MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  minvecolem7 Structured version   Visualization version   GIF version

Theorem minvecolem7 30827
Description: Lemma for minveco 30828. Since any two minimal points are distance zero away from each other, the minimal point is unique. (Contributed by Mario Carneiro, 9-May-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
minveco.x 𝑋 = (BaseSet‘𝑈)
minveco.m 𝑀 = ( −𝑣𝑈)
minveco.n 𝑁 = (normCV𝑈)
minveco.y 𝑌 = (BaseSet‘𝑊)
minveco.u (𝜑𝑈 ∈ CPreHilOLD)
minveco.w (𝜑𝑊 ∈ ((SubSp‘𝑈) ∩ CBan))
minveco.a (𝜑𝐴𝑋)
minveco.d 𝐷 = (IndMet‘𝑈)
minveco.j 𝐽 = (MetOpen‘𝐷)
minveco.r 𝑅 = ran (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦)))
minveco.s 𝑆 = inf(𝑅, ℝ, < )
Assertion
Ref Expression
minvecolem7 (𝜑 → ∃!𝑥𝑌𝑦𝑌 (𝑁‘(𝐴𝑀𝑥)) ≤ (𝑁‘(𝐴𝑀𝑦)))
Distinct variable groups:   𝑥,𝑦,𝐽   𝑥,𝑀,𝑦   𝑥,𝑁,𝑦   𝜑,𝑥,𝑦   𝑥,𝑅   𝑥,𝑆,𝑦   𝑥,𝐴,𝑦   𝑥,𝐷,𝑦   𝑥,𝑈,𝑦   𝑥,𝑊,𝑦   𝑥,𝑋   𝑥,𝑌,𝑦
Allowed substitution hints:   𝑅(𝑦)   𝑋(𝑦)

Proof of Theorem minvecolem7
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 minveco.x . . 3 𝑋 = (BaseSet‘𝑈)
2 minveco.m . . 3 𝑀 = ( −𝑣𝑈)
3 minveco.n . . 3 𝑁 = (normCV𝑈)
4 minveco.y . . 3 𝑌 = (BaseSet‘𝑊)
5 minveco.u . . 3 (𝜑𝑈 ∈ CPreHilOLD)
6 minveco.w . . 3 (𝜑𝑊 ∈ ((SubSp‘𝑈) ∩ CBan))
7 minveco.a . . 3 (𝜑𝐴𝑋)
8 minveco.d . . 3 𝐷 = (IndMet‘𝑈)
9 minveco.j . . 3 𝐽 = (MetOpen‘𝐷)
10 minveco.r . . 3 𝑅 = ran (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦)))
11 minveco.s . . 3 𝑆 = inf(𝑅, ℝ, < )
121, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11minvecolem5 30825 . 2 (𝜑 → ∃𝑥𝑌𝑦𝑌 (𝑁‘(𝐴𝑀𝑥)) ≤ (𝑁‘(𝐴𝑀𝑦)))
135ad2antrr 726 . . . . . 6 (((𝜑 ∧ (𝑥𝑌𝑤𝑌)) ∧ (((𝐴𝐷𝑥)↑2) ≤ ((𝑆↑2) + 0) ∧ ((𝐴𝐷𝑤)↑2) ≤ ((𝑆↑2) + 0))) → 𝑈 ∈ CPreHilOLD)
