MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  phlsrng Structured version   Visualization version   GIF version

Theorem phlsrng 20492
Description: The scalar ring of a pre-Hilbert space is a star ring. (Contributed by Mario Carneiro, 7-Oct-2015.)
Hypothesis
Ref Expression
phlsrng.f 𝐹 = (Scalar‘𝑊)
Assertion
Ref Expression
phlsrng (𝑊 ∈ PreHil → 𝐹 ∈ *-Ring)

Proof of Theorem phlsrng
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2780 . . 3 (Base‘𝑊) = (Base‘𝑊)
2 phlsrng.f . . 3 𝐹 = (Scalar‘𝑊)
3 eqid 2780 . . 3 (·𝑖𝑊) = (·𝑖𝑊)
4 eqid 2780 . . 3 (0g𝑊) = (0g𝑊)
5 eqid 2780 . . 3 (*𝑟𝐹) = (*𝑟𝐹)
6 eqid 2780 . . 3 (0g𝐹) = (0g𝐹)
71, 2, 3, 4, 5, 6isphl 20489 . 2 (𝑊 ∈ PreHil ↔ (𝑊 ∈ LVec ∧ 𝐹 ∈ *-Ring ∧ ∀𝑥 ∈ (Base‘𝑊)((𝑦 ∈ (Base‘𝑊) ↦ (𝑦(·𝑖𝑊)𝑥)) ∈ (𝑊 LMHom (ringLMod‘𝐹)) ∧ ((𝑥(·𝑖𝑊)𝑥) = (0g𝐹) → 𝑥 = (0g𝑊)) ∧ ∀𝑦 ∈ (Base‘𝑊)((*𝑟𝐹)‘(𝑥(·𝑖𝑊)𝑦)) = (𝑦(·𝑖𝑊)𝑥))))
87simp2bi 1127 1 (𝑊 ∈ PreHil → 𝐹 ∈ *-Ring)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1069   = wceq 1508  wcel 2051  wral 3090  cmpt 5013  cfv 6193  (class class class)co 6982  Basecbs 16345  *𝑟cstv 16429  Scalarcsca 16430  ·𝑖cip 16432  0gc0g 16575  *-Ringcsr 19349   LMHom clmhm 19525  LVecclvec 19608  ringLModcrglmod 19675  PreHilcphl 20485
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1759  ax-4 1773  ax-5 1870  ax-6 1929  ax-7 1966  ax-8 2053  ax-9 2060  ax-10 2080  ax-11 2094  ax-12 2107  ax-ext 2752  ax-nul 5071
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 835  df-3an 1071  df-tru 1511  df-ex 1744  df-nf 1748  df-sb 2017  df-mo 2551  df-eu 2589  df-clab 2761  df-cleq 2773  df-clel 2848  df-nfc 2920  df-ral 3095  df-rex 3096  df-rab 3099  df-v 3419  df-sbc 3684  df-dif 3834  df-un 3836  df-in 3838  df-ss 3845  df-nul 4182  df-if 4354  df-sn 4445  df-pr 4447  df-op 4451  df-uni 4718  df-br 4935  df-opab 4997  df-mpt 5014  df-iota 6157  df-fv 6201  df-ov 6985  df-phl 20487
This theorem is referenced by:  iporthcom  20496  ip0r  20498  ipdi  20501  ip2di  20502  ipassr  20507  ipassr2  20508  phlssphl  20520  cphcjcl  23505
  Copyright terms: Public domain W3C validator