Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > phlsrng | Structured version Visualization version GIF version |
Description: The scalar ring of a pre-Hilbert space is a star ring. (Contributed by Mario Carneiro, 7-Oct-2015.) |
Ref | Expression |
---|---|
phlsrng.f | ⊢ 𝐹 = (Scalar‘𝑊) |
Ref | Expression |
---|---|
phlsrng | ⊢ (𝑊 ∈ PreHil → 𝐹 ∈ *-Ring) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2737 | . . 3 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
2 | phlsrng.f | . . 3 ⊢ 𝐹 = (Scalar‘𝑊) | |
3 | eqid 2737 | . . 3 ⊢ (·𝑖‘𝑊) = (·𝑖‘𝑊) | |
4 | eqid 2737 | . . 3 ⊢ (0g‘𝑊) = (0g‘𝑊) | |
5 | eqid 2737 | . . 3 ⊢ (*𝑟‘𝐹) = (*𝑟‘𝐹) | |
6 | eqid 2737 | . . 3 ⊢ (0g‘𝐹) = (0g‘𝐹) | |
7 | 1, 2, 3, 4, 5, 6 | isphl 20590 | . 2 ⊢ (𝑊 ∈ PreHil ↔ (𝑊 ∈ LVec ∧ 𝐹 ∈ *-Ring ∧ ∀𝑥 ∈ (Base‘𝑊)((𝑦 ∈ (Base‘𝑊) ↦ (𝑦(·𝑖‘𝑊)𝑥)) ∈ (𝑊 LMHom (ringLMod‘𝐹)) ∧ ((𝑥(·𝑖‘𝑊)𝑥) = (0g‘𝐹) → 𝑥 = (0g‘𝑊)) ∧ ∀𝑦 ∈ (Base‘𝑊)((*𝑟‘𝐹)‘(𝑥(·𝑖‘𝑊)𝑦)) = (𝑦(·𝑖‘𝑊)𝑥)))) |
8 | 7 | simp2bi 1148 | 1 ⊢ (𝑊 ∈ PreHil → 𝐹 ∈ *-Ring) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1089 = wceq 1543 ∈ wcel 2110 ∀wral 3061 ↦ cmpt 5135 ‘cfv 6380 (class class class)co 7213 Basecbs 16760 *𝑟cstv 16804 Scalarcsca 16805 ·𝑖cip 16807 0gc0g 16944 *-Ringcsr 19880 LMHom clmhm 20056 LVecclvec 20139 ringLModcrglmod 20206 PreHilcphl 20586 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-nul 5199 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3410 df-sbc 3695 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-br 5054 df-opab 5116 df-mpt 5136 df-iota 6338 df-fv 6388 df-ov 7216 df-phl 20588 |
This theorem is referenced by: iporthcom 20597 ip0r 20599 ipdi 20602 ip2di 20603 ipassr 20608 ipassr2 20609 phlssphl 20621 cphcjcl 24080 |
Copyright terms: Public domain | W3C validator |