MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dipdi Structured version   Visualization version   GIF version

Theorem dipdi 30778
Description: Distributive law for inner product. (Contributed by NM, 20-Nov-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
dipdir.1 𝑋 = (BaseSet‘𝑈)
dipdir.2 𝐺 = ( +𝑣𝑈)
dipdir.7 𝑃 = (·𝑖OLD𝑈)
Assertion
Ref Expression
dipdi ((𝑈 ∈ CPreHilOLD ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐴𝑃(𝐵𝐺𝐶)) = ((𝐴𝑃𝐵) + (𝐴𝑃𝐶)))

Proof of Theorem dipdi
StepHypRef Expression
1 id 22 . . 3 ((𝐶𝑋𝐵𝑋𝐴𝑋) → (𝐶𝑋𝐵𝑋𝐴𝑋))
213com13 1124 . 2 ((𝐴𝑋𝐵𝑋𝐶𝑋) → (𝐶𝑋𝐵𝑋𝐴𝑋))
3 id 22 . . . . . 6 ((𝐵𝑋𝐶𝑋𝐴𝑋) → (𝐵𝑋𝐶𝑋𝐴𝑋))
433com12 1123 . . . . 5 ((𝐶𝑋𝐵𝑋𝐴𝑋) → (𝐵𝑋𝐶𝑋𝐴𝑋))
5 dipdir.1 . . . . . 6 𝑋 = (BaseSet‘𝑈)
6 dipdir.2 . . . . . 6 𝐺 = ( +𝑣𝑈)
7 dipdir.7 . . . . . 6 𝑃 = (·𝑖OLD𝑈)
85, 6, 7dipdir 30777 . . . . 5 ((𝑈 ∈ CPreHilOLD ∧ (𝐵𝑋𝐶𝑋𝐴𝑋)) → ((𝐵𝐺𝐶)𝑃𝐴) = ((𝐵𝑃𝐴) + (𝐶𝑃𝐴)))
94, 8sylan2 593 . . . 4 ((𝑈 ∈ CPreHilOLD ∧ (𝐶𝑋𝐵𝑋𝐴𝑋)) → ((𝐵𝐺𝐶)𝑃𝐴) = ((𝐵𝑃𝐴) + (𝐶𝑃𝐴)))
109fveq2d 6864 . . 3 ((𝑈 ∈ CPreHilOLD ∧ (𝐶𝑋𝐵𝑋𝐴𝑋)) → (∗‘((𝐵𝐺𝐶)𝑃𝐴)) = (∗‘((𝐵𝑃𝐴) + (𝐶𝑃𝐴))))
11 phnv 30749 . . . 4 (𝑈 ∈ CPreHilOLD𝑈 ∈ NrmCVec)
12 simpl 482 . . . . 5 ((𝑈 ∈ NrmCVec ∧ (𝐶𝑋𝐵𝑋𝐴𝑋)) → 𝑈 ∈ NrmCVec)
135, 6nvgcl 30555 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐵𝑋𝐶𝑋) → (𝐵𝐺𝐶) ∈ 𝑋)
14133com23 1126 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐶𝑋𝐵𝑋) → (𝐵𝐺𝐶) ∈ 𝑋)
15143adant3r3 1185 . . . . 5 ((𝑈 ∈ NrmCVec ∧ (𝐶𝑋𝐵𝑋𝐴𝑋)) → (𝐵𝐺𝐶) ∈ 𝑋)
16 simpr3 1197 . . . . 5 ((𝑈 ∈ NrmCVec ∧ (𝐶𝑋𝐵𝑋𝐴𝑋)) → 𝐴𝑋)
175, 7dipcj 30649 . . . . 5 ((𝑈 ∈ NrmCVec ∧ (𝐵𝐺𝐶) ∈ 𝑋𝐴𝑋) → (∗‘((𝐵𝐺𝐶)𝑃𝐴)) = (𝐴𝑃(𝐵𝐺𝐶)))
1812, 15, 16, 17syl3anc 1373 . . . 4 ((𝑈 ∈ NrmCVec ∧ (𝐶𝑋𝐵𝑋𝐴𝑋)) → (∗‘((𝐵𝐺𝐶)𝑃𝐴)) = (𝐴𝑃(𝐵𝐺𝐶)))
1911, 18sylan 580 . . 3 ((𝑈 ∈ CPreHilOLD ∧ (𝐶𝑋𝐵𝑋𝐴𝑋)) → (∗‘((𝐵𝐺𝐶)𝑃𝐴)) = (𝐴𝑃(𝐵𝐺𝐶)))
205, 7dipcl 30647 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐵𝑋𝐴𝑋) → (𝐵𝑃𝐴) ∈ ℂ)
21203adant3r1 1183 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ (𝐶𝑋𝐵𝑋𝐴𝑋)) → (𝐵𝑃𝐴) ∈ ℂ)
225, 7dipcl 30647 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐶𝑋𝐴𝑋) → (𝐶𝑃𝐴) ∈ ℂ)
23223adant3r2 1184 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ (𝐶𝑋𝐵𝑋𝐴𝑋)) → (𝐶𝑃𝐴) ∈ ℂ)
2421, 23cjaddd 15192 . . . . 5 ((𝑈 ∈ NrmCVec ∧ (𝐶𝑋𝐵𝑋𝐴𝑋)) → (∗‘((𝐵𝑃𝐴) + (𝐶𝑃𝐴))) = ((∗‘(𝐵𝑃𝐴)) + (∗‘(𝐶𝑃𝐴))))
255, 7dipcj 30649 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐵𝑋𝐴𝑋) → (∗‘(𝐵𝑃𝐴)) = (𝐴𝑃𝐵))
26253adant3r1 1183 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ (𝐶𝑋𝐵𝑋𝐴𝑋)) → (∗‘(𝐵𝑃𝐴)) = (𝐴𝑃𝐵))
275, 7dipcj 30649 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐶𝑋𝐴𝑋) → (∗‘(𝐶𝑃𝐴)) = (𝐴𝑃𝐶))
28273adant3r2 1184 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ (𝐶𝑋𝐵𝑋𝐴𝑋)) → (∗‘(𝐶𝑃𝐴)) = (𝐴𝑃𝐶))