146ad2antrr 726 . . . . . 6 (((𝜑 ∧ (𝑥𝑌𝑤𝑌)) ∧ (((𝐴𝐷𝑥)↑2) ≤ ((𝑆↑2) + 0) ∧ ((𝐴𝐷𝑤)↑2) ≤ ((𝑆↑2) + 0))) → 𝑊 ∈ ((SubSp‘𝑈) ∩ CBan))
157ad2antrr 726 . . . . . 6 (((𝜑 ∧ (𝑥𝑌𝑤𝑌)) ∧ (((𝐴𝐷𝑥)↑2) ≤ ((𝑆↑2) + 0) ∧ ((𝐴𝐷𝑤)↑2) ≤ ((𝑆↑2) + 0))) → 𝐴𝑋)
16 0re 11117 . . . . . . 7 0 ∈ ℝ
1716a1i 11 . . . . . 6 (((𝜑 ∧ (𝑥𝑌𝑤𝑌)) ∧ (((𝐴𝐷𝑥)↑2) ≤ ((𝑆↑2) + 0) ∧ ((𝐴𝐷𝑤)↑2) ≤ ((𝑆↑2) + 0))) → 0 ∈ ℝ)
18 0le0 12229 . . . . . . 7 0 ≤ 0
1918a1i 11 . . . . . 6 (((𝜑 ∧ (𝑥𝑌𝑤𝑌)) ∧ (((𝐴𝐷𝑥)↑2) ≤ ((𝑆↑2) + 0) ∧ ((𝐴𝐷𝑤)↑2) ≤ ((𝑆↑2) + 0))) → 0 ≤ 0)
20 simplrl 776 . . . . . 6 (((𝜑 ∧ (𝑥𝑌𝑤𝑌)) ∧ (((𝐴𝐷𝑥)↑2) ≤ ((𝑆↑2) + 0) ∧ ((𝐴𝐷𝑤)↑2) ≤ ((𝑆↑2) + 0))) → 𝑥𝑌)
21 simplrr 777 . . . . . 6 (((𝜑 ∧ (𝑥𝑌𝑤𝑌)) ∧ (((𝐴𝐷𝑥)↑2) ≤ ((𝑆↑2) + 0) ∧ ((𝐴𝐷𝑤)↑2) ≤ ((𝑆↑2) + 0))) → 𝑤𝑌)
22 simprl 770 . . . . . 6 (((𝜑 ∧ (𝑥𝑌𝑤𝑌)) ∧ (((𝐴𝐷𝑥)↑2) ≤ ((𝑆↑2) + 0) ∧ ((𝐴𝐷𝑤)↑2) ≤ ((𝑆↑2) + 0))) → ((𝐴𝐷𝑥)↑2) ≤ ((𝑆↑2) + 0))
23 simprr 772 . . . . . 6 (((𝜑 ∧ (𝑥𝑌𝑤𝑌)) ∧ (((𝐴𝐷𝑥)↑2) ≤ ((𝑆↑2) + 0) ∧ ((𝐴𝐷𝑤)↑2) ≤ ((𝑆↑2) + 0))) → ((𝐴𝐷𝑤)↑2) ≤ ((𝑆↑2) + 0))
241, 2, 3, 4, 13, 14, 15, 8, 9, 10, 11, 17, 19, 20, 21, 22, 23minvecolem2 30819 . . . . 5 (((𝜑 ∧ (𝑥𝑌𝑤𝑌)) ∧ (((𝐴𝐷𝑥)↑2) ≤ ((𝑆↑2) + 0) ∧ ((𝐴𝐷𝑤)↑2) ≤ ((𝑆↑2) + 0))) → ((𝑥𝐷𝑤)↑2) ≤ (4 · 0))
2524ex 412 . . . 4 ((𝜑 ∧ (𝑥𝑌𝑤𝑌)) → ((((𝐴𝐷𝑥)↑2) ≤ ((𝑆↑2) + 0) ∧ ((𝐴𝐷𝑤)↑2) ≤ ((𝑆↑2) + 0)) → ((𝑥𝐷𝑤)↑2) ≤ (4 · 0)))
261, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11minvecolem6 30826 . . . . . 6 ((𝜑𝑥𝑌) → (((𝐴𝐷𝑥)↑2) ≤ ((𝑆↑2) + 0) ↔ ∀𝑦𝑌 (𝑁‘(𝐴𝑀𝑥)) ≤ (𝑁‘(𝐴𝑀𝑦))))
2726adantrr 717 . . . . 5 ((𝜑 ∧ (𝑥𝑌𝑤𝑌)) → (((𝐴𝐷𝑥)↑2) ≤ ((𝑆↑2) + 0) ↔ ∀𝑦𝑌 (𝑁‘(𝐴𝑀𝑥)) ≤ (𝑁‘(𝐴𝑀𝑦))))
281, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11minvecolem6 30826 . . . . . 6 ((𝜑𝑤𝑌) → (((𝐴𝐷𝑤)↑2) ≤ ((𝑆↑2) + 0) ↔ ∀𝑦𝑌 (𝑁‘(𝐴𝑀𝑤)) ≤ (𝑁‘(𝐴𝑀𝑦))))
2928adantrl 716 . . . . 5 ((𝜑 ∧ (𝑥𝑌𝑤𝑌)) → (((𝐴𝐷𝑤)↑2) ≤ ((𝑆↑2) + 0) ↔ ∀𝑦𝑌 (𝑁‘(𝐴𝑀𝑤)) ≤ (𝑁‘(𝐴𝑀𝑦))))
