MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  phlsrng Structured version   Visualization version   GIF version

Theorem phlsrng 21591
Description: The scalar ring of a pre-Hilbert space is a star ring. (Contributed by Mario Carneiro, 7-Oct-2015.)
Hypothesis
Ref Expression
phlsrng.f 𝐹 = (Scalar‘𝑊)
Assertion
Ref Expression
phlsrng (𝑊 ∈ PreHil → 𝐹 ∈ *-Ring)

Proof of Theorem phlsrng
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2735 . . 3 (Base‘𝑊) = (Base‘𝑊)
2 phlsrng.f . . 3 𝐹 = (Scalar‘𝑊)
3 eqid 2735 . . 3 (·𝑖𝑊) = (·𝑖𝑊)
4 eqid 2735 . . 3 (0g𝑊) = (0g𝑊)
5 eqid 2735 . . 3 (*𝑟𝐹) = (*𝑟𝐹)
6 eqid 2735 . . 3 (0g𝐹) = (0g𝐹)
71, 2, 3, 4, 5, 6isphl 21588 . 2 (𝑊 ∈ PreHil ↔ (𝑊 ∈ LVec ∧ 𝐹 ∈ *-Ring ∧ ∀𝑥 ∈ (Base‘𝑊)((𝑦 ∈ (Base‘𝑊) ↦ (𝑦(·𝑖𝑊)𝑥)) ∈ (𝑊 LMHom (ringLMod‘𝐹)) ∧ ((𝑥(·𝑖𝑊)𝑥) = (0g𝐹) → 𝑥 = (0g𝑊)) ∧ ∀𝑦 ∈ (Base‘𝑊)((*𝑟𝐹)‘(𝑥(·𝑖𝑊)𝑦)) = (𝑦(·𝑖𝑊)𝑥))))
87simp2bi 1146 1 (𝑊 ∈ PreHil → 𝐹 ∈ *-Ring)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2108  wral 3051  cmpt 5201  cfv 6531  (class class class)co 7405  Basecbs 17228  *𝑟cstv 17273  Scalarcsca 17274  ·𝑖cip 17276  0gc0g 17453  *-Ringcsr 20798   LMHom clmhm 20977  LVecclvec 21060  ringLModcrglmod 21130  PreHilcphl 21584
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707  ax-nul 5276
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-ne 2933  df-ral 3052  df-rab 3416  df-v 3461  df-sbc 3766  df-dif 3929  df-un 3931  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-iota 6484  df-fv 6539  df-ov 7408  df-phl 21586
This theorem is referenced by:  iporthcom  21595  ip0r  21597  ipdi  21600  ip2di  21601  ipassr  21606  ipassr2  21607  phlssphl  21619  cphcjcl  25135
  Copyright terms: Public domain W3C validator