MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  minvecolem7 Structured version   Visualization version   GIF version

Theorem minvecolem7 30863
Description: Lemma for minveco 30864. Since any two minimal points are distance zero away from each other, the minimal point is unique. (Contributed by Mario Carneiro, 9-May-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
minveco.x 𝑋 = (BaseSet‘𝑈)
minveco.m 𝑀 = ( −𝑣𝑈)
minveco.n 𝑁 = (normCV𝑈)
minveco.y 𝑌 = (BaseSet‘𝑊)
minveco.u (𝜑𝑈 ∈ CPreHilOLD)
minveco.w (𝜑𝑊 ∈ ((SubSp‘𝑈) ∩ CBan))
minveco.a (𝜑𝐴𝑋)
minveco.d 𝐷 = (IndMet‘𝑈)
minveco.j 𝐽 = (MetOpen‘𝐷)
minveco.r 𝑅 = ran (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦)))
minveco.s 𝑆 = inf(𝑅, ℝ, < )
Assertion
Ref Expression
minvecolem7 (𝜑 → ∃!𝑥𝑌𝑦𝑌 (𝑁‘(𝐴𝑀𝑥)) ≤ (𝑁‘(𝐴𝑀𝑦)))
Distinct variable groups:   𝑥,𝑦,𝐽   𝑥,𝑀,𝑦   𝑥,𝑁,𝑦   𝜑,𝑥,𝑦   𝑥,𝑅   𝑥,𝑆,𝑦   𝑥,𝐴,𝑦   𝑥,𝐷,𝑦   𝑥,𝑈,𝑦   𝑥,𝑊,𝑦   𝑥,𝑋   𝑥,𝑌,𝑦
Allowed substitution hints:   𝑅(𝑦)   𝑋(𝑦)

Proof of Theorem minvecolem7
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 minveco.x . . 3 𝑋 = (BaseSet‘𝑈)
2 minveco.m . . 3 𝑀 = ( −𝑣𝑈)
3 minveco.n . . 3 𝑁 = (normCV𝑈)
4 minveco.y . . 3 𝑌 = (BaseSet‘𝑊)
5 minveco.u . . 3 (𝜑𝑈 ∈ CPreHilOLD)
6 minveco.w . . 3 (𝜑𝑊 ∈ ((SubSp‘𝑈) ∩ CBan))
7 minveco.a . . 3 (𝜑𝐴𝑋)
8 minveco.d . . 3 𝐷 = (IndMet‘𝑈)
9 minveco.j . . 3 𝐽 = (MetOpen‘𝐷)
10 minveco.r . . 3 𝑅 = ran (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦)))
11 minveco.s . . 3 𝑆 = inf(𝑅, ℝ, < )
121, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11minvecolem5 30861 . 2 (𝜑 → ∃𝑥𝑌𝑦𝑌 (𝑁‘(𝐴𝑀𝑥)) ≤ (𝑁‘(𝐴𝑀𝑦)))
135ad2antrr 726 . . . . . 6 (((𝜑 ∧ (𝑥𝑌𝑤𝑌)) ∧ (((𝐴𝐷𝑥)↑2) ≤ ((𝑆↑2) + 0) ∧ ((𝐴𝐷𝑤)↑2) ≤ ((𝑆↑2) + 0))) → 𝑈 ∈ CPreHilOLD)
146ad2antrr 726 . . . . . 6 (((𝜑 ∧ (𝑥𝑌𝑤𝑌)) ∧ (((𝐴𝐷𝑥)↑2) ≤ ((𝑆↑2) + 0) ∧ ((𝐴𝐷𝑤)↑2) ≤ ((𝑆↑2) + 0))) → 𝑊 ∈ ((SubSp‘𝑈) ∩ CBan))
