MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  phlsrng Structured version   Visualization version   GIF version

Theorem phlsrng 21403
Description: The scalar ring of a pre-Hilbert space is a star ring. (Contributed by Mario Carneiro, 7-Oct-2015.)
Hypothesis
Ref Expression
phlsrng.f 𝐹 = (Scalarβ€˜π‘Š)
Assertion
Ref Expression
phlsrng (π‘Š ∈ PreHil β†’ 𝐹 ∈ *-Ring)

Proof of Theorem phlsrng
Dummy variables π‘₯ 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2730 . . 3 (Baseβ€˜π‘Š) = (Baseβ€˜π‘Š)
2 phlsrng.f . . 3 𝐹 = (Scalarβ€˜π‘Š)
3 eqid 2730 . . 3 (Β·π‘–β€˜π‘Š) = (Β·π‘–β€˜π‘Š)
4 eqid 2730 . . 3 (0gβ€˜π‘Š) = (0gβ€˜π‘Š)
5 eqid 2730 . . 3 (*π‘Ÿβ€˜πΉ) = (*π‘Ÿβ€˜πΉ)
6 eqid 2730 . . 3 (0gβ€˜πΉ) = (0gβ€˜πΉ)
71, 2, 3, 4, 5, 6isphl 21400 . 2 (π‘Š ∈ PreHil ↔ (π‘Š ∈ LVec ∧ 𝐹 ∈ *-Ring ∧ βˆ€π‘₯ ∈ (Baseβ€˜π‘Š)((𝑦 ∈ (Baseβ€˜π‘Š) ↦ (𝑦(Β·π‘–β€˜π‘Š)π‘₯)) ∈ (π‘Š LMHom (ringLModβ€˜πΉ)) ∧ ((π‘₯(Β·π‘–β€˜π‘Š)π‘₯) = (0gβ€˜πΉ) β†’ π‘₯ = (0gβ€˜π‘Š)) ∧ βˆ€π‘¦ ∈ (Baseβ€˜π‘Š)((*π‘Ÿβ€˜πΉ)β€˜(π‘₯(Β·π‘–β€˜π‘Š)𝑦)) = (𝑦(Β·π‘–β€˜π‘Š)π‘₯))))
87simp2bi 1144 1 (π‘Š ∈ PreHil β†’ 𝐹 ∈ *-Ring)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ w3a 1085   = wceq 1539   ∈ wcel 2104  βˆ€wral 3059   ↦ cmpt 5230  β€˜cfv 6542  (class class class)co 7411  Basecbs 17148  *π‘Ÿcstv 17203  Scalarcsca 17204  Β·π‘–cip 17206  0gc0g 17389  *-Ringcsr 20595   LMHom clmhm 20774  LVecclvec 20857  ringLModcrglmod 20927  PreHilcphl 21396
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-ext 2701  ax-nul 5305
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2722  df-clel 2808  df-ne 2939  df-ral 3060  df-rab 3431  df-v 3474  df-sbc 3777  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-mpt 5231  df-iota 6494  df-fv 6550  df-ov 7414  df-phl 21398
This theorem is referenced by:  iporthcom  21407  ip0r  21409  ipdi  21412  ip2di  21413  ipassr  21418  ipassr2  21419  phlssphl  21431  cphcjcl  24931
  Copyright terms: Public domain W3C validator