Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dipassr | Structured version Visualization version GIF version |
Description: "Associative" law for second argument of inner product (compare dipass 29235). (Contributed by NM, 22-Nov-2007.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ipass.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
ipass.4 | ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) |
ipass.7 | ⊢ 𝑃 = (·𝑖OLD‘𝑈) |
Ref | Expression |
---|---|
dipassr | ⊢ ((𝑈 ∈ CPreHilOLD ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ 𝑋)) → (𝐴𝑃(𝐵𝑆𝐶)) = ((∗‘𝐵) · (𝐴𝑃𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3anrot 1098 | . . . 4 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ 𝑋) ↔ (𝐵 ∈ ℂ ∧ 𝐶 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) | |
2 | ipass.1 | . . . . 5 ⊢ 𝑋 = (BaseSet‘𝑈) | |
3 | ipass.4 | . . . . 5 ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) | |
4 | ipass.7 | . . . . 5 ⊢ 𝑃 = (·𝑖OLD‘𝑈) | |
5 | 2, 3, 4 | dipass 29235 | . . . 4 ⊢ ((𝑈 ∈ CPreHilOLD ∧ (𝐵 ∈ ℂ ∧ 𝐶 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) → ((𝐵𝑆𝐶)𝑃𝐴) = (𝐵 · (𝐶𝑃𝐴))) |
6 | 1, 5 | sylan2b 593 | . . 3 ⊢ ((𝑈 ∈ CPreHilOLD ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ 𝑋)) → ((𝐵𝑆𝐶)𝑃𝐴) = (𝐵 · (𝐶𝑃𝐴))) |
7 | 6 | fveq2d 6796 | . 2 ⊢ ((𝑈 ∈ CPreHilOLD ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ 𝑋)) → (∗‘((𝐵𝑆𝐶)𝑃𝐴)) = (∗‘(𝐵 · (𝐶𝑃𝐴)))) |
8 | phnv 29204 | . . 3 ⊢ (𝑈 ∈ CPreHilOLD → 𝑈 ∈ NrmCVec) | |
9 | simpl 482 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ 𝑋)) → 𝑈 ∈ NrmCVec) | |
10 | 2, 3 | nvscl 29016 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ 𝑋) → (𝐵𝑆𝐶) ∈ 𝑋) |
11 | 10 | 3adant3r1 1180 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ 𝑋)) → (𝐵𝑆𝐶) ∈ 𝑋) |
12 | simpr1 1192 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ 𝑋)) → 𝐴 ∈ 𝑋) | |
13 | 2, 4 | dipcj 29104 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ (𝐵𝑆𝐶) ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) → (∗‘((𝐵𝑆𝐶)𝑃𝐴)) = (𝐴𝑃(𝐵𝑆𝐶))) |
14 | 9, 11, 12, 13 | syl3anc 1369 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ 𝑋)) → (∗‘((𝐵𝑆𝐶)𝑃𝐴)) = (𝐴𝑃(𝐵𝑆𝐶))) |
15 | 8, 14 | sylan 579 | . 2 ⊢ ((𝑈 ∈ CPreHilOLD ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ 𝑋)) → (∗‘((𝐵𝑆𝐶)𝑃𝐴)) = (𝐴𝑃(𝐵𝑆𝐶))) |
16 | simpr2 1193 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ 𝑋)) → 𝐵 ∈ ℂ) | |
17 | 2, 4 | dipcl 29102 | . . . . . . 7 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐶 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) → (𝐶𝑃𝐴) ∈ ℂ) |
18 | 17 | 3com23 1124 | . . . . . 6 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → (𝐶𝑃𝐴) ∈ ℂ) |
19 | 18 | 3adant3r2 1181 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ 𝑋)) → (𝐶𝑃𝐴) ∈ ℂ) |
20 | 16, 19 | cjmuld 14960 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ 𝑋)) → (∗‘(𝐵 · (𝐶𝑃𝐴))) = ((∗‘𝐵) · (∗‘(𝐶𝑃𝐴)))) |
21 | 2, 4 | dipcj 29104 | . . . . . . 7 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐶 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) → (∗‘(𝐶𝑃𝐴)) = (𝐴𝑃𝐶)) |
22 | 21 | 3com23 1124 | . . . . . 6 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → (∗‘(𝐶𝑃𝐴)) = (𝐴𝑃𝐶)) |
23 | 22 | 3adant3r2 1181 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ 𝑋)) → (∗‘(𝐶𝑃𝐴)) = (𝐴𝑃𝐶)) |
24 | 23 | oveq2d 7311 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ 𝑋)) → ((∗‘𝐵) · (∗‘(𝐶𝑃𝐴))) = ((∗‘𝐵) · (𝐴𝑃𝐶))) |
25 | 20, 24 | eqtrd 2773 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ 𝑋)) → (∗‘(𝐵 · (𝐶𝑃𝐴))) = ((∗‘𝐵) · (𝐴𝑃𝐶))) |
26 | 8, 25 | sylan 579 | . 2 ⊢ ((𝑈 ∈ CPreHilOLD ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ 𝑋)) → (∗‘(𝐵 · (𝐶𝑃𝐴))) = ((∗‘𝐵) · (𝐴𝑃𝐶))) |
