MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  minvecolem7 Structured version   Visualization version   GIF version

Theorem minvecolem7 30732
Description: Lemma for minveco 30733. Since any two minimal points are distance zero away from each other, the minimal point is unique. (Contributed by Mario Carneiro, 9-May-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
minveco.x 𝑋 = (BaseSetβ€˜π‘ˆ)
minveco.m 𝑀 = ( βˆ’π‘£ β€˜π‘ˆ)
minveco.n 𝑁 = (normCVβ€˜π‘ˆ)
minveco.y π‘Œ = (BaseSetβ€˜π‘Š)
minveco.u (πœ‘ β†’ π‘ˆ ∈ CPreHilOLD)
minveco.w (πœ‘ β†’ π‘Š ∈ ((SubSpβ€˜π‘ˆ) ∩ CBan))
minveco.a (πœ‘ β†’ 𝐴 ∈ 𝑋)
minveco.d 𝐷 = (IndMetβ€˜π‘ˆ)
minveco.j 𝐽 = (MetOpenβ€˜π·)
minveco.r 𝑅 = ran (𝑦 ∈ π‘Œ ↦ (π‘β€˜(𝐴𝑀𝑦)))
minveco.s 𝑆 = inf(𝑅, ℝ, < )
Assertion
Ref Expression
minvecolem7 (πœ‘ β†’ βˆƒ!π‘₯ ∈ π‘Œ βˆ€π‘¦ ∈ π‘Œ (π‘β€˜(𝐴𝑀π‘₯)) ≀ (π‘β€˜(𝐴𝑀𝑦)))
Distinct variable groups:   π‘₯,𝑦,𝐽   π‘₯,𝑀,𝑦   π‘₯,𝑁,𝑦   πœ‘,π‘₯,𝑦   π‘₯,𝑅   π‘₯,𝑆,𝑦   π‘₯,𝐴,𝑦   π‘₯,𝐷,𝑦   π‘₯,π‘ˆ,𝑦   π‘₯,π‘Š,𝑦   π‘₯,𝑋   π‘₯,π‘Œ,𝑦
Allowed substitution hints:   𝑅(𝑦)   𝑋(𝑦)

Proof of Theorem minvecolem7
Dummy variable 𝑀 is distinct from all other variables.
StepHypRef Expression
1 minveco.x . . 3 𝑋 = (BaseSetβ€˜π‘ˆ)
2 minveco.m . . 3 𝑀 = ( βˆ’π‘£ β€˜π‘ˆ)
3 minveco.n . . 3 𝑁 = (normCVβ€˜π‘ˆ)
4 minveco.y . . 3 π‘Œ = (BaseSetβ€˜π‘Š)
5 minveco.u . . 3 (πœ‘ β†’ π‘ˆ ∈ CPreHilOLD)
6 minveco.w . . 3 (πœ‘ β†’ π‘Š ∈ ((SubSpβ€˜π‘ˆ) ∩ CBan))
7 minveco.a . . 3 (πœ‘ β†’ 𝐴 ∈ 𝑋)
8 minveco.d . . 3 𝐷 = (IndMetβ€˜π‘ˆ)
9 minveco.j . . 3 𝐽 = (MetOpenβ€˜π·)
10 minveco.r . . 3 𝑅 = ran (𝑦 ∈ π‘Œ ↦ (π‘β€˜(𝐴𝑀𝑦)))