3027, 29anbi12d 632 . . . 4 ((𝜑 ∧ (𝑥𝑌𝑤𝑌)) → ((((𝐴𝐷𝑥)↑2) ≤ ((𝑆↑2) + 0) ∧ ((𝐴𝐷𝑤)↑2) ≤ ((𝑆↑2) + 0)) ↔ (∀𝑦𝑌 (𝑁‘(𝐴𝑀𝑥)) ≤ (𝑁‘(𝐴𝑀𝑦)) ∧ ∀𝑦𝑌 (𝑁‘(𝐴𝑀𝑤)) ≤ (𝑁‘(𝐴𝑀𝑦)))))
31 4cn 12213 . . . . . . 7 4 ∈ ℂ
3231mul01i 11306 . . . . . 6 (4 · 0) = 0
3332breq2i 5100 . . . . 5 (((𝑥𝐷𝑤)↑2) ≤ (4 · 0) ↔ ((𝑥𝐷𝑤)↑2) ≤ 0)
34 phnv 30758 . . . . . . . . . . . 12 (𝑈 ∈ CPreHilOLD𝑈 ∈ NrmCVec)
355, 34syl 17 . . . . . . . . . . 11 (𝜑𝑈 ∈ NrmCVec)
3635adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝑌𝑤𝑌)) → 𝑈 ∈ NrmCVec)
371, 8imsmet 30635 . . . . . . . . . 10 (𝑈 ∈ NrmCVec → 𝐷 ∈ (Met‘𝑋))
3836, 37syl 17 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝑌𝑤𝑌)) → 𝐷 ∈ (Met‘𝑋))
39 inss1 4188 . . . . . . . . . . . . 13 ((SubSp‘𝑈) ∩ CBan) ⊆ (SubSp‘𝑈)
4039, 6sselid 3933 . . . . . . . . . . . 12 (𝜑𝑊 ∈ (SubSp‘𝑈))
41 eqid 2729 . . . . . . . . . . . . 13 (SubSp‘𝑈) = (SubSp‘𝑈)
421, 4, 41sspba 30671 . . . . . . . . . . . 12 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ (SubSp‘𝑈)) → 𝑌𝑋)
4335, 40, 42syl2anc 584 . . . . . . . . . . 11 (𝜑𝑌𝑋)
4443adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝑌𝑤𝑌)) → 𝑌𝑋)
45 simprl 770 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝑌𝑤𝑌)) → 𝑥𝑌)
4644, 45sseldd 3936 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝑌𝑤𝑌)) → 𝑥𝑋)
47 simprr 772 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝑌𝑤𝑌)) → 𝑤𝑌)
4844, 47sseldd 3936 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝑌𝑤𝑌)) → 𝑤𝑋)
49 metcl 24218 . . . . . . . . 9 ((𝐷 ∈ (Met‘𝑋) ∧ 𝑥𝑋𝑤𝑋) → (𝑥𝐷𝑤) ∈ ℝ)
5038, 46, 48, 49syl3anc 1373 . . . . . . . 8 ((𝜑 ∧ (𝑥𝑌𝑤𝑌)) → (𝑥𝐷𝑤) ∈ ℝ)
5150sqge0d 14044 . . . . . . 7 ((𝜑 ∧ (𝑥𝑌𝑤𝑌)) → 0 ≤ ((𝑥𝐷𝑤)↑2))
5251biantrud 531 . . . . . 6 ((𝜑 ∧ (𝑥𝑌𝑤𝑌)) → (((𝑥𝐷𝑤)↑2) ≤ 0 ↔ (((𝑥𝐷𝑤)↑2) ≤ 0 ∧ 0 ≤ ((𝑥𝐷𝑤)↑2))))