2926, 28oveq12d 7407 . . . . 5 ((𝑈 ∈ NrmCVec ∧ (𝐶𝑋𝐵𝑋𝐴𝑋)) → ((∗‘(𝐵𝑃𝐴)) + (∗‘(𝐶𝑃𝐴))) = ((𝐴𝑃𝐵) + (𝐴𝑃𝐶)))
3024, 29eqtrd 2765 . . . 4 ((𝑈 ∈ NrmCVec ∧ (𝐶𝑋𝐵𝑋𝐴𝑋)) → (∗‘((𝐵𝑃𝐴) + (𝐶𝑃𝐴))) = ((𝐴𝑃𝐵) + (𝐴𝑃𝐶)))
3111, 30sylan 580 . . 3 ((𝑈 ∈ CPreHilOLD ∧ (𝐶𝑋𝐵𝑋𝐴𝑋)) → (∗‘((𝐵𝑃𝐴) + (𝐶𝑃𝐴))) = ((𝐴𝑃𝐵) + (𝐴𝑃𝐶)))
3210, 19, 313eqtr3d 2773 . 2 ((𝑈 ∈ CPreHilOLD ∧ (𝐶𝑋𝐵𝑋𝐴𝑋)) → (𝐴𝑃(𝐵𝐺𝐶)) = ((𝐴𝑃𝐵) + (𝐴𝑃𝐶)))
332, 32sylan2 593 1 ((𝑈 ∈ CPreHilOLD ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐴𝑃(𝐵𝐺𝐶)) = ((𝐴𝑃𝐵) + (𝐴𝑃𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  cfv 6513  (class class class)co 7389  cc 11072   + caddc 11077  ccj 15068  NrmCVeccnv 30519   +𝑣 cpv 30520  BaseSetcba 30521  ·𝑖OLDcdip 30635  CPreHilOLDccphlo 30747
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713  ax-inf2 9600  ax-cnex 11130  ax-resscn 11131  ax-1cn 11132  ax-icn 11133  ax-addcl 11134  ax-addrcl 11135  ax-mulcl 11136  ax-mulrcl 11137  ax-mulcom 11138  ax-addass 11139  ax-mulass 11140  ax-distr 11141  ax-i2m1 11142  ax-1ne0 11143  ax-1rid 11144  ax-rnegex 11145  ax-rrecex 11146  ax-cnre 11147  ax-pre-lttri 11148  ax-pre-lttrn 11149  ax-pre-ltadd 11150  ax-pre-mulgt0 11151  ax-pre-sup 11152  ax-addf 11153  ax-mulf 11154
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-pss 3936  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-int 4913  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-tr 5217  df-id 5535  df-eprel 5540  df-po 5548  df-so 5549  df-fr 5593  df-se 5594  df-we 5595  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-pred 6276  df-ord 6337  df-on 6338  df-lim 6339  df-suc 6340  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-isom 6522  df-riota 7346  df-ov 7392  df-oprab 7393  df-mpo 7394  df-om 7845  df-1st 7970  df-2nd 7971  df-frecs 8262  df-wrecs 8293  df-recs 8342  df-rdg 8380  df-1o 8436  df-er 8673  df-en 8921  df-dom 8922  df-sdom 8923  df-fin 8924  df-sup 9399  df-oi 9469  df-card 9898  df-pnf 11216  df-mnf 11217  df-xr 11218  df-ltxr 11219  df-le 11220  df-sub 11413  df-neg 11414  df-div 11842  df-nn 12188  df-2 12250  df-3 12251  df-4 12252  df-n0 12449  df-z 12536  df-uz 12800  df-rp 12958  df-fz 13475  df-fzo 13622  df-seq 13973  df-exp 14033  df-hash 14302  df-cj 15071  df-re 15072  df-im 15073  df-sqrt 15207  df-abs 15208  df-clim 15460  df-sum 15659  df-grpo 30428  df-gid 30429  df-ginv 30430  df-ablo 30480  df-vc 30494  df-nv 30527  df-va 30530  df-ba 30531  df-sm 30532  df-0v 30533  df-nmcv 30535  df-dip 30636  df-ph 30748
This theorem is referenced by:  ip2dii  30779
  Copyright terms: Public domain W3C validator