvlss  21708  cphass  25259  ipcau2  25282  tcphcphlem2  25284
  Copyright terms: Public domain W3C validator