11 minveco.s . . 3 𝑆 = inf(𝑅, ℝ, < )
121, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11minvecolem5 30730 . 2 (πœ‘ β†’ βˆƒπ‘₯ ∈ π‘Œ βˆ€π‘¦ ∈ π‘Œ (π‘β€˜(𝐴𝑀π‘₯)) ≀ (π‘β€˜(𝐴𝑀𝑦)))
135ad2antrr 724 . . . . . 6 (((πœ‘ ∧ (π‘₯ ∈ π‘Œ ∧ 𝑀 ∈ π‘Œ)) ∧ (((𝐴𝐷π‘₯)↑2) ≀ ((𝑆↑2) + 0) ∧ ((𝐴𝐷𝑀)↑2) ≀ ((𝑆↑2) + 0))) β†’ π‘ˆ ∈ CPreHilOLD)
146ad2antrr 724 . . . . . 6 (((πœ‘ ∧ (π‘₯ ∈ π‘Œ ∧ 𝑀 ∈ π‘Œ)) ∧ (((𝐴𝐷π‘₯)↑2) ≀ ((𝑆↑2) + 0) ∧ ((𝐴𝐷𝑀)↑2) ≀ ((𝑆↑2) + 0))) β†’ π‘Š ∈ ((SubSpβ€˜π‘ˆ) ∩ CBan))
157ad2antrr 724 . . . . . 6 (((πœ‘ ∧ (π‘₯ ∈ π‘Œ ∧ 𝑀 ∈ π‘Œ)) ∧ (((𝐴𝐷π‘₯)↑2) ≀ ((𝑆↑2) + 0) ∧ ((𝐴𝐷𝑀)↑2) ≀ ((𝑆↑2) + 0))) β†’ 𝐴 ∈ 𝑋)
16 0re 11241 . . . . . . 7 0 ∈ ℝ
1716a1i 11 . . . . . 6 (((πœ‘ ∧ (π‘₯ ∈ π‘Œ ∧ 𝑀 ∈ π‘Œ)) ∧ (((𝐴𝐷π‘₯)↑2) ≀ ((𝑆↑2) + 0) ∧ ((𝐴𝐷𝑀)↑2) ≀ ((𝑆↑2) + 0))) β†’ 0 ∈ ℝ)
18 0le0 12338 . . . . . . 7 0 ≀ 0
1918a1i 11 . . . . . 6 (((πœ‘ ∧ (π‘₯ ∈ π‘Œ ∧ 𝑀 ∈ π‘Œ)) ∧ (((𝐴𝐷π‘₯)↑2) ≀ ((𝑆↑2) + 0) ∧ ((𝐴𝐷𝑀)↑2) ≀ ((𝑆↑2) + 0))) β†’ 0 ≀ 0)
20 simplrl 775 . . . . . 6 (((πœ‘ ∧ (π‘₯ ∈ π‘Œ ∧ 𝑀 ∈ π‘Œ)) ∧ (((𝐴𝐷π‘₯)↑2) ≀ ((𝑆↑2) + 0) ∧ ((𝐴𝐷𝑀)↑2) ≀ ((𝑆↑2) + 0))) β†’ π‘₯ ∈ π‘Œ)
21 simplrr 776 . . . . . 6 (((πœ‘ ∧ (π‘₯ ∈ π‘Œ ∧ 𝑀 ∈ π‘Œ)) ∧ (((𝐴𝐷π‘₯)↑2) ≀ ((𝑆↑2) + 0) ∧ ((𝐴𝐷𝑀)↑2) ≀ ((𝑆↑2) + 0))) β†’ 𝑀 ∈ π‘Œ)
22 simprl 769 . . . . . 6 (((πœ‘ ∧ (π‘₯ ∈ π‘Œ ∧ 𝑀 ∈ π‘Œ)) ∧ (((𝐴𝐷π‘₯)↑2) ≀ ((𝑆↑2) + 0) ∧ ((𝐴𝐷𝑀)↑2) ≀ ((𝑆↑2) + 0))) β†’ ((𝐴𝐷π‘₯)↑2) ≀ ((𝑆↑2) + 0))
23 simprr 771 . . . . . 6 (((πœ‘ ∧ (π‘₯ ∈ π‘Œ ∧ 𝑀 ∈ π‘Œ)) ∧ (((𝐴𝐷π‘₯)↑2) ≀ ((𝑆↑2) + 0) ∧ ((𝐴𝐷𝑀)↑2) ≀ ((𝑆↑2) + 0))) β†’ ((𝐴𝐷𝑀)↑2) ≀ ((𝑆↑2) + 0))
241, 2, 3, 4, 13, 14, 15, 8, 9, 10, 11, 17, 19, 20, 21, 22, 23minvecolem2 30724 . . . . 5 (((πœ‘ ∧ (π‘₯ ∈ π‘Œ ∧ 𝑀 ∈ π‘Œ)) ∧ (((𝐴𝐷π‘₯)↑2) ≀ ((𝑆↑2) + 0) ∧ ((𝐴𝐷𝑀)↑2) ≀ ((𝑆↑2) + 0))) β†’ ((π‘₯𝐷𝑀)↑2) ≀ (4 Β· 0))