157ad2antrr 726 . . . . . 6 (((𝜑 ∧ (𝑥𝑌𝑤𝑌)) ∧ (((𝐴𝐷𝑥)↑2) ≤ ((𝑆↑2) + 0) ∧ ((𝐴𝐷𝑤)↑2) ≤ ((𝑆↑2) + 0))) → 𝐴𝑋)
16 0re 11114 . . . . . . 7 0 ∈ ℝ
1716a1i 11 . . . . . 6 (((𝜑 ∧ (𝑥𝑌𝑤𝑌)) ∧ (((𝐴𝐷𝑥)↑2) ≤ ((𝑆↑2) + 0) ∧ ((𝐴𝐷𝑤)↑2) ≤ ((𝑆↑2) + 0))) → 0 ∈ ℝ)
18 0le0 12226 . . . . . . 7 0 ≤ 0
1918a1i 11 . . . . . 6 (((𝜑 ∧ (𝑥𝑌𝑤𝑌)) ∧ (((𝐴𝐷𝑥)↑2) ≤ ((𝑆↑2) + 0) ∧ ((𝐴𝐷𝑤)↑2) ≤ ((𝑆↑2) + 0))) → 0 ≤ 0)
20 simplrl 776 . . . . . 6 (((𝜑 ∧ (𝑥𝑌𝑤𝑌)) ∧ (((𝐴𝐷𝑥)↑2) ≤ ((𝑆↑2) + 0) ∧ ((𝐴𝐷𝑤)↑2) ≤ ((𝑆↑2) + 0))) → 𝑥𝑌)
21 simplrr 777 . . . . . 6 (((𝜑 ∧ (𝑥𝑌𝑤𝑌)) ∧ (((𝐴𝐷𝑥)↑2) ≤ ((𝑆↑2) + 0) ∧ ((𝐴𝐷𝑤)↑2) ≤ ((𝑆↑2) + 0))) → 𝑤𝑌)
22 simprl 770 . . . . . 6 (((𝜑 ∧ (𝑥𝑌𝑤𝑌)) ∧ (((𝐴𝐷𝑥)↑2) ≤ ((𝑆↑2) + 0) ∧ ((𝐴𝐷𝑤)↑2) ≤ ((𝑆↑2) + 0))) → ((𝐴𝐷𝑥)↑2) ≤ ((𝑆↑2) + 0))
23 simprr 772 . . . . . 6 (((𝜑 ∧ (𝑥𝑌𝑤𝑌)) ∧ (((𝐴𝐷𝑥)↑2) ≤ ((𝑆↑2) + 0) ∧ ((𝐴𝐷𝑤)↑2) ≤ ((𝑆↑2) + 0))) → ((𝐴𝐷𝑤)↑2) ≤ ((𝑆↑2) + 0))
241, 2, 3, 4, 13, 14, 15, 8, 9, 10, 11, 17, 19, 20, 21, 22, 23minvecolem2 30855 . . . . 5 (((𝜑 ∧ (𝑥𝑌𝑤𝑌)) ∧ (((𝐴𝐷𝑥)↑2) ≤ ((𝑆↑2) + 0) ∧ ((𝐴𝐷𝑤)↑2) ≤ ((𝑆↑2) + 0))) → ((𝑥𝐷𝑤)↑2) ≤ (4 · 0))
2524ex 412 . . . 4 ((𝜑 ∧ (𝑥𝑌𝑤𝑌)) → ((((𝐴𝐷𝑥)↑2) ≤ ((𝑆↑2) + 0) ∧ ((𝐴𝐷𝑤)↑2) ≤ ((𝑆↑2) + 0)) → ((𝑥𝐷𝑤)↑2) ≤ (4 · 0)))
261, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11minvecolem6 30862 . . . . . 6 ((𝜑𝑥𝑌) → (((𝐴𝐷𝑥)↑2) ≤ ((𝑆↑2) + 0) ↔ ∀𝑦𝑌 (𝑁‘(𝐴𝑀𝑥)) ≤ (𝑁‘(𝐴𝑀𝑦))))
2726adantrr 717 . . . . 5 ((𝜑 ∧ (𝑥𝑌𝑤𝑌)) → (((𝐴𝐷𝑥)↑2) ≤ ((𝑆↑2) + 0) ↔ ∀𝑦𝑌 (𝑁‘(𝐴𝑀𝑥)) ≤ (𝑁‘(𝐴𝑀𝑦))))
281, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11minvecolem6 30862 . . . . . 6 ((𝜑𝑤𝑌) → (((𝐴𝐷𝑤)↑2) ≤ ((𝑆↑2) + 0) ↔ ∀𝑦𝑌 (𝑁‘(𝐴𝑀𝑤)) ≤ (𝑁‘(𝐴𝑀𝑦))))
2928adantrl 716 . . . . 5 ((𝜑 ∧ (𝑥𝑌𝑤𝑌)) → (((𝐴𝐷𝑤)↑2) ≤ ((𝑆↑2) + 0) ↔ ∀𝑦𝑌 (𝑁‘(𝐴𝑀𝑤)) ≤ (𝑁‘(𝐴𝑀𝑦))))
3027, 29anbi12d 632 . . . 4 ((𝜑 ∧ (𝑥𝑌𝑤𝑌)) → ((((𝐴𝐷𝑥)↑2) ≤ ((𝑆↑2) + 0) ∧ ((𝐴𝐷𝑤)↑2) ≤ ((𝑆↑2) + 0)) ↔ (∀𝑦𝑌 (𝑁‘(𝐴𝑀𝑥)) ≤ (𝑁‘(𝐴𝑀𝑦)) ∧ ∀𝑦𝑌 (𝑁‘(𝐴𝑀𝑤)) ≤ (𝑁‘(𝐴𝑀𝑦)))))
