| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > phlsrng | Structured version Visualization version GIF version | ||
| Description: The scalar ring of a pre-Hilbert space is a star ring. (Contributed by Mario Carneiro, 7-Oct-2015.) |
| Ref | Expression |
|---|---|
| phlsrng.f | ⊢ 𝐹 = (Scalar‘𝑊) |
| Ref | Expression |
|---|---|
| phlsrng | ⊢ (𝑊 ∈ PreHil → 𝐹 ∈ *-Ring) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . 3 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
| 2 | phlsrng.f | . . 3 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 3 | eqid 2729 | . . 3 ⊢ (·𝑖‘𝑊) = (·𝑖‘𝑊) | |
| 4 | eqid 2729 | . . 3 ⊢ (0g‘𝑊) = (0g‘𝑊) | |
| 5 | eqid 2729 | . . 3 ⊢ (*𝑟‘𝐹) = (*𝑟‘𝐹) | |
| 6 | eqid 2729 | . . 3 ⊢ (0g‘𝐹) = (0g‘𝐹) | |
| 7 | 1, 2, 3, 4, 5, 6 | isphl 21537 | . 2 ⊢ (𝑊 ∈ PreHil ↔ (𝑊 ∈ LVec ∧ 𝐹 ∈ *-Ring ∧ ∀𝑥 ∈ (Base‘𝑊)((𝑦 ∈ (Base‘𝑊) ↦ (𝑦(·𝑖‘𝑊)𝑥)) ∈ (𝑊 LMHom (ringLMod‘𝐹)) ∧ ((𝑥(·𝑖‘𝑊)𝑥) = (0g‘𝐹) → 𝑥 = (0g‘𝑊)) ∧ ∀𝑦 ∈ (Base‘𝑊)((*𝑟‘𝐹)‘(𝑥(·𝑖‘𝑊)𝑦)) = (𝑦(·𝑖‘𝑊)𝑥)))) |
| 8 | 7 | simp2bi 1146 | 1 ⊢ (𝑊 ∈ PreHil → 𝐹 ∈ *-Ring) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ↦ cmpt 5188 ‘cfv 6511 (class class class)co 7387 Basecbs 17179 *𝑟cstv 17222 Scalarcsca 17223 ·𝑖cip 17225 0gc0g 17402 *-Ringcsr 20747 LMHom clmhm 20926 LVecclvec 21009 ringLModcrglmod 21079 PreHilcphl 21533 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-nul 5261 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rab 3406 df-v 3449 df-sbc 3754 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-iota 6464 df-fv 6519 df-ov 7390 df-phl 21535 |
| This theorem is referenced by: iporthcom 21544 ip0r 21546 ipdi 21549 ip2di 21550 ipassr 21555 ipassr2 21556 phlssphl 21568 cphcjcl 25083 |
| Copyright terms: Public domain | W3C validator |