MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  minvecolem7 Structured version   Visualization version   GIF version

Theorem minvecolem7 30667
Description: Lemma for minveco 30668. Since any two minimal points are distance zero away from each other, the minimal point is unique. (Contributed by Mario Carneiro, 9-May-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
minveco.x 𝑋 = (BaseSetβ€˜π‘ˆ)
minveco.m 𝑀 = ( βˆ’π‘£ β€˜π‘ˆ)
minveco.n 𝑁 = (normCVβ€˜π‘ˆ)
minveco.y π‘Œ = (BaseSetβ€˜π‘Š)
minveco.u (πœ‘ β†’ π‘ˆ ∈ CPreHilOLD)
minveco.w (πœ‘ β†’ π‘Š ∈ ((SubSpβ€˜π‘ˆ) ∩ CBan))
minveco.a (πœ‘ β†’ 𝐴 ∈ 𝑋)
minveco.d 𝐷 = (IndMetβ€˜π‘ˆ)
minveco.j 𝐽 = (MetOpenβ€˜π·)
minveco.r 𝑅 = ran (𝑦 ∈ π‘Œ ↦ (π‘β€˜(𝐴𝑀𝑦)))
minveco.s 𝑆 = inf(𝑅, ℝ, < )
Assertion
Ref Expression
minvecolem7 (πœ‘ β†’ βˆƒ!π‘₯ ∈ π‘Œ βˆ€π‘¦ ∈ π‘Œ (π‘β€˜(𝐴𝑀π‘₯)) ≀ (π‘β€˜(𝐴𝑀𝑦)))
Distinct variable groups:   π‘₯,𝑦,𝐽   π‘₯,𝑀,𝑦   π‘₯,𝑁,𝑦   πœ‘,π‘₯,𝑦   π‘₯,𝑅   π‘₯,𝑆,𝑦   π‘₯,𝐴,𝑦   π‘₯,𝐷,𝑦   π‘₯,π‘ˆ,𝑦   π‘₯,π‘Š,𝑦   π‘₯,𝑋   π‘₯,π‘Œ,𝑦
Allowed substitution hints:   𝑅(𝑦)   𝑋(𝑦)

Proof of Theorem minvecolem7
Dummy variable 𝑀 is distinct from all other variables.
StepHypRef Expression
1 minveco.x . . 3 𝑋 = (BaseSetβ€˜π‘ˆ)
2 minveco.m . . 3 𝑀 = ( βˆ’π‘£ β€˜π‘ˆ)
3 minveco.n . . 3 𝑁 = (normCVβ€˜π‘ˆ)
4 minveco.y . . 3 π‘Œ = (BaseSetβ€˜π‘Š)
5 minveco.u . . 3 (πœ‘ β†’ π‘ˆ ∈ CPreHilOLD)
6 minveco.w . . 3 (πœ‘ β†’ π‘Š ∈ ((SubSpβ€˜π‘ˆ) ∩ CBan))
7 minveco.a . . 3 (πœ‘ β†’ 𝐴 ∈ 𝑋)
8 minveco.d . . 3 𝐷 = (IndMetβ€˜π‘ˆ)
9 minveco.j . . 3 𝐽 = (MetOpenβ€˜π·)
10 minveco.r . . 3 𝑅 = ran (𝑦 ∈ π‘Œ ↦ (π‘β€˜(𝐴𝑀𝑦)))
11 minveco.s . . 3 𝑆 = inf(𝑅, ℝ, < )
121, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11minvecolem5 30665 . 2 (πœ‘ β†’ βˆƒπ‘₯ ∈ π‘Œ βˆ€π‘¦ ∈ π‘Œ (π‘β€˜(𝐴𝑀π‘₯)) ≀ (π‘β€˜(𝐴𝑀𝑦)))