31 4cn 12210 . . . . . . 7 4 ∈ ℂ
3231mul01i 11303 . . . . . 6 (4 · 0) = 0
3332breq2i 5097 . . . . 5 (((𝑥𝐷𝑤)↑2) ≤ (4 · 0) ↔ ((𝑥𝐷𝑤)↑2) ≤ 0)
34 phnv 30794 . . . . . . . . . . . 12 (𝑈 ∈ CPreHilOLD𝑈 ∈ NrmCVec)
355, 34syl 17 . . . . . . . . . . 11 (𝜑𝑈 ∈ NrmCVec)
3635adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝑌𝑤𝑌)) → 𝑈 ∈ NrmCVec)
371, 8imsmet 30671 . . . . . . . . . 10 (𝑈 ∈ NrmCVec → 𝐷 ∈ (Met‘𝑋))
3836, 37syl 17 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝑌𝑤𝑌)) → 𝐷 ∈ (Met‘𝑋))
39 inss1 4184 . . . . . . . . . . . . 13 ((SubSp‘𝑈) ∩ CBan) ⊆ (SubSp‘𝑈)
4039, 6sselid 3927 . . . . . . . . . . . 12 (𝜑𝑊 ∈ (SubSp‘𝑈))
41 eqid 2731 . . . . . . . . . . . . 13 (SubSp‘𝑈) = (SubSp‘𝑈)
421, 4, 41sspba 30707 . . . . . . . . . . . 12 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ (SubSp‘𝑈)) → 𝑌𝑋)
4335, 40, 42syl2anc 584 . . . . . . . . . . 11 (𝜑𝑌𝑋)
4443adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝑌𝑤𝑌)) → 𝑌𝑋)
45 simprl 770 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝑌𝑤𝑌)) → 𝑥𝑌)
4644, 45sseldd 3930 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝑌𝑤𝑌)) → 𝑥𝑋)
47 simprr 772 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝑌𝑤𝑌)) → 𝑤𝑌)
4844, 47sseldd 3930 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝑌𝑤𝑌)) → 𝑤𝑋)
49 metcl 24247 . . . . . . . . 9 ((𝐷 ∈ (Met‘𝑋) ∧ 𝑥𝑋𝑤𝑋) → (𝑥𝐷𝑤) ∈ ℝ)
5038, 46, 48, 49syl3anc 1373 . . . . . . . 8 ((𝜑 ∧ (𝑥𝑌𝑤𝑌)) → (𝑥𝐷𝑤) ∈ ℝ)
5150sqge0d 14044 . . . . . . 7 ((𝜑 ∧ (𝑥𝑌𝑤𝑌)) → 0 ≤ ((𝑥𝐷𝑤)↑2))
5251biantrud 531 . . . . . 6 ((𝜑 ∧ (𝑥𝑌𝑤𝑌)) → (((𝑥𝐷𝑤)↑2) ≤ 0 ↔ (((𝑥𝐷𝑤)↑2) ≤ 0 ∧ 0 ≤ ((𝑥𝐷𝑤)↑2))))
5350resqcld 14032 . . . . . . 7 ((𝜑 ∧ (𝑥𝑌𝑤𝑌)) → ((𝑥𝐷𝑤)↑2) ∈ ℝ)
54 letri3 11198 . . . . . . 7 ((((𝑥𝐷𝑤)↑2) ∈ ℝ ∧ 0 ∈ ℝ) → (((𝑥𝐷𝑤)↑2) = 0 ↔ (((𝑥𝐷𝑤)↑2) ≤ 0 ∧ 0 ≤ ((𝑥𝐷𝑤)↑2))))
