![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dipdi | Structured version Visualization version GIF version |
Description: Distributive law for inner product. (Contributed by NM, 20-Nov-2007.) (New usage is discouraged.) |
Ref | Expression |
---|---|
dipdir.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
dipdir.2 | ⊢ 𝐺 = ( +𝑣 ‘𝑈) |
dipdir.7 | ⊢ 𝑃 = (·𝑖OLD‘𝑈) |
Ref | Expression |
---|---|
dipdi | ⊢ ((𝑈 ∈ CPreHilOLD ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐴𝑃(𝐵𝐺𝐶)) = ((𝐴𝑃𝐵) + (𝐴𝑃𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . . 3 ⊢ ((𝐶 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) → (𝐶 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) | |
2 | 1 | 3com13 1123 | . 2 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → (𝐶 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) |
3 | id 22 | . . . . . 6 ⊢ ((𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) → (𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) | |
4 | 3 | 3com12 1122 | . . . . 5 ⊢ ((𝐶 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) → (𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) |
5 | dipdir.1 | . . . . . 6 ⊢ 𝑋 = (BaseSet‘𝑈) | |
6 | dipdir.2 | . . . . . 6 ⊢ 𝐺 = ( +𝑣 ‘𝑈) | |
7 | dipdir.7 | . . . . . 6 ⊢ 𝑃 = (·𝑖OLD‘𝑈) | |
8 | 5, 6, 7 | dipdir 29340 | . . . . 5 ⊢ ((𝑈 ∈ CPreHilOLD ∧ (𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) → ((𝐵𝐺𝐶)𝑃𝐴) = ((𝐵𝑃𝐴) + (𝐶𝑃𝐴))) |
9 | 4, 8 | sylan2 593 | . . . 4 ⊢ ((𝑈 ∈ CPreHilOLD ∧ (𝐶 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) → ((𝐵𝐺𝐶)𝑃𝐴) = ((𝐵𝑃𝐴) + (𝐶𝑃𝐴))) |
10 | 9 | fveq2d 6816 | . . 3 ⊢ ((𝑈 ∈ CPreHilOLD ∧ (𝐶 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) → (∗‘((𝐵𝐺𝐶)𝑃𝐴)) = (∗‘((𝐵𝑃𝐴) + (𝐶𝑃𝐴)))) |
11 | phnv 29312 | . . . 4 ⊢ (𝑈 ∈ CPreHilOLD → 𝑈 ∈ NrmCVec) | |
12 | simpl 483 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ (𝐶 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) → 𝑈 ∈ NrmCVec) | |
13 | 5, 6 | nvgcl 29118 | . . . . . . 7 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → (𝐵𝐺𝐶) ∈ 𝑋) |
14 | 13 | 3com23 1125 | . . . . . 6 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐶 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐵𝐺𝐶) ∈ 𝑋) |
15 | 14 | 3adant3r3 1183 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ (𝐶 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) → (𝐵𝐺𝐶) ∈ 𝑋) |
16 | simpr3 1195 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ (𝐶 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) → 𝐴 ∈ 𝑋) | |
17 | 5, 7 | dipcj 29212 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ (𝐵𝐺𝐶) ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) → (∗‘((𝐵𝐺𝐶)𝑃𝐴)) = (𝐴𝑃(𝐵𝐺𝐶))) |
18 | 12, 15, 16, 17 | syl3anc 1370 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ (𝐶 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) → (∗‘((𝐵𝐺𝐶)𝑃𝐴)) = (𝐴𝑃(𝐵𝐺𝐶))) |
19 | 11, 18 | sylan 580 | . . 3 ⊢ ((𝑈 ∈ CPreHilOLD ∧ (𝐶 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) → (∗‘((𝐵𝐺𝐶)𝑃𝐴)) = (𝐴𝑃(𝐵𝐺𝐶))) |
20 | 5, 7 | dipcl 29210 | . . . . . . 7 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) → (𝐵𝑃𝐴) ∈ ℂ) |
21 | 20 | 3adant3r1 1181 | . . . . . 6 ⊢ ((𝑈 ∈ NrmCVec ∧ (𝐶 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) → (𝐵𝑃𝐴) ∈ ℂ) |
22 | 5, 7 | dipcl 29210 | . . . . . . 7 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐶 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) → (𝐶𝑃𝐴) ∈ ℂ) |
23 | 22 | 3adant3r2 1182 | . . . . . 6 ⊢ ((𝑈 ∈ NrmCVec ∧ (𝐶 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) → (𝐶𝑃𝐴) ∈ ℂ) |
