![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > phlsrng | Structured version Visualization version GIF version |
Description: The scalar ring of a pre-Hilbert space is a star ring. (Contributed by Mario Carneiro, 7-Oct-2015.) |
Ref | Expression |
---|---|
phlsrng.f | ⊢ 𝐹 = (Scalar‘𝑊) |
Ref | Expression |
---|---|
phlsrng | ⊢ (𝑊 ∈ PreHil → 𝐹 ∈ *-Ring) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2780 | . . 3 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
2 | phlsrng.f | . . 3 ⊢ 𝐹 = (Scalar‘𝑊) | |
3 | eqid 2780 | . . 3 ⊢ (·𝑖‘𝑊) = (·𝑖‘𝑊) | |
4 | eqid 2780 | . . 3 ⊢ (0g‘𝑊) = (0g‘𝑊) | |
5 | eqid 2780 | . . 3 ⊢ (*𝑟‘𝐹) = (*𝑟‘𝐹) | |
6 | eqid 2780 | . . 3 ⊢ (0g‘𝐹) = (0g‘𝐹) | |
7 | 1, 2, 3, 4, 5, 6 | isphl 20489 | . 2 ⊢ (𝑊 ∈ PreHil ↔ (𝑊 ∈ LVec ∧ 𝐹 ∈ *-Ring ∧ ∀𝑥 ∈ (Base‘𝑊)((𝑦 ∈ (Base‘𝑊) ↦ (𝑦(·𝑖‘𝑊)𝑥)) ∈ (𝑊 LMHom (ringLMod‘𝐹)) ∧ ((𝑥(·𝑖‘𝑊)𝑥) = (0g‘𝐹) → 𝑥 = (0g‘𝑊)) ∧ ∀𝑦 ∈ (Base‘𝑊)((*𝑟‘𝐹)‘(𝑥(·𝑖‘𝑊)𝑦)) = (𝑦(·𝑖‘𝑊)𝑥)))) |
8 | 7 | simp2bi 1127 | 1 ⊢ (𝑊 ∈ PreHil → 𝐹 ∈ *-Ring) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1069 = wceq 1508 ∈ wcel 2051 ∀wral 3090 ↦ cmpt 5013 ‘cfv 6193 (class class class)co 6982 Basecbs 16345 *𝑟cstv 16429 Scalarcsca 16430 ·𝑖cip 16432 0gc0g 16575 *-Ringcsr 19349 LMHom clmhm 19525 LVecclvec 19608 ringLModcrglmod 19675 PreHilcphl 20485 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-9 2060 ax-10 2080 ax-11 2094 ax-12 2107 ax-ext 2752 ax-nul 5071 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 835 df-3an 1071 df-tru 1511 df-ex 1744 df-nf 1748 df-sb 2017 df-mo 2551 df-eu 2589 df-clab 2761 df-cleq 2773 df-clel 2848 df-nfc 2920 df-ral 3095 df-rex 3096 df-rab 3099 df-v 3419 df-sbc 3684 df-dif 3834 df-un 3836 df-in 3838 df-ss 3845 df-nul 4182 df-if 4354 df-sn 4445 df-pr 4447 df-op 4451 df-uni 4718 df-br 4935 df-opab 4997 df-mpt 5014 df-iota 6157 df-fv 6201 df-ov 6985 df-phl 20487 |
This theorem is referenced by: iporthcom 20496 ip0r 20498 ipdi 20501 ip2di 20502 ipassr 20507 ipassr2 20508 phlssphl 20520 cphcjcl 23505 |
Copyright terms: Public domain | W3C validator |