2524ex 411 . . . 4 ((πœ‘ ∧ (π‘₯ ∈ π‘Œ ∧ 𝑀 ∈ π‘Œ)) β†’ ((((𝐴𝐷π‘₯)↑2) ≀ ((𝑆↑2) + 0) ∧ ((𝐴𝐷𝑀)↑2) ≀ ((𝑆↑2) + 0)) β†’ ((π‘₯𝐷𝑀)↑2) ≀ (4 Β· 0)))
261, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11minvecolem6 30731 . . . . . 6 ((πœ‘ ∧ π‘₯ ∈ π‘Œ) β†’ (((𝐴𝐷π‘₯)↑2) ≀ ((𝑆↑2) + 0) ↔ βˆ€π‘¦ ∈ π‘Œ (π‘β€˜(𝐴𝑀π‘₯)) ≀ (π‘β€˜(𝐴𝑀𝑦))))
2726adantrr 715 . . . . 5 ((πœ‘ ∧ (π‘₯ ∈ π‘Œ ∧ 𝑀 ∈ π‘Œ)) β†’ (((𝐴𝐷π‘₯)↑2) ≀ ((𝑆↑2) + 0) ↔ βˆ€π‘¦ ∈ π‘Œ (π‘β€˜(𝐴𝑀π‘₯)) ≀ (π‘β€˜(𝐴𝑀𝑦))))
281, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11minvecolem6 30731 . . . . . 6 ((πœ‘ ∧ 𝑀 ∈ π‘Œ) β†’ (((𝐴𝐷𝑀)↑2) ≀ ((𝑆↑2) + 0) ↔ βˆ€π‘¦ ∈ π‘Œ (π‘β€˜(𝐴𝑀𝑀)) ≀ (π‘β€˜(𝐴𝑀𝑦))))
2928adantrl 714 . . . . 5 ((πœ‘ ∧ (π‘₯ ∈ π‘Œ ∧ 𝑀 ∈ π‘Œ)) β†’ (((𝐴𝐷𝑀)↑2) ≀ ((𝑆↑2) + 0) ↔ βˆ€π‘¦ ∈ π‘Œ (π‘β€˜(𝐴𝑀𝑀)) ≀ (π‘β€˜(𝐴𝑀𝑦))))
3027, 29anbi12d 630 . . . 4 ((πœ‘ ∧ (π‘₯ ∈ π‘Œ ∧ 𝑀 ∈ π‘Œ)) β†’ ((((𝐴𝐷π‘₯)↑2) ≀ ((𝑆↑2) + 0) ∧ ((𝐴𝐷𝑀)↑2) ≀ ((𝑆↑2) + 0)) ↔ (βˆ€π‘¦ ∈ π‘Œ (π‘β€˜(𝐴𝑀π‘₯)) ≀ (π‘β€˜(𝐴𝑀𝑦)) ∧ βˆ€π‘¦ ∈ π‘Œ (π‘β€˜(𝐴𝑀𝑀)) ≀ (π‘β€˜(𝐴𝑀𝑦)))))
31 4cn 12322 . . . . . . 7 4 ∈ β„‚
3231mul01i 11429 . . . . . 6 (4 Β· 0) = 0
3332breq2i 5152 . . . . 5 (((π‘₯𝐷𝑀)↑2) ≀ (4 Β· 0) ↔ ((π‘₯𝐷𝑀)↑2) ≀ 0)
34 phnv 30663 . . . . . . . . . . . 12 (π‘ˆ ∈ CPreHilOLD β†’ π‘ˆ ∈ NrmCVec)
355, 34syl 17 . . . . . . . . . . 11 (πœ‘ β†’ π‘ˆ ∈ NrmCVec)
3635adantr 479 . . . . . . . . . 10 ((πœ‘ ∧ (π‘₯ ∈ π‘Œ ∧ 𝑀 ∈ π‘Œ)) β†’ π‘ˆ ∈ NrmCVec)
371, 8imsmet 30540 . . . . . . . . . 10 (π‘ˆ ∈ NrmCVec β†’ 𝐷 ∈ (Metβ€˜π‘‹))
3836, 37syl 17 . . . . . . . . 9 ((πœ‘ ∧ (π‘₯ ∈ π‘Œ ∧ 𝑀 ∈ π‘Œ)) β†’ 𝐷 ∈ (Metβ€˜π‘‹))