5350resqcld 14032 . . . . . . 7 ((𝜑 ∧ (𝑥𝑌𝑤𝑌)) → ((𝑥𝐷𝑤)↑2) ∈ ℝ)
54 letri3 11201 . . . . . . 7 ((((𝑥𝐷𝑤)↑2) ∈ ℝ ∧ 0 ∈ ℝ) → (((𝑥𝐷𝑤)↑2) = 0 ↔ (((𝑥𝐷𝑤)↑2) ≤ 0 ∧ 0 ≤ ((𝑥𝐷𝑤)↑2))))
5553, 16, 54sylancl 586 . . . . . 6 ((𝜑 ∧ (𝑥𝑌𝑤𝑌)) → (((𝑥𝐷𝑤)↑2) = 0 ↔ (((𝑥𝐷𝑤)↑2) ≤ 0 ∧ 0 ≤ ((𝑥𝐷𝑤)↑2))))
5650recnd 11143 . . . . . . . 8 ((𝜑 ∧ (𝑥𝑌𝑤𝑌)) → (𝑥𝐷𝑤) ∈ ℂ)
57 sqeq0 14027 . . . . . . . 8 ((𝑥𝐷𝑤) ∈ ℂ → (((𝑥𝐷𝑤)↑2) = 0 ↔ (𝑥𝐷𝑤) = 0))
5856, 57syl 17 . . . . . . 7 ((𝜑 ∧ (𝑥𝑌𝑤𝑌)) → (((𝑥𝐷𝑤)↑2) = 0 ↔ (𝑥𝐷𝑤) = 0))
59 meteq0 24225 . . . . . . . 8 ((𝐷 ∈ (Met‘𝑋) ∧ 𝑥𝑋𝑤𝑋) → ((𝑥𝐷𝑤) = 0 ↔ 𝑥 = 𝑤))
6038, 46, 48, 59syl3anc 1373 . . . . . . 7 ((𝜑 ∧ (𝑥𝑌𝑤𝑌)) → ((𝑥𝐷𝑤) = 0 ↔ 𝑥 = 𝑤))
6158, 60bitrd 279 . . . . . 6 ((𝜑 ∧ (𝑥𝑌𝑤𝑌)) → (((𝑥𝐷𝑤)↑2) = 0 ↔ 𝑥 = 𝑤))
6252, 55, 613bitr2d 307 . . . . 5 ((𝜑 ∧ (𝑥𝑌𝑤𝑌)) → (((𝑥𝐷𝑤)↑2) ≤ 0 ↔ 𝑥 = 𝑤))
6333, 62bitrid 283 . . . 4 ((𝜑 ∧ (𝑥𝑌𝑤𝑌)) → (((𝑥𝐷𝑤)↑2) ≤ (4 · 0) ↔ 𝑥 = 𝑤))
6425, 30, 633imtr3d 293 . . 3 ((𝜑 ∧ (𝑥𝑌𝑤𝑌)) → ((∀𝑦𝑌 (𝑁‘(𝐴𝑀𝑥)) ≤ (𝑁‘(𝐴𝑀𝑦)) ∧ ∀𝑦𝑌 (𝑁‘(𝐴𝑀𝑤)) ≤ (𝑁‘(𝐴𝑀𝑦))) → 𝑥 = 𝑤))
6564ralrimivva 3172 . 2 (𝜑 → ∀𝑥𝑌𝑤𝑌 ((∀𝑦𝑌 (𝑁‘(𝐴𝑀𝑥)) ≤ (𝑁‘(𝐴𝑀𝑦)) ∧ ∀𝑦𝑌 (𝑁‘(𝐴𝑀𝑤)) ≤ (𝑁‘(𝐴𝑀𝑦))) → 𝑥 = 𝑤))
66 oveq2 7357 . . . . . 6 (𝑥 = 𝑤 → (𝐴𝑀𝑥) = (𝐴𝑀𝑤))
6766fveq2d 6826 . . . . 5 (𝑥 = 𝑤 → (𝑁‘(𝐴𝑀𝑥)) = (𝑁‘(𝐴𝑀𝑤)))
6867breq1d 5102 . . . 4 (𝑥 = 𝑤 → ((𝑁‘(𝐴𝑀𝑥)) ≤ (𝑁‘(𝐴𝑀𝑦)) ↔ (𝑁‘(𝐴𝑀𝑤)) ≤ (𝑁‘(𝐴𝑀𝑦))))
6968ralbidv 3152 . . 3 (𝑥 = 𝑤 → (∀𝑦𝑌 (𝑁‘(𝐴𝑀𝑥)) ≤ (𝑁‘(𝐴𝑀𝑦)) ↔ ∀𝑦𝑌 (𝑁‘(𝐴𝑀𝑤)) ≤ (𝑁‘(𝐴𝑀𝑦))))
7069reu4 3691 . 2 (∃!𝑥𝑌𝑦𝑌 (𝑁‘(𝐴𝑀𝑥)) ≤ (𝑁‘(𝐴𝑀𝑦)) ↔ (∃𝑥𝑌𝑦𝑌 (𝑁‘(𝐴𝑀𝑥)) ≤ (𝑁‘(𝐴𝑀𝑦)) ∧ ∀𝑥𝑌𝑤𝑌 ((∀𝑦𝑌 (𝑁‘(𝐴𝑀𝑥)) ≤ (𝑁‘(𝐴𝑀𝑦)) ∧ ∀𝑦𝑌 (𝑁‘(𝐴𝑀𝑤)) ≤ (𝑁‘(𝐴𝑀𝑦))) → 𝑥 = 𝑤)))
