![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > phlsrng | Structured version Visualization version GIF version |
Description: The scalar ring of a pre-Hilbert space is a star ring. (Contributed by Mario Carneiro, 7-Oct-2015.) |
Ref | Expression |
---|---|
phlsrng.f | ⊢ 𝐹 = (Scalar‘𝑊) |
Ref | Expression |
---|---|
phlsrng | ⊢ (𝑊 ∈ PreHil → 𝐹 ∈ *-Ring) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2740 | . . 3 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
2 | phlsrng.f | . . 3 ⊢ 𝐹 = (Scalar‘𝑊) | |
3 | eqid 2740 | . . 3 ⊢ (·𝑖‘𝑊) = (·𝑖‘𝑊) | |
4 | eqid 2740 | . . 3 ⊢ (0g‘𝑊) = (0g‘𝑊) | |
5 | eqid 2740 | . . 3 ⊢ (*𝑟‘𝐹) = (*𝑟‘𝐹) | |
6 | eqid 2740 | . . 3 ⊢ (0g‘𝐹) = (0g‘𝐹) | |
7 | 1, 2, 3, 4, 5, 6 | isphl 21669 | . 2 ⊢ (𝑊 ∈ PreHil ↔ (𝑊 ∈ LVec ∧ 𝐹 ∈ *-Ring ∧ ∀𝑥 ∈ (Base‘𝑊)((𝑦 ∈ (Base‘𝑊) ↦ (𝑦(·𝑖‘𝑊)𝑥)) ∈ (𝑊 LMHom (ringLMod‘𝐹)) ∧ ((𝑥(·𝑖‘𝑊)𝑥) = (0g‘𝐹) → 𝑥 = (0g‘𝑊)) ∧ ∀𝑦 ∈ (Base‘𝑊)((*𝑟‘𝐹)‘(𝑥(·𝑖‘𝑊)𝑦)) = (𝑦(·𝑖‘𝑊)𝑥)))) |
8 | 7 | simp2bi 1146 | 1 ⊢ (𝑊 ∈ PreHil → 𝐹 ∈ *-Ring) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ∀wral 3067 ↦ cmpt 5249 ‘cfv 6573 (class class class)co 7448 Basecbs 17258 *𝑟cstv 17313 Scalarcsca 17314 ·𝑖cip 17316 0gc0g 17499 *-Ringcsr 20861 LMHom clmhm 21041 LVecclvec 21124 ringLModcrglmod 21194 PreHilcphl 21665 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-nul 5324 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rab 3444 df-v 3490 df-sbc 3805 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-iota 6525 df-fv 6581 df-ov 7451 df-phl 21667 |
This theorem is referenced by: iporthcom 21676 ip0r 21678 ipdi 21681 ip2di 21682 ipassr 21687 ipassr2 21688 phlssphl 21700 cphcjcl 25236 |
Copyright terms: Public domain | W3C validator |