135ad2antrr 725 . . . . . 6 (((πœ‘ ∧ (π‘₯ ∈ π‘Œ ∧ 𝑀 ∈ π‘Œ)) ∧ (((𝐴𝐷π‘₯)↑2) ≀ ((𝑆↑2) + 0) ∧ ((𝐴𝐷𝑀)↑2) ≀ ((𝑆↑2) + 0))) β†’ π‘ˆ ∈ CPreHilOLD)
146ad2antrr 725 . . . . . 6 (((πœ‘ ∧ (π‘₯ ∈ π‘Œ ∧ 𝑀 ∈ π‘Œ)) ∧ (((𝐴𝐷π‘₯)↑2) ≀ ((𝑆↑2) + 0) ∧ ((𝐴𝐷𝑀)↑2) ≀ ((𝑆↑2) + 0))) β†’ π‘Š ∈ ((SubSpβ€˜π‘ˆ) ∩ CBan))
157ad2antrr 725 . . . . . 6 (((πœ‘ ∧ (π‘₯ ∈ π‘Œ ∧ 𝑀 ∈ π‘Œ)) ∧ (((𝐴𝐷π‘₯)↑2) ≀ ((𝑆↑2) + 0) ∧ ((𝐴𝐷𝑀)↑2) ≀ ((𝑆↑2) + 0))) β†’ 𝐴 ∈ 𝑋)
16 0re 11232 . . . . . . 7 0 ∈ ℝ
1716a1i 11 . . . . . 6 (((πœ‘ ∧ (π‘₯ ∈ π‘Œ ∧ 𝑀 ∈ π‘Œ)) ∧ (((𝐴𝐷π‘₯)↑2) ≀ ((𝑆↑2) + 0) ∧ ((𝐴𝐷𝑀)↑2) ≀ ((𝑆↑2) + 0))) β†’ 0 ∈ ℝ)
18 0le0 12329 . . . . . . 7 0 ≀ 0
1918a1i 11 . . . . . 6 (((πœ‘ ∧ (π‘₯ ∈ π‘Œ ∧ 𝑀 ∈ π‘Œ)) ∧ (((𝐴𝐷π‘₯)↑2) ≀ ((𝑆↑2) + 0) ∧ ((𝐴𝐷𝑀)↑2) ≀ ((𝑆↑2) + 0))) β†’ 0 ≀ 0)
20 simplrl 776 . . . . . 6 (((πœ‘ ∧ (π‘₯ ∈ π‘Œ ∧ 𝑀 ∈ π‘Œ)) ∧ (((𝐴𝐷π‘₯)↑2) ≀ ((𝑆↑2) + 0) ∧ ((𝐴𝐷𝑀)↑2) ≀ ((𝑆↑2) + 0))) β†’ π‘₯ ∈ π‘Œ)
21 simplrr 777 . . . . . 6 (((πœ‘ ∧ (π‘₯ ∈ π‘Œ ∧ 𝑀 ∈ π‘Œ)) ∧ (((𝐴𝐷π‘₯)↑2) ≀ ((𝑆↑2) + 0) ∧ ((𝐴𝐷𝑀)↑2) ≀ ((𝑆↑2) + 0))) β†’ 𝑀 ∈ π‘Œ)
22 simprl 770 . . . . . 6 (((πœ‘ ∧ (π‘₯ ∈ π‘Œ ∧ 𝑀 ∈ π‘Œ)) ∧ (((𝐴𝐷π‘₯)↑2) ≀ ((𝑆↑2) + 0) ∧ ((𝐴𝐷𝑀)↑2) ≀ ((𝑆↑2) + 0))) β†’ ((𝐴𝐷π‘₯)↑2) ≀ ((𝑆↑2) + 0))
23 simprr 772 . . . . . 6 (((πœ‘ ∧ (π‘₯ ∈ π‘Œ ∧ 𝑀 ∈ π‘Œ)) ∧ (((𝐴𝐷π‘₯)↑2) ≀ ((𝑆↑2) + 0) ∧ ((𝐴𝐷𝑀)↑2) ≀ ((𝑆↑2) + 0))) β†’ ((𝐴𝐷𝑀)↑2) ≀ ((𝑆↑2) + 0))
241, 2, 3, 4, 13, 14, 15, 8, 9, 10, 11, 17, 19, 20, 21, 22, 23minvecolem2 30659 . . . . 5 (((πœ‘ ∧ (π‘₯ ∈ π‘Œ ∧ 𝑀 ∈ π‘Œ)) ∧ (((𝐴𝐷π‘₯)↑2) ≀ ((𝑆↑2) + 0) ∧ ((𝐴𝐷𝑀)↑2) ≀ ((𝑆↑2) + 0))) β†’ ((π‘₯𝐷𝑀)↑2) ≀ (4 Β· 0))
2524ex 412 . . . 4 ((πœ‘ ∧ (π‘₯ ∈ π‘Œ ∧ 𝑀 ∈ π‘Œ)) β†’ ((((𝐴𝐷π‘₯)↑2) ≀ ((𝑆↑2) + 0) ∧ ((𝐴𝐷𝑀)↑2) ≀ ((𝑆↑2) + 0)) β†’ ((π‘₯𝐷𝑀)↑2) ≀ (4 Β· 0)))
261, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11minvecolem6 30666 . . . . . 6 ((πœ‘ ∧ π‘₯ ∈ π‘Œ) β†’ (((𝐴𝐷π‘₯)↑2) ≀ ((𝑆↑2) + 0) ↔ βˆ€π‘¦ ∈ π‘Œ (π‘β€˜(𝐴𝑀π‘₯)) ≀ (π‘β€˜(𝐴𝑀𝑦))))
