| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > phlsrng | Structured version Visualization version GIF version | ||
| Description: The scalar ring of a pre-Hilbert space is a star ring. (Contributed by Mario Carneiro, 7-Oct-2015.) |
| Ref | Expression |
|---|---|
| phlsrng.f | ⊢ 𝐹 = (Scalar‘𝑊) |
| Ref | Expression |
|---|---|
| phlsrng | ⊢ (𝑊 ∈ PreHil → 𝐹 ∈ *-Ring) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2733 | . . 3 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
| 2 | phlsrng.f | . . 3 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 3 | eqid 2733 | . . 3 ⊢ (·𝑖‘𝑊) = (·𝑖‘𝑊) | |
| 4 | eqid 2733 | . . 3 ⊢ (0g‘𝑊) = (0g‘𝑊) | |
| 5 | eqid 2733 | . . 3 ⊢ (*𝑟‘𝐹) = (*𝑟‘𝐹) | |
| 6 | eqid 2733 | . . 3 ⊢ (0g‘𝐹) = (0g‘𝐹) | |
| 7 | 1, 2, 3, 4, 5, 6 | isphl 21567 | . 2 ⊢ (𝑊 ∈ PreHil ↔ (𝑊 ∈ LVec ∧ 𝐹 ∈ *-Ring ∧ ∀𝑥 ∈ (Base‘𝑊)((𝑦 ∈ (Base‘𝑊) ↦ (𝑦(·𝑖‘𝑊)𝑥)) ∈ (𝑊 LMHom (ringLMod‘𝐹)) ∧ ((𝑥(·𝑖‘𝑊)𝑥) = (0g‘𝐹) → 𝑥 = (0g‘𝑊)) ∧ ∀𝑦 ∈ (Base‘𝑊)((*𝑟‘𝐹)‘(𝑥(·𝑖‘𝑊)𝑦)) = (𝑦(·𝑖‘𝑊)𝑥)))) |
| 8 | 7 | simp2bi 1146 | 1 ⊢ (𝑊 ∈ PreHil → 𝐹 ∈ *-Ring) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ∀wral 3048 ↦ cmpt 5174 ‘cfv 6486 (class class class)co 7352 Basecbs 17122 *𝑟cstv 17165 Scalarcsca 17166 ·𝑖cip 17168 0gc0g 17345 *-Ringcsr 20755 LMHom clmhm 20955 LVecclvec 21038 ringLModcrglmod 21108 PreHilcphl 21563 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-nul 5246 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2930 df-ral 3049 df-rab 3397 df-v 3439 df-sbc 3738 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-mpt 5175 df-iota 6442 df-fv 6494 df-ov 7355 df-phl 21565 |
| This theorem is referenced by: iporthcom 21574 ip0r 21576 ipdi 21579 ip2di 21580 ipassr 21585 ipassr2 21586 phlssphl 21598 cphcjcl 25111 |
| Copyright terms: Public domain | W3C validator |