MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  phlsrng Structured version   Visualization version   GIF version

Theorem phlsrng 21570
Description: The scalar ring of a pre-Hilbert space is a star ring. (Contributed by Mario Carneiro, 7-Oct-2015.)
Hypothesis
Ref Expression
phlsrng.f 𝐹 = (Scalar‘𝑊)
Assertion
Ref Expression
phlsrng (𝑊 ∈ PreHil → 𝐹 ∈ *-Ring)

Proof of Theorem phlsrng
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2733 . . 3 (Base‘𝑊) = (Base‘𝑊)
2 phlsrng.f . . 3 𝐹 = (Scalar‘𝑊)
3 eqid 2733 . . 3 (·𝑖𝑊) = (·𝑖𝑊)
4 eqid 2733 . . 3 (0g𝑊) = (0g𝑊)
5 eqid 2733 . . 3 (*𝑟𝐹) = (*𝑟𝐹)
6 eqid 2733 . . 3 (0g𝐹) = (0g𝐹)
71, 2, 3, 4, 5, 6isphl 21567 . 2 (𝑊 ∈ PreHil ↔ (𝑊 ∈ LVec ∧ 𝐹 ∈ *-Ring ∧ ∀𝑥 ∈ (Base‘𝑊)((𝑦 ∈ (Base‘𝑊) ↦ (𝑦(·𝑖𝑊)𝑥)) ∈ (𝑊 LMHom (ringLMod‘𝐹)) ∧ ((𝑥(·𝑖𝑊)𝑥) = (0g𝐹) → 𝑥 = (0g𝑊)) ∧ ∀𝑦 ∈ (Base‘𝑊)((*𝑟𝐹)‘(𝑥(·𝑖𝑊)𝑦)) = (𝑦(·𝑖𝑊)𝑥))))
87simp2bi 1146 1 (𝑊 ∈ PreHil → 𝐹 ∈ *-Ring)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1541  wcel 2113  wral 3048  cmpt 5174  cfv 6486  (class class class)co 7352  Basecbs 17122  *𝑟cstv 17165  Scalarcsca 17166  ·𝑖cip 17168  0gc0g 17345  *-Ringcsr 20755   LMHom clmhm 20955  LVecclvec 21038  ringLModcrglmod 21108  PreHilcphl 21563
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-nul 5246
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ne 2930  df-ral 3049  df-rab 3397  df-v 3439  df-sbc 3738  df-dif 3901  df-un 3903  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-mpt 5175  df-iota 6442  df-fv 6494  df-ov 7355  df-phl 21565
This theorem is referenced by:  iporthcom  21574  ip0r  21576  ipdi  21579  ip2di  21580  ipassr  21585  ipassr2  21586  phlssphl  21598  cphcjcl  25111
  Copyright terms: Public domain W3C validator