7112, 65, 70sylanbrc 583 1 (𝜑 → ∃!𝑥𝑌𝑦𝑌 (𝑁‘(𝐴𝑀𝑥)) ≤ (𝑁‘(𝐴𝑀𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  wrex 3053  ∃!wreu 3341  cin 3902  wss 3903   class class class wbr 5092  cmpt 5173  ran crn 5620  cfv 6482  (class class class)co 7349  infcinf 9331  cc 11007  cr 11008  0cc0 11009   + caddc 11012   · cmul 11014   < clt 11149  cle 11150  2c2 12183  4c4 12185  cexp 13968  Metcmet 21247  MetOpencmopn 21251  NrmCVeccnv 30528  BaseSetcba 30530  𝑣 cnsb 30533  normCVcnmcv 30534  IndMetcims 30535  SubSpcss 30665  CPreHilOLDccphlo 30756  CBanccbn 30806
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-inf2 9537  ax-cc 10329  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087  ax-addf 11088  ax-mulf 11089
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-er 8625  df-map 8755  df-pm 8756  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-fi 9301  df-sup 9332  df-inf 9333  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-n0 12385  df-z 12472  df-uz 12736  df-q 12850  df-rp 12894  df-xneg 13014  df-xadd 13015  df-xmul 13016  df-ico 13254  df-icc 13255  df-fl 13696  df-seq 13909  df-exp 13969  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-rest 17326  df-topgen 17347  df-psmet 21253  df-xmet 21254  df-met 21255  df-bl 21256  df-mopn 21257  df-fbas 21258  df-fg 21259  df-top 22779  df-topon 22796  df-bases 22831  df-cld 22904  df-ntr 22905  df-cls 22906  df-nei 22983  df-lm 23114  df-haus 23200  df-fil 23731  df-fm 23823  df-flim 23824  df-flf 23825  df-cfil 25153  df-cau 25154  df-cmet 25155  df-grpo 30437  df-gid 30438  df-ginv 30439  df-gdiv 30440  df-ablo 30489  df-vc 30503  df-nv 30536  df-va 30539  df-ba 30540  df-sm 30541  df-0v 30542  df-vs 30543  df-nmcv 30544  df-ims 30545  df-ssp 30666  df-ph 30757  df-cbn 30807
This theorem is referenced by:  minveco  30828
  Copyright terms: Public domain W3C validator