39 inss1 4224 . . . . . . . . . . . . 13 ((SubSpβ€˜π‘ˆ) ∩ CBan) βŠ† (SubSpβ€˜π‘ˆ)
4039, 6sselid 3971 . . . . . . . . . . . 12 (πœ‘ β†’ π‘Š ∈ (SubSpβ€˜π‘ˆ))
41 eqid 2725 . . . . . . . . . . . . 13 (SubSpβ€˜π‘ˆ) = (SubSpβ€˜π‘ˆ)
421, 4, 41sspba 30576 . . . . . . . . . . . 12 ((π‘ˆ ∈ NrmCVec ∧ π‘Š ∈ (SubSpβ€˜π‘ˆ)) β†’ π‘Œ βŠ† 𝑋)
4335, 40, 42syl2anc 582 . . . . . . . . . . 11 (πœ‘ β†’ π‘Œ βŠ† 𝑋)
4443adantr 479 . . . . . . . . . 10 ((πœ‘ ∧ (π‘₯ ∈ π‘Œ ∧ 𝑀 ∈ π‘Œ)) β†’ π‘Œ βŠ† 𝑋)
45 simprl 769 . . . . . . . . . 10 ((πœ‘ ∧ (π‘₯ ∈ π‘Œ ∧ 𝑀 ∈ π‘Œ)) β†’ π‘₯ ∈ π‘Œ)
4644, 45sseldd 3974 . . . . . . . . 9 ((πœ‘ ∧ (π‘₯ ∈ π‘Œ ∧ 𝑀 ∈ π‘Œ)) β†’ π‘₯ ∈ 𝑋)
47 simprr 771 . . . . . . . . . 10 ((πœ‘ ∧ (π‘₯ ∈ π‘Œ ∧ 𝑀 ∈ π‘Œ)) β†’ 𝑀 ∈ π‘Œ)
4844, 47sseldd 3974 . . . . . . . . 9 ((πœ‘ ∧ (π‘₯ ∈ π‘Œ ∧ 𝑀 ∈ π‘Œ)) β†’ 𝑀 ∈ 𝑋)
49 metcl 24251 . . . . . . . . 9 ((𝐷 ∈ (Metβ€˜π‘‹) ∧ π‘₯ ∈ 𝑋 ∧ 𝑀 ∈ 𝑋) β†’ (π‘₯𝐷𝑀) ∈ ℝ)
5038, 46, 48, 49syl3anc 1368 . . . . . . . 8 ((πœ‘ ∧ (π‘₯ ∈ π‘Œ ∧ 𝑀 ∈ π‘Œ)) β†’ (π‘₯𝐷𝑀) ∈ ℝ)
5150sqge0d 14128 . . . . . . 7 ((πœ‘ ∧ (π‘₯ ∈ π‘Œ ∧ 𝑀 ∈ π‘Œ)) β†’ 0 ≀ ((π‘₯𝐷𝑀)↑2))
5251biantrud 530 . . . . . 6 ((πœ‘ ∧ (π‘₯ ∈ π‘Œ ∧ 𝑀 ∈ π‘Œ)) β†’ (((π‘₯𝐷𝑀)↑2) ≀ 0 ↔ (((π‘₯𝐷𝑀)↑2) ≀ 0 ∧ 0 ≀ ((π‘₯𝐷𝑀)↑2))))
5350resqcld 14116 . . . . . . 7 ((πœ‘ ∧ (π‘₯ ∈ π‘Œ ∧ 𝑀 ∈ π‘Œ)) β†’ ((π‘₯𝐷𝑀)↑2) ∈ ℝ)
54 letri3 11324 . . . . . . 7 ((((π‘₯𝐷𝑀)↑2) ∈ ℝ ∧ 0 ∈ ℝ) β†’ (((π‘₯𝐷𝑀)↑2) = 0 ↔ (((π‘₯𝐷𝑀)↑2) ≀ 0 ∧ 0 ≀ ((π‘₯𝐷𝑀)↑2))))
5553, 16, 54sylancl 584 . . . . . 6 ((πœ‘ ∧ (π‘₯ ∈ π‘Œ ∧ 𝑀 ∈ π‘Œ)) β†’ (((π‘₯𝐷𝑀)↑2) = 0 ↔ (((π‘₯𝐷𝑀)↑2) ≀ 0 ∧ 0 ≀ ((π‘₯𝐷𝑀)↑2))))