27 | 7, 15, 26 | 3eqtr3d 2781 | 1 ⊢ ((𝑈 ∈ CPreHilOLD ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ 𝑋)) → (𝐴𝑃(𝐵𝑆𝐶)) = ((∗‘𝐵) · (𝐴𝑃𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1537 ∈ wcel 2101 ‘cfv 6447 (class class class)co 7295 ℂcc 10897 · cmul 10904 ∗ccj 14835 NrmCVeccnv 28974 BaseSetcba 28976 ·𝑠OLD cns 28977 ·𝑖OLDcdip 29090 CPreHilOLDccphlo 29202 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2103 ax-9 2111 ax-10 2132 ax-11 2149 ax-12 2166 ax-ext 2704 ax-rep 5212 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7608 ax-inf2 9427 ax-cnex 10955 ax-resscn 10956 ax-1cn 10957 ax-icn 10958 ax-addcl 10959 ax-addrcl 10960 ax-mulcl 10961 ax-mulrcl 10962 ax-mulcom 10963 ax-addass 10964 ax-mulass 10965 ax-distr 10966 ax-i2m1 10967 ax-1ne0 10968 ax-1rid 10969 ax-rnegex 10970 ax-rrecex 10971 ax-cnre 10972 ax-pre-lttri 10973 ax-pre-lttrn 10974 ax-pre-ltadd 10975 ax-pre-mulgt0 10976 ax-pre-sup 10977 ax-addf 10978 ax-mulf 10979 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2063 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2884 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3222 df-reu 3223 df-rab 3224 df-v 3436 df-sbc 3719 df-csb 3835 df-dif 3892 df-un 3894 df-in 3896 df-ss 3906 df-pss 3908 df-nul 4260 df-if 4463 df-pw 4538 df-sn 4565 df-pr 4567 df-tp 4569 df-op 4571 df-uni 4842 df-int 4883 df-iun 4929 df-iin 4930 df-br 5078 df-opab 5140 df-mpt 5161 df-tr 5195 df-id 5491 df-eprel 5497 df-po 5505 df-so 5506 df-fr 5546 df-se 5547 df-we 5548 df-xp 5597 df-rel 5598 df-cnv 5599 df-co 5600 df-dm 5601 df-rn 5602 df-res 5603 df-ima 5604 df-pred 6206 df-ord 6273 df-on 6274 df-lim 6275 df-suc 6276 df-iota 6399 df-fun 6449 df-fn 6450 df-f 6451 df-f1 6452 df-fo 6453 df-f1o 6454 df-fv 6455 df-isom 6456 df-riota 7252 df-ov 7298 df-oprab 7299 df-mpo 7300 df-of 7553 df-om 7733 df-1st 7851 df-2nd 7852 df-supp 7998 df-frecs 8117 df-wrecs 8148 df-recs 8222 df-rdg 8261 df-1o 8317 df-2o 8318 df-er 8518 df-map 8637 df-ixp 8706 df-en 8754 df-dom 8755 df-sdom 8756 df-fin 8757 df-fsupp 9157 df-fi 9198 df-sup 9229 df-inf 9230 df-oi 9297 df-card 9725 df-pnf 11039 df-mnf 11040 df-xr 11041 df-ltxr 11042 df-le 11043 df-sub 11235 df-neg 11236 df-div 11661 df-nn 12002 df-2 12064 df-3 12065 df-4 12066 df-5 12067 df-6 12068 df-7 12069 df-8 12070 df-9 12071 df-n0 12262 df-z 12348 df-dec 12466 df-uz 12611 df-q 12717 df-rp 12759 df-xneg 12876 df-xadd 12877 df-xmul 12878 df-ioo 13111 df-icc 13114 df-fz 13268 df-fzo 13411 df-seq 13750 df-exp 13811 df-hash 14073 df-cj 14838 df-re 14839 df-im 14840 df-sqrt 14974 df-abs 14975 df-clim 15225 df-sum 15426 df-struct 16876 df-sets 16893 df-slot 16911 df-ndx 16923 df-base 16941 df-ress 16970 df-plusg 17003 df-mulr 17004 df-starv 17005 df-sca 17006 df-vsca 17007 df-ip 17008 df-tset 17009 df-ple 17010 df-ds 17012 df-unif 17013 df-hom 17014 df-cco 17015 df-rest 17161 df-topn 17162 df-0g 17180 df-gsum 17181 df-topgen 17182 df-pt 17183 df-prds 17186 df-xrs 17241 df-qtop 17246 df-imas 17247 df-xps 17249 df-mre 17323 df-mrc 17324 df-acs 17326 df-mgm 18354 df-sgrp 18403 df-mnd 18414 df-submnd 18459 df-mulg 18729 df-cntz 18951 df-cmn 19416 df-psmet 20617 df-xmet 20618 df-met 20619 df-bl 20620 df-mopn 20621 df-cnfld 20626 df-top 22071 df-topon 22088 df-topsp 22110 df-bases 22124 df-cld 22198 df-ntr 22199 df-cls 22200 df-cn 22406 df-cnp 22407 df-t1 22493 df-haus 22494 df-tx 22741 df-hmeo 22934 df-xms 23501 df-ms 23502 df-tms 23503 df-grpo 28883 df-gid 28884 df-ginv 28885 df-gdiv 28886 df-ablo 28935 df-vc 28949 df-nv 28982 df-va 28985 df-ba 28986 df-sm 28987 df-0v 28988 df-vs 28989 df-nmcv 28990 df-ims 28991 df-dip 29091 df-ph 29203 |
This theorem is referenced by: dipassr2 29237 |
Copyright terms: Public domain | W3C validator |