2726adantrr 716 . . . . 5 ((πœ‘ ∧ (π‘₯ ∈ π‘Œ ∧ 𝑀 ∈ π‘Œ)) β†’ (((𝐴𝐷π‘₯)↑2) ≀ ((𝑆↑2) + 0) ↔ βˆ€π‘¦ ∈ π‘Œ (π‘β€˜(𝐴𝑀π‘₯)) ≀ (π‘β€˜(𝐴𝑀𝑦))))
281, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11minvecolem6 30666 . . . . . 6 ((πœ‘ ∧ 𝑀 ∈ π‘Œ) β†’ (((𝐴𝐷𝑀)↑2) ≀ ((𝑆↑2) + 0) ↔ βˆ€π‘¦ ∈ π‘Œ (π‘β€˜(𝐴𝑀𝑀)) ≀ (π‘β€˜(𝐴𝑀𝑦))))
2928adantrl 715 . . . . 5 ((πœ‘ ∧ (π‘₯ ∈ π‘Œ ∧ 𝑀 ∈ π‘Œ)) β†’ (((𝐴𝐷𝑀)↑2) ≀ ((𝑆↑2) + 0) ↔ βˆ€π‘¦ ∈ π‘Œ (π‘β€˜(𝐴𝑀𝑀)) ≀ (π‘β€˜(𝐴𝑀𝑦))))
3027, 29anbi12d 630 . . . 4 ((πœ‘ ∧ (π‘₯ ∈ π‘Œ ∧ 𝑀 ∈ π‘Œ)) β†’ ((((𝐴𝐷π‘₯)↑2) ≀ ((𝑆↑2) + 0) ∧ ((𝐴𝐷𝑀)↑2) ≀ ((𝑆↑2) + 0)) ↔ (βˆ€π‘¦ ∈ π‘Œ (π‘β€˜(𝐴𝑀π‘₯)) ≀ (π‘β€˜(𝐴𝑀𝑦)) ∧ βˆ€π‘¦ ∈ π‘Œ (π‘β€˜(𝐴𝑀𝑀)) ≀ (π‘β€˜(𝐴𝑀𝑦)))))
31 4cn 12313 . . . . . . 7 4 ∈ β„‚
3231mul01i 11420 . . . . . 6 (4 Β· 0) = 0
3332breq2i 5150 . . . . 5 (((π‘₯𝐷𝑀)↑2) ≀ (4 Β· 0) ↔ ((π‘₯𝐷𝑀)↑2) ≀ 0)
34 phnv 30598 . . . . . . . . . . . 12 (π‘ˆ ∈ CPreHilOLD β†’ π‘ˆ ∈ NrmCVec)
355, 34syl 17 . . . . . . . . . . 11 (πœ‘ β†’ π‘ˆ ∈ NrmCVec)
3635adantr 480 . . . . . . . . . 10 ((πœ‘ ∧ (π‘₯ ∈ π‘Œ ∧ 𝑀 ∈ π‘Œ)) β†’ π‘ˆ ∈ NrmCVec)
371, 8imsmet 30475 . . . . . . . . . 10 (π‘ˆ ∈ NrmCVec β†’ 𝐷 ∈ (Metβ€˜π‘‹))
3836, 37syl 17 . . . . . . . . 9 ((πœ‘ ∧ (π‘₯ ∈ π‘Œ ∧ 𝑀 ∈ π‘Œ)) β†’ 𝐷 ∈ (Metβ€˜π‘‹))
39 inss1 4224 . . . . . . . . . . . . 13 ((SubSpβ€˜π‘ˆ) ∩ CBan) βŠ† (SubSpβ€˜π‘ˆ)
4039, 6sselid 3976 . . . . . . . . . . . 12 (πœ‘ β†’ π‘Š ∈ (SubSpβ€˜π‘ˆ))
41 eqid 2727 . . . . . . . . . . . . 13 (SubSpβ€˜π‘ˆ) = (SubSpβ€˜π‘ˆ)
421, 4, 41sspba 30511 . . . . . . . . . . . 12 ((π‘ˆ ∈ NrmCVec ∧ π‘Š ∈ (SubSpβ€˜π‘ˆ)) β†’ π‘Œ βŠ† 𝑋)
4335, 40, 42syl2anc 583 . . . . . . . . . . 11 (πœ‘ β†’ π‘Œ βŠ† 𝑋)
4443adantr 480 . . . . . . . . . 10 ((πœ‘ ∧ (π‘₯ ∈ π‘Œ ∧ 𝑀 ∈ π‘Œ)) β†’ π‘Œ βŠ† 𝑋)
45 simprl 770 . . . . . . . . . 10 ((πœ‘ ∧ (π‘₯ ∈ π‘Œ ∧ 𝑀 ∈ π‘Œ)) β†’ π‘₯ ∈ π‘Œ)
4644, 45sseldd 3979 . . . . . . . . 9 ((πœ‘ ∧ (π‘₯ ∈ π‘Œ ∧ 𝑀 ∈ π‘Œ)) β†’ π‘₯ ∈ 𝑋)