5650recnd 11267 . . . . . . . 8 ((πœ‘ ∧ (π‘₯ ∈ π‘Œ ∧ 𝑀 ∈ π‘Œ)) β†’ (π‘₯𝐷𝑀) ∈ β„‚)
57 sqeq0 14111 . . . . . . . 8 ((π‘₯𝐷𝑀) ∈ β„‚ β†’ (((π‘₯𝐷𝑀)↑2) = 0 ↔ (π‘₯𝐷𝑀) = 0))
5856, 57syl 17 . . . . . . 7 ((πœ‘ ∧ (π‘₯ ∈ π‘Œ ∧ 𝑀 ∈ π‘Œ)) β†’ (((π‘₯𝐷𝑀)↑2) = 0 ↔ (π‘₯𝐷𝑀) = 0))
59 meteq0 24258 . . . . . . . 8 ((𝐷 ∈ (Metβ€˜π‘‹) ∧ π‘₯ ∈ 𝑋 ∧ 𝑀 ∈ 𝑋) β†’ ((π‘₯𝐷𝑀) = 0 ↔ π‘₯ = 𝑀))
6038, 46, 48, 59syl3anc 1368 . . . . . . 7 ((πœ‘ ∧ (π‘₯ ∈ π‘Œ ∧ 𝑀 ∈ π‘Œ)) β†’ ((π‘₯𝐷𝑀) = 0 ↔ π‘₯ = 𝑀))
6158, 60bitrd 278 . . . . . 6 ((πœ‘ ∧ (π‘₯ ∈ π‘Œ ∧ 𝑀 ∈ π‘Œ)) β†’ (((π‘₯𝐷𝑀)↑2) = 0 ↔ π‘₯ = 𝑀))
6252, 55, 613bitr2d 306 . . . . 5 ((πœ‘ ∧ (π‘₯ ∈ π‘Œ ∧ 𝑀 ∈ π‘Œ)) β†’ (((π‘₯𝐷𝑀)↑2) ≀ 0 ↔ π‘₯ = 𝑀))
6333, 62bitrid 282 . . . 4 ((πœ‘ ∧ (π‘₯ ∈ π‘Œ ∧ 𝑀 ∈ π‘Œ)) β†’ (((π‘₯𝐷𝑀)↑2) ≀ (4 Β· 0) ↔ π‘₯ = 𝑀))
6425, 30, 633imtr3d 292 . . 3 ((πœ‘ ∧ (π‘₯ ∈ π‘Œ ∧ 𝑀 ∈ π‘Œ)) β†’ ((βˆ€π‘¦ ∈ π‘Œ (π‘β€˜(𝐴𝑀π‘₯)) ≀ (π‘β€˜(𝐴𝑀𝑦)) ∧ βˆ€π‘¦ ∈ π‘Œ (π‘β€˜(𝐴𝑀𝑀)) ≀ (π‘β€˜(𝐴𝑀𝑦))) β†’ π‘₯ = 𝑀))
6564ralrimivva 3191 . 2 (πœ‘ β†’ βˆ€π‘₯ ∈ π‘Œ βˆ€π‘€ ∈ π‘Œ ((βˆ€π‘¦ ∈ π‘Œ (π‘β€˜(𝐴𝑀π‘₯)) ≀ (π‘β€˜(𝐴𝑀𝑦)) ∧ βˆ€π‘¦ ∈ π‘Œ (π‘β€˜(𝐴𝑀𝑀)) ≀ (π‘β€˜(𝐴𝑀𝑦))) β†’ π‘₯ = 𝑀))
66 oveq2 7421 . . . . . 6 (π‘₯ = 𝑀 β†’ (𝐴𝑀π‘₯) = (𝐴𝑀𝑀))
6766fveq2d 6894 . . . . 5 (π‘₯ = 𝑀 β†’ (π‘β€˜(𝐴𝑀π‘₯)) = (π‘β€˜(𝐴𝑀𝑀)))
6867breq1d 5154 . . . 4 (π‘₯ = 𝑀 β†’ ((π‘β€˜(𝐴𝑀π‘₯)) ≀ (π‘β€˜(𝐴𝑀𝑦)) ↔ (π‘β€˜(𝐴𝑀𝑀)) ≀ (π‘β€˜(𝐴𝑀𝑦))))
6968ralbidv 3168 . . 3 (π‘₯ = 𝑀 β†’ (βˆ€π‘¦ ∈ π‘Œ (π‘β€˜(𝐴𝑀π‘₯)) ≀ (π‘β€˜(𝐴𝑀𝑦)) ↔ βˆ€π‘¦ ∈ π‘Œ (π‘β€˜(𝐴𝑀𝑀)) ≀ (π‘β€˜(𝐴𝑀𝑦))))
7069reu4 3720 . 2 (βˆƒ!π‘₯ ∈ π‘Œ βˆ€π‘¦ ∈ π‘Œ (π‘β€˜(𝐴𝑀π‘₯)) ≀ (π‘β€˜(𝐴𝑀𝑦)) ↔ (βˆƒπ‘₯ ∈ π‘Œ βˆ€π‘¦ ∈ π‘Œ (π‘β€˜(𝐴𝑀π‘₯)) ≀ (π‘β€˜(𝐴𝑀𝑦)) ∧ βˆ€π‘₯ ∈ π‘Œ βˆ€π‘€ ∈ π‘Œ ((βˆ€π‘¦ ∈ π‘Œ (π‘β€˜(𝐴𝑀π‘₯)) ≀ (π‘β€˜(𝐴𝑀𝑦)) ∧ βˆ€π‘¦ ∈ π‘Œ (π‘β€˜(𝐴𝑀𝑀)) ≀ (π‘β€˜(𝐴𝑀𝑦))) β†’ π‘₯ = 𝑀)))