24 | 21, 23 | cjaddd 15010 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ (𝐶 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) → (∗‘((𝐵𝑃𝐴) + (𝐶𝑃𝐴))) = ((∗‘(𝐵𝑃𝐴)) + (∗‘(𝐶𝑃𝐴)))) |
25 | 5, 7 | dipcj 29212 | . . . . . . 7 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) → (∗‘(𝐵𝑃𝐴)) = (𝐴𝑃𝐵)) |
26 | 25 | 3adant3r1 1181 | . . . . . 6 ⊢ ((𝑈 ∈ NrmCVec ∧ (𝐶 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) → (∗‘(𝐵𝑃𝐴)) = (𝐴𝑃𝐵)) |
27 | 5, 7 | dipcj 29212 | . . . . . . 7 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐶 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) → (∗‘(𝐶𝑃𝐴)) = (𝐴𝑃𝐶)) |
28 | 27 | 3adant3r2 1182 | . . . . . 6 ⊢ ((𝑈 ∈ NrmCVec ∧ (𝐶 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) → (∗‘(𝐶𝑃𝐴)) = (𝐴𝑃𝐶)) |
29 | 26, 28 | oveq12d 7335 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ (𝐶 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) → ((∗‘(𝐵𝑃𝐴)) + (∗‘(𝐶𝑃𝐴))) = ((𝐴𝑃𝐵) + (𝐴𝑃𝐶))) |
30 | 24, 29 | eqtrd 2777 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ (𝐶 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) → (∗‘((𝐵𝑃𝐴) + (𝐶𝑃𝐴))) = ((𝐴𝑃𝐵) + (𝐴𝑃𝐶))) |
31 | 11, 30 | sylan 580 | . . 3 ⊢ ((𝑈 ∈ CPreHilOLD ∧ (𝐶 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) → (∗‘((𝐵𝑃𝐴) + (𝐶𝑃𝐴))) = ((𝐴𝑃𝐵) + (𝐴𝑃𝐶))) |
32 | 10, 19, 31 | 3eqtr3d 2785 | . 2 ⊢ ((𝑈 ∈ CPreHilOLD ∧ (𝐶 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) → (𝐴𝑃(𝐵𝐺𝐶)) = ((𝐴𝑃𝐵) + (𝐴𝑃𝐶))) |
33 | 2, 32 | sylan2 593 | 1 ⊢ ((𝑈 ∈ CPreHilOLD ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐴𝑃(𝐵𝐺𝐶)) = ((𝐴𝑃𝐵) + (𝐴𝑃𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 ‘cfv 6466 (class class class)co 7317 ℂcc 10949 + caddc 10954 ∗ccj 14886 NrmCVeccnv 29082 +𝑣 cpv 29083 BaseSetcba 29084 ·𝑖OLDcdip 29198 CPreHilOLDccphlo 29310 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-rep 5224 ax-sep 5238 ax-nul 5245 ax-pow 5303 ax-pr 5367 ax-un 7630 ax-inf2 9477 ax-cnex 11007 ax-resscn 11008 ax-1cn 11009 ax-icn 11010 ax-addcl 11011 ax-addrcl 11012 ax-mulcl 11013 ax-mulrcl 11014 ax-mulcom 11015 ax-addass 11016 ax-mulass 11017 ax-distr 11018 ax-i2m1 11019 ax-1ne0 11020 ax-1rid 11021 ax-rnegex 11022 ax-rrecex 11023 ax-cnre 11024 ax-pre-lttri 11025 ax-pre-lttrn 11026 ax-pre-ltadd 11027 ax-pre-mulgt0 11028 ax-pre-sup 11029 ax-addf 11030 ax-mulf 11031 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3916 df-nul 4268 df-if 4472 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4851 df-int 4893 df-iun 4939 df-br 5088 df-opab 5150 df-mpt 5171 df-tr 5205 df-id 5507 df-eprel 5513 df-po 5521 df-so 5522 df-fr 5563 df-se 5564 df-we 5565 df-xp 5614 df-rel 5615 df-cnv 5616 df-co 5617 df-dm 5618 df-rn 5619 df-res 5620 df-ima 5621 df-pred 6225 df-ord 6292 df-on 6293 df-lim 6294 df-suc 6295 df-iota 6418 df-fun 6468 df-fn 6469 df-f 6470 df-f1 6471 df-fo 6472 df-f1o 6473 df-fv 6474 df-isom 6475 df-riota 7274 df-ov 7320 df-oprab 7321 df-mpo 7322 df-om 7760 df-1st 7878 df-2nd 7879 df-frecs 8146 df-wrecs 8177 df-recs 8251 df-rdg 8290 df-1o 8346 df-er 8548 df-en 8784 df-dom 8785 df-sdom 8786 df-fin 8787 df-sup 9278 df-oi 9346 df-card 9775 df-pnf 11091 df-mnf 11092 df-xr 11093 df-ltxr 11094 df-le 11095 df-sub 11287 df-neg 11288 df-div 11713 df-nn 12054 df-2 12116 df-3 12117 df-4 12118 df-n0 12314 df-z 12400 df-uz 12663 df-rp 12811 df-fz 13320 df-fzo 13463 df-seq 13802 df-exp 13863 df-hash 14125 df-cj 14889 df-re 14890 df-im 14891 df-sqrt 15025 df-abs 15026 df-clim 15276 df-sum 15477 df-grpo 28991 df-gid 28992 df-ginv 28993 df-ablo 29043 df-vc 29057 df-nv 29090 df-va 29093 df-ba 29094 df-sm 29095 df-0v 29096 df-nmcv 29098 df-dip 29199 df-ph 29311 |
This theorem is referenced by: ip2dii 29342 |
Copyright terms: Public domain | W3C validator |