47 simprr 772 . . . . . . . . . 10 ((πœ‘ ∧ (π‘₯ ∈ π‘Œ ∧ 𝑀 ∈ π‘Œ)) β†’ 𝑀 ∈ π‘Œ)
4844, 47sseldd 3979 . . . . . . . . 9 ((πœ‘ ∧ (π‘₯ ∈ π‘Œ ∧ 𝑀 ∈ π‘Œ)) β†’ 𝑀 ∈ 𝑋)
49 metcl 24212 . . . . . . . . 9 ((𝐷 ∈ (Metβ€˜π‘‹) ∧ π‘₯ ∈ 𝑋 ∧ 𝑀 ∈ 𝑋) β†’ (π‘₯𝐷𝑀) ∈ ℝ)
5038, 46, 48, 49syl3anc 1369 . . . . . . . 8 ((πœ‘ ∧ (π‘₯ ∈ π‘Œ ∧ 𝑀 ∈ π‘Œ)) β†’ (π‘₯𝐷𝑀) ∈ ℝ)
5150sqge0d 14119 . . . . . . 7 ((πœ‘ ∧ (π‘₯ ∈ π‘Œ ∧ 𝑀 ∈ π‘Œ)) β†’ 0 ≀ ((π‘₯𝐷𝑀)↑2))
5251biantrud 531 . . . . . 6 ((πœ‘ ∧ (π‘₯ ∈ π‘Œ ∧ 𝑀 ∈ π‘Œ)) β†’ (((π‘₯𝐷𝑀)↑2) ≀ 0 ↔ (((π‘₯𝐷𝑀)↑2) ≀ 0 ∧ 0 ≀ ((π‘₯𝐷𝑀)↑2))))
5350resqcld 14107 . . . . . . 7 ((πœ‘ ∧ (π‘₯ ∈ π‘Œ ∧ 𝑀 ∈ π‘Œ)) β†’ ((π‘₯𝐷𝑀)↑2) ∈ ℝ)
54 letri3 11315 . . . . . . 7 ((((π‘₯𝐷𝑀)↑2) ∈ ℝ ∧ 0 ∈ ℝ) β†’ (((π‘₯𝐷𝑀)↑2) = 0 ↔ (((π‘₯𝐷𝑀)↑2) ≀ 0 ∧ 0 ≀ ((π‘₯𝐷𝑀)↑2))))
5553, 16, 54sylancl 585 . . . . . 6 ((πœ‘ ∧ (π‘₯ ∈ π‘Œ ∧ 𝑀 ∈ π‘Œ)) β†’ (((π‘₯𝐷𝑀)↑2) = 0 ↔ (((π‘₯𝐷𝑀)↑2) ≀ 0 ∧ 0 ≀ ((π‘₯𝐷𝑀)↑2))))
5650recnd 11258 . . . . . . . 8 ((πœ‘ ∧ (π‘₯ ∈ π‘Œ ∧ 𝑀 ∈ π‘Œ)) β†’ (π‘₯𝐷𝑀) ∈ β„‚)
57 sqeq0 14102 . . . . . . . 8 ((π‘₯𝐷𝑀) ∈ β„‚ β†’ (((π‘₯𝐷𝑀)↑2) = 0 ↔ (π‘₯𝐷𝑀) = 0))
5856, 57syl 17 . . . . . . 7 ((πœ‘ ∧ (π‘₯ ∈ π‘Œ ∧ 𝑀 ∈ π‘Œ)) β†’ (((π‘₯𝐷𝑀)↑2) = 0 ↔ (π‘₯𝐷𝑀) = 0))
59 meteq0 24219 . . . . . . . 8 ((𝐷 ∈ (Metβ€˜π‘‹) ∧ π‘₯ ∈ 𝑋 ∧ 𝑀 ∈ 𝑋) β†’ ((π‘₯𝐷𝑀) = 0 ↔ π‘₯ = 𝑀))
6038, 46, 48, 59syl3anc 1369 . . . . . . 7 ((πœ‘ ∧ (π‘₯ ∈ π‘Œ ∧ 𝑀 ∈ π‘Œ)) β†’ ((π‘₯𝐷𝑀) = 0 ↔ π‘₯ = 𝑀))
6158, 60bitrd 279 . . . . . 6 ((πœ‘ ∧ (π‘₯ ∈ π‘Œ ∧ 𝑀 ∈ π‘Œ)) β†’ (((π‘₯𝐷𝑀)↑2) = 0 ↔ π‘₯ = 𝑀))
6252, 55, 613bitr2d 307 . . . . 5 ((πœ‘ ∧ (π‘₯ ∈ π‘Œ ∧ 𝑀 ∈ π‘Œ)) β†’ (((π‘₯𝐷𝑀)↑2) ≀ 0 ↔ π‘₯ = 𝑀))
6333, 62bitrid 283 . . . 4 ((πœ‘ ∧ (π‘₯ ∈ π‘Œ ∧ 𝑀 ∈ π‘Œ)) β†’ (((π‘₯𝐷𝑀)↑2) ≀ (4 Β· 0) ↔ π‘₯ = 𝑀))
6425, 30, 633imtr3d 293 . . 3 ((πœ‘ ∧ (π‘₯ ∈ π‘Œ ∧ 𝑀 ∈ π‘Œ)) β†’ ((βˆ€π‘¦ ∈ π‘Œ (π‘β€˜(𝐴𝑀π‘₯)) ≀ (π‘β€˜(𝐴𝑀𝑦)) ∧ βˆ€π‘¦ ∈ π‘Œ (π‘β€˜(𝐴𝑀𝑀)) ≀ (π‘β€˜(𝐴𝑀𝑦))) β†’ π‘₯ = 𝑀))