7112, 65, 70sylanbrc 581 1 (πœ‘ β†’ βˆƒ!π‘₯ ∈ π‘Œ βˆ€π‘¦ ∈ π‘Œ (π‘β€˜(𝐴𝑀π‘₯)) ≀ (π‘β€˜(𝐴𝑀𝑦)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 394   = wceq 1533   ∈ wcel 2098  βˆ€wral 3051  βˆƒwrex 3060  βˆƒ!wreu 3362   ∩ cin 3940   βŠ† wss 3941   class class class wbr 5144   ↦ cmpt 5227  ran crn 5674  β€˜cfv 6543  (class class class)co 7413  infcinf 9459  β„‚cc 11131  β„cr 11132  0cc0 11133   + caddc 11136   Β· cmul 11138   < clt 11273   ≀ cle 11274  2c2 12292  4c4 12294  β†‘cexp 14053  Metcmet 21264  MetOpencmopn 21268  NrmCVeccnv 30433  BaseSetcba 30435   βˆ’π‘£ cnsb 30438  normCVcnmcv 30439  IndMetcims 30440  SubSpcss 30570  CPreHilOLDccphlo 30661  CBanccbn 30711
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5281  ax-sep 5295  ax-nul 5302  ax-pow 5360  ax-pr 5424  ax-un 7735  ax-inf2 9659  ax-cc 10453  ax-cnex 11189  ax-resscn 11190  ax-1cn 11191  ax-icn 11192  ax-addcl 11193  ax-addrcl 11194  ax-mulcl 11195  ax-mulrcl 11196  ax-mulcom 11197  ax-addass 11198  ax-mulass 11199  ax-distr 11200  ax-i2m1 11201  ax-1ne0 11202  ax-1rid 11203  ax-rnegex 11204  ax-rrecex 11205  ax-cnre 11206  ax-pre-lttri 11207  ax-pre-lttrn 11208  ax-pre-ltadd 11209  ax-pre-mulgt0 11210  ax-pre-sup 11211  ax-addf 11212  ax-mulf 11213
