| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dipdi | Structured version Visualization version GIF version | ||
| Description: Distributive law for inner product. (Contributed by NM, 20-Nov-2007.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| dipdir.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
| dipdir.2 | ⊢ 𝐺 = ( +𝑣 ‘𝑈) |
| dipdir.7 | ⊢ 𝑃 = (·𝑖OLD‘𝑈) |
| Ref | Expression |
|---|---|
| dipdi | ⊢ ((𝑈 ∈ CPreHilOLD ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐴𝑃(𝐵𝐺𝐶)) = ((𝐴𝑃𝐵) + (𝐴𝑃𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . . 3 ⊢ ((𝐶 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) → (𝐶 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) | |
| 2 | 1 | 3com13 1124 | . 2 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → (𝐶 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) |
| 3 | id 22 | . . . . . 6 ⊢ ((𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) → (𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) | |
| 4 | 3 | 3com12 1123 | . . . . 5 ⊢ ((𝐶 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) → (𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) |
| 5 | dipdir.1 | . . . . . 6 ⊢ 𝑋 = (BaseSet‘𝑈) | |
| 6 | dipdir.2 | . . . . . 6 ⊢ 𝐺 = ( +𝑣 ‘𝑈) | |
| 7 | dipdir.7 | . . . . . 6 ⊢ 𝑃 = (·𝑖OLD‘𝑈) | |
| 8 | 5, 6, 7 | dipdir 30808 | . . . . 5 ⊢ ((𝑈 ∈ CPreHilOLD ∧ (𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) → ((𝐵𝐺𝐶)𝑃𝐴) = ((𝐵𝑃𝐴) + (𝐶𝑃𝐴))) |
| 9 | 4, 8 | sylan2 593 | . . . 4 ⊢ ((𝑈 ∈ CPreHilOLD ∧ (𝐶 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) → ((𝐵𝐺𝐶)𝑃𝐴) = ((𝐵𝑃𝐴) + (𝐶𝑃𝐴))) |
| 10 | 9 | fveq2d 6891 | . . 3 ⊢ ((𝑈 ∈ CPreHilOLD ∧ (𝐶 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) → (∗‘((𝐵𝐺𝐶)𝑃𝐴)) = (∗‘((𝐵𝑃𝐴) + (𝐶𝑃𝐴)))) |
| 11 | phnv 30780 | . . . 4 ⊢ (𝑈 ∈ CPreHilOLD → 𝑈 ∈ NrmCVec) | |
| 12 | simpl 482 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ (𝐶 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) → 𝑈 ∈ NrmCVec) | |
| 13 | 5, 6 | nvgcl 30586 | . . . . . . 7 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → (𝐵𝐺𝐶) ∈ 𝑋) |
| 14 | 13 | 3com23 1126 | . . . . . 6 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐶 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐵𝐺𝐶) ∈ 𝑋) |
| 15 | 14 | 3adant3r3 1184 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ (𝐶 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) → (𝐵𝐺𝐶) ∈ 𝑋) |
| 16 | simpr3 1196 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ (𝐶 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) → 𝐴 ∈ 𝑋) | |
| 17 | 5, 7 | dipcj 30680 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ (𝐵𝐺𝐶) ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) → (∗‘((𝐵𝐺𝐶)𝑃𝐴)) = (𝐴𝑃(𝐵𝐺𝐶))) |
| 18 | 12, 15, 16, 17 | syl3anc 1372 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ (𝐶 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) → (∗‘((𝐵𝐺𝐶)𝑃𝐴)) = (𝐴𝑃(𝐵𝐺𝐶))) |
| 19 | 11, 18 | sylan 580 | . . 3 ⊢ ((𝑈 ∈ CPreHilOLD ∧ (𝐶 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) → (∗‘((𝐵𝐺𝐶)𝑃𝐴)) = (𝐴𝑃(𝐵𝐺𝐶))) |
| 20 | 5, 7 | dipcl 30678 | . . . . . . 7 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) → (𝐵𝑃𝐴) ∈ ℂ) |
| 21 | 20 | 3adant3r1 1182 | . . . . . 6 ⊢ ((𝑈 ∈ NrmCVec ∧ (𝐶 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) → (𝐵𝑃𝐴) ∈ ℂ) |
| 22 | 5, 7 | dipcl 30678 | . . . . . . 7 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐶 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) → (𝐶𝑃𝐴) ∈ ℂ) |