6564ralrimivva 3195 . 2 (πœ‘ β†’ βˆ€π‘₯ ∈ π‘Œ βˆ€π‘€ ∈ π‘Œ ((βˆ€π‘¦ ∈ π‘Œ (π‘β€˜(𝐴𝑀π‘₯)) ≀ (π‘β€˜(𝐴𝑀𝑦)) ∧ βˆ€π‘¦ ∈ π‘Œ (π‘β€˜(𝐴𝑀𝑀)) ≀ (π‘β€˜(𝐴𝑀𝑦))) β†’ π‘₯ = 𝑀))
66 oveq2 7422 . . . . . 6 (π‘₯ = 𝑀 β†’ (𝐴𝑀π‘₯) = (𝐴𝑀𝑀))
6766fveq2d 6895 . . . . 5 (π‘₯ = 𝑀 β†’ (π‘β€˜(𝐴𝑀π‘₯)) = (π‘β€˜(𝐴𝑀𝑀)))
6867breq1d 5152 . . . 4 (π‘₯ = 𝑀 β†’ ((π‘β€˜(𝐴𝑀π‘₯)) ≀ (π‘β€˜(𝐴𝑀𝑦)) ↔ (π‘β€˜(𝐴𝑀𝑀)) ≀ (π‘β€˜(𝐴𝑀𝑦))))
6968ralbidv 3172 . . 3 (π‘₯ = 𝑀 β†’ (βˆ€π‘¦ ∈ π‘Œ (π‘β€˜(𝐴𝑀π‘₯)) ≀ (π‘β€˜(𝐴𝑀𝑦)) ↔ βˆ€π‘¦ ∈ π‘Œ (π‘β€˜(𝐴𝑀𝑀)) ≀ (π‘β€˜(𝐴𝑀𝑦))))
7069reu4 3724 . 2 (βˆƒ!π‘₯ ∈ π‘Œ βˆ€π‘¦ ∈ π‘Œ (π‘β€˜(𝐴𝑀π‘₯)) ≀ (π‘β€˜(𝐴𝑀𝑦)) ↔ (βˆƒπ‘₯ ∈ π‘Œ βˆ€π‘¦ ∈ π‘Œ (π‘β€˜(𝐴𝑀π‘₯)) ≀ (π‘β€˜(𝐴𝑀𝑦)) ∧ βˆ€π‘₯ ∈ π‘Œ βˆ€π‘€ ∈ π‘Œ ((βˆ€π‘¦ ∈ π‘Œ (π‘β€˜(𝐴𝑀π‘₯)) ≀ (π‘β€˜(𝐴𝑀𝑦)) ∧ βˆ€π‘¦ ∈ π‘Œ (π‘β€˜(𝐴𝑀𝑀)) ≀ (π‘β€˜(𝐴𝑀𝑦))) β†’ π‘₯ = 𝑀)))
7112, 65, 70sylanbrc 582 1 (πœ‘ β†’ βˆƒ!π‘₯ ∈ π‘Œ βˆ€π‘¦ ∈ π‘Œ (π‘β€˜(𝐴𝑀π‘₯)) ≀ (π‘β€˜(𝐴𝑀𝑦)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 395   = wceq 1534   ∈ wcel 2099  βˆ€wral 3056  βˆƒwrex 3065  βˆƒ!wreu 3369   ∩ cin 3943   βŠ† wss 3944   class class class wbr 5142   ↦ cmpt 5225  ran crn 5673  β€˜cfv 6542  (class class class)co 7414  infcinf 9450  β„‚cc 11122  β„cr 11123  0cc0 11124   + caddc 11127   Β· cmul 11129   < clt 11264   ≀ cle 11265  2c2 12283  4c4 12285  β†‘cexp 14044  Metcmet 21245  MetOpencmopn 21249  NrmCVeccnv 30368  BaseSetcba 30370   βˆ’π‘£ cnsb 30373  normCVcnmcv 30374  IndMetcims 30375  SubSpcss 30505  CPreHilOLDccphlo 30596  CBanccbn 30646
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7732  ax-inf2 9650  ax-cc 10444  ax-cnex 11180  ax-resscn 11181  ax-1cn 11182  ax-icn 11183  ax-addcl 11184  ax-addrcl 11185  ax-mulcl 11186  ax-mulrcl 11187  ax-mulcom 11188  ax-addass 11189  ax-mulass 11190  ax-distr 11191  ax-i2m1 11192  ax-1ne0 11193  ax-1rid 11194  ax-rnegex 11195  ax-rrecex 11196  ax-cnre 11197  ax-pre-lttri 11198  ax-pre-lttrn 11199  ax-pre-ltadd 11200  ax-pre-mulgt0 11201  ax-pre-sup 11202  ax-addf 11203  ax-mulf 11204