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-pss 3961  df-nul 4320  df-if 4526  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4905  df-int 4946  df-iun 4994  df-iin 4995  df-br 5145  df-opab 5207  df-mpt 5228  df-tr 5262  df-id 5571  df-eprel 5577  df-po 5585  df-so 5586  df-fr 5628  df-we 5630  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-res 5685  df-ima 5686  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7369  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7866  df-1st 7987  df-2nd 7988  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8718  df-map 8840  df-pm 8841  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-fi 9429  df-sup 9460  df-inf 9461  df-pnf 11275  df-mnf 11276  df-xr 11277  df-ltxr 11278  df-le 11279  df-sub 11471  df-neg 11472  df-div 11897  df-nn 12238  df-2 12300  df-3 12301  df-4 12302  df-n0 12498  df-z 12584  df-uz 12848  df-q 12958  df-rp 13002  df-xneg 13119  df-xadd 13120  df-xmul 13121  df-ico 13357  df-icc 13358  df-fl 13784  df-seq 13994  df-exp 14054  df-cj 15073  df-re 15074  df-im 15075  df-sqrt 15209  df-abs 15210  df-rest 17398  df-topgen 17419  df-psmet 21270  df-xmet 21271  df-met 21272  df-bl 21273  df-mopn 21274  df-fbas 21275  df-fg 21276  df-top 22809  df-topon 22826  df-bases 22862  df-cld 22936  df-ntr 22937  df-cls 22938  df-nei 23015  df-lm 23146  df-haus 23232  df-fil 23763  df-fm 23855  df-flim 23856  df-flf 23857  df-cfil 25196  df-cau 25197  df-cmet 25198  df-grpo 30342  df-gid 30343  df-ginv 30344  df-gdiv 30345  df-ablo 30394  df-vc 30408  df-nv 30441  df-va 30444  df-ba 30445  df-sm 30446  df-0v 30447  df-vs 30448  df-nmcv 30449  df-ims 30450  df-ssp 30571  df-ph 30662  df-cbn 30712
This theorem is referenced by:  minveco  30733
  Copyright terms: Public domain W3C validator