| 23 | 22 | 3adant3r2 1183 | . . . . . 6 ⊢ ((𝑈 ∈ NrmCVec ∧ (𝐶 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) → (𝐶𝑃𝐴) ∈ ℂ) |
| 24 | 21, 23 | cjaddd 15242 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ (𝐶 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) → (∗‘((𝐵𝑃𝐴) + (𝐶𝑃𝐴))) = ((∗‘(𝐵𝑃𝐴)) + (∗‘(𝐶𝑃𝐴)))) |
| 25 | 5, 7 | dipcj 30680 | . . . . . . 7 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) → (∗‘(𝐵𝑃𝐴)) = (𝐴𝑃𝐵)) |
| 26 | 25 | 3adant3r1 1182 | . . . . . 6 ⊢ ((𝑈 ∈ NrmCVec ∧ (𝐶 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) → (∗‘(𝐵𝑃𝐴)) = (𝐴𝑃𝐵)) |
| 27 | 5, 7 | dipcj 30680 | . . . . . . 7 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐶 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) → (∗‘(𝐶𝑃𝐴)) = (𝐴𝑃𝐶)) |
| 28 | 27 | 3adant3r2 1183 | . . . . . 6 ⊢ ((𝑈 ∈ NrmCVec ∧ (𝐶 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) → (∗‘(𝐶𝑃𝐴)) = (𝐴𝑃𝐶)) |
| 29 | 26, 28 | oveq12d 7432 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ (𝐶 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) → ((∗‘(𝐵𝑃𝐴)) + (∗‘(𝐶𝑃𝐴))) = ((𝐴𝑃𝐵) + (𝐴𝑃𝐶))) |
| 30 | 24, 29 | eqtrd 2769 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ (𝐶 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) → (∗‘((𝐵𝑃𝐴) + (𝐶𝑃𝐴))) = ((𝐴𝑃𝐵) + (𝐴𝑃𝐶))) |
| 31 | 11, 30 | sylan 580 | . . 3 ⊢ ((𝑈 ∈ CPreHilOLD ∧ (𝐶 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) → (∗‘((𝐵𝑃𝐴) + (𝐶𝑃𝐴))) = ((𝐴𝑃𝐵) + (𝐴𝑃𝐶))) |
| 32 | 10, 19, 31 | 3eqtr3d 2777 | . 2 ⊢ ((𝑈 ∈ CPreHilOLD ∧ (𝐶 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) → (𝐴𝑃(𝐵𝐺𝐶)) = ((𝐴𝑃𝐵) + (𝐴𝑃𝐶))) |
| 33 | 2, 32 | sylan2 593 | 1 ⊢ ((𝑈 ∈ CPreHilOLD ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐴𝑃(𝐵𝐺𝐶)) = ((𝐴𝑃𝐵) + (𝐴𝑃𝐶))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ‘cfv 6542 (class class class)co 7414 ℂcc 11136 + caddc 11141 ∗ccj 15118 NrmCVeccnv 30550 +𝑣 cpv 30551 BaseSetcba 30552 ·𝑖OLDcdip 30666 CPreHilOLDccphlo 30778 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5261 ax-sep 5278 ax-nul 5288 ax-pow 5347 ax-pr 5414 ax-un 7738 ax-inf2 9664 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 ax-pre-sup 11216 ax-addf 11217 ax-mulf 11218 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3773 df-csb 3882 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-pss 3953 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-int 4929 df-iun 4975 df-br 5126 df-opab 5188 df-mpt 5208 df-tr 5242 df-id 5560 df-eprel 5566 df-po 5574 df-so 5575 df-fr 5619 df-se 5620 df-we 5621 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6303 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6495 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-isom 6551 df-riota 7371 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7871 df-1st 7997 df-2nd 7998 df-frecs 8289 df-wrecs 8320 df-recs 8394 df-rdg 8433 df-1o 8489 df-er 8728 df-en 8969 df-dom 8970 df-sdom 8971 df-fin 8972 df-sup 9465 df-oi 9533 df-card 9962 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11477 df-neg 11478 df-div 11904 df-nn 12250 df-2 12312 df-3 12313 df-4 12314 df-n0 12511 df-z 12598 df-uz 12862 df-rp 13018 df-fz 13531 df-fzo 13678 df-seq 14026 df-exp 14086 df-hash 14353 df-cj 15121 df-re 15122 df-im 15123 df-sqrt 15257 df-abs 15258 df-clim 15507 df-sum 15706 df-grpo 30459 df-gid 30460 df-ginv 30461 df-ablo 30511 df-vc 30525 df-nv 30558 df-va 30561 df-ba 30562 df-sm 30563 df-0v 30564 df-nmcv 30566 df-dip 30667 df-ph 30779 |
| This theorem is referenced by: ip2dii 30810 |
| Copyright terms: Public domain | W3C validator |