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-nel 3042  df-ral 3057  df-rex 3066  df-rmo 3371  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-int 4945  df-iun 4993  df-iin 4994  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7863  df-1st 7985  df-2nd 7986  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-er 8716  df-map 8836  df-pm 8837  df-en 8954  df-dom 8955  df-sdom 8956  df-fin 8957  df-fi 9420  df-sup 9451  df-inf 9452  df-pnf 11266  df-mnf 11267  df-xr 11268  df-ltxr 11269  df-le 11270  df-sub 11462  df-neg 11463  df-div 11888  df-nn 12229  df-2 12291  df-3 12292  df-4 12293  df-n0 12489  df-z 12575  df-uz 12839  df-q 12949  df-rp 12993  df-xneg 13110  df-xadd 13111  df-xmul 13112  df-ico 13348  df-icc 13349  df-fl 13775  df-seq 13985  df-exp 14045  df-cj 15064  df-re 15065  df-im 15066  df-sqrt 15200  df-abs 15201  df-rest 17389  df-topgen 17410  df-psmet 21251  df-xmet 21252  df-met 21253  df-bl 21254  df-mopn 21255  df-fbas 21256  df-fg 21257  df-top 22770  df-topon 22787  df-bases 22823  df-cld 22897  df-ntr 22898  df-cls 22899  df-nei 22976  df-lm 23107  df-haus 23193  df-fil 23724  df-fm 23816  df-flim 23817  df-flf 23818  df-cfil 25157  df-cau 25158  df-cmet 25159  df-grpo 30277  df-gid 30278  df-ginv 30279  df-gdiv 30280  df-ablo 30329  df-vc 30343  df-nv 30376  df-va 30379  df-ba 30380  df-sm 30381  df-0v 30382  df-vs 30383  df-nmcv 30384  df-ims 30385  df-ssp 30506  df-ph 30597  df-cbn 30647
This theorem is referenced by:  minveco  30668
  Copyright terms: Public domain W3C validator