![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > phlsrng | Structured version Visualization version GIF version |
Description: The scalar ring of a pre-Hilbert space is a star ring. (Contributed by Mario Carneiro, 7-Oct-2015.) |
Ref | Expression |
---|---|
phlsrng.f | β’ πΉ = (Scalarβπ) |
Ref | Expression |
---|---|
phlsrng | β’ (π β PreHil β πΉ β *-Ring) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2730 | . . 3 β’ (Baseβπ) = (Baseβπ) | |
2 | phlsrng.f | . . 3 β’ πΉ = (Scalarβπ) | |
3 | eqid 2730 | . . 3 β’ (Β·πβπ) = (Β·πβπ) | |
4 | eqid 2730 | . . 3 β’ (0gβπ) = (0gβπ) | |
5 | eqid 2730 | . . 3 β’ (*πβπΉ) = (*πβπΉ) | |
6 | eqid 2730 | . . 3 β’ (0gβπΉ) = (0gβπΉ) | |
7 | 1, 2, 3, 4, 5, 6 | isphl 21400 | . 2 β’ (π β PreHil β (π β LVec β§ πΉ β *-Ring β§ βπ₯ β (Baseβπ)((π¦ β (Baseβπ) β¦ (π¦(Β·πβπ)π₯)) β (π LMHom (ringLModβπΉ)) β§ ((π₯(Β·πβπ)π₯) = (0gβπΉ) β π₯ = (0gβπ)) β§ βπ¦ β (Baseβπ)((*πβπΉ)β(π₯(Β·πβπ)π¦)) = (π¦(Β·πβπ)π₯)))) |
8 | 7 | simp2bi 1144 | 1 β’ (π β PreHil β πΉ β *-Ring) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ w3a 1085 = wceq 1539 β wcel 2104 βwral 3059 β¦ cmpt 5230 βcfv 6542 (class class class)co 7411 Basecbs 17148 *πcstv 17203 Scalarcsca 17204 Β·πcip 17206 0gc0g 17389 *-Ringcsr 20595 LMHom clmhm 20774 LVecclvec 20857 ringLModcrglmod 20927 PreHilcphl 21396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2701 ax-nul 5305 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2722 df-clel 2808 df-ne 2939 df-ral 3060 df-rab 3431 df-v 3474 df-sbc 3777 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-mpt 5231 df-iota 6494 df-fv 6550 df-ov 7414 df-phl 21398 |
This theorem is referenced by: iporthcom 21407 ip0r 21409 ipdi 21412 ip2di 21413 ipassr 21418 ipassr2 21419 phlssphl 21431 cphcjcl 24931 |
Copyright terms: Public domain | W3C validator |