5553, 16, 54sylancl 586 . . . . . 6 ((𝜑 ∧ (𝑥𝑌𝑤𝑌)) → (((𝑥𝐷𝑤)↑2) = 0 ↔ (((𝑥𝐷𝑤)↑2) ≤ 0 ∧ 0 ≤ ((𝑥𝐷𝑤)↑2))))
5650recnd 11140 . . . . . . . 8 ((𝜑 ∧ (𝑥𝑌𝑤𝑌)) → (𝑥𝐷𝑤) ∈ ℂ)
57 sqeq0 14027 . . . . . . . 8 ((𝑥𝐷𝑤) ∈ ℂ → (((𝑥𝐷𝑤)↑2) = 0 ↔ (𝑥𝐷𝑤) = 0))
5856, 57syl 17 . . . . . . 7 ((𝜑 ∧ (𝑥𝑌𝑤𝑌)) → (((𝑥𝐷𝑤)↑2) = 0 ↔ (𝑥𝐷𝑤) = 0))
59 meteq0 24254 . . . . . . . 8 ((𝐷 ∈ (Met‘𝑋) ∧ 𝑥𝑋𝑤𝑋) → ((𝑥𝐷𝑤) = 0 ↔ 𝑥 = 𝑤))
6038, 46, 48, 59syl3anc 1373 . . . . . . 7 ((𝜑 ∧ (𝑥𝑌𝑤𝑌)) → ((𝑥𝐷𝑤) = 0 ↔ 𝑥 = 𝑤))
6158, 60bitrd 279 . . . . . 6 ((𝜑 ∧ (𝑥𝑌𝑤𝑌)) → (((𝑥𝐷𝑤)↑2) = 0 ↔ 𝑥 = 𝑤))
6252, 55, 613bitr2d 307 . . . . 5 ((𝜑 ∧ (𝑥𝑌𝑤𝑌)) → (((𝑥𝐷𝑤)↑2) ≤ 0 ↔ 𝑥 = 𝑤))
6333, 62bitrid 283 . . . 4 ((𝜑 ∧ (𝑥𝑌𝑤𝑌)) → (((𝑥𝐷𝑤)↑2) ≤ (4 · 0) ↔ 𝑥 = 𝑤))
6425, 30, 633imtr3d 293 . . 3 ((𝜑 ∧ (𝑥𝑌𝑤𝑌)) → ((∀𝑦𝑌 (𝑁‘(𝐴𝑀𝑥)) ≤ (𝑁‘(𝐴𝑀𝑦)) ∧ ∀𝑦𝑌 (𝑁‘(𝐴𝑀𝑤)) ≤ (𝑁‘(𝐴𝑀𝑦))) → 𝑥 = 𝑤))
6564ralrimivva 3175 . 2 (𝜑 → ∀𝑥𝑌𝑤𝑌 ((∀𝑦𝑌 (𝑁‘(𝐴𝑀𝑥)) ≤ (𝑁‘(𝐴𝑀𝑦)) ∧ ∀𝑦𝑌 (𝑁‘(𝐴𝑀𝑤)) ≤ (𝑁‘(𝐴𝑀𝑦))) → 𝑥 = 𝑤))
66 oveq2 7354 . . . . . 6 (𝑥 = 𝑤 → (𝐴𝑀𝑥) = (𝐴𝑀𝑤))
6766fveq2d 6826 . . . . 5 (𝑥 = 𝑤 → (𝑁‘(𝐴𝑀𝑥)) = (𝑁‘(𝐴𝑀𝑤)))
6867breq1d 5099 . . . 4 (𝑥 = 𝑤 → ((𝑁‘(𝐴𝑀𝑥)) ≤ (𝑁‘(𝐴𝑀𝑦)) ↔ (𝑁‘(𝐴𝑀𝑤)) ≤ (𝑁‘(𝐴𝑀𝑦))))
6968ralbidv 3155 . . 3 (𝑥 = 𝑤 → (∀𝑦𝑌 (𝑁‘(𝐴𝑀𝑥)) ≤ (𝑁‘(𝐴𝑀𝑦)) ↔ ∀𝑦𝑌 (𝑁‘(𝐴𝑀𝑤)) ≤ (𝑁‘(𝐴𝑀𝑦))))
7069reu4 3685 . 2 (∃!𝑥𝑌𝑦𝑌 (𝑁‘(𝐴𝑀𝑥)) ≤ (𝑁‘(𝐴𝑀𝑦)) ↔ (∃𝑥𝑌𝑦𝑌 (𝑁‘(𝐴𝑀𝑥)) ≤ (𝑁‘(𝐴𝑀𝑦)) ∧ ∀𝑥𝑌𝑤𝑌 ((∀𝑦𝑌 (𝑁‘(𝐴𝑀𝑥)) ≤ (𝑁‘(𝐴𝑀𝑦)) ∧ ∀𝑦𝑌 (𝑁‘(𝐴𝑀𝑤)) ≤ (𝑁‘(𝐴𝑀𝑦))) → 𝑥 = 𝑤)))
7112, 65, 70sylanbrc 583 1 (𝜑 → ∃!𝑥𝑌𝑦𝑌 (𝑁‘(𝐴𝑀𝑥)) ≤ (𝑁‘(𝐴𝑀𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wral 3047  wrex 3056  ∃!wreu 3344  cin 3896  wss 3897   class class class wbr 5089  cmpt 5170  ran crn 5615  cfv 6481  (class class class)co 7346  infcinf 9325  cc 11004  cr 11005  0cc0 11006   + caddc 11009   · cmul 11011   < clt 11146  cle 11147  2c2 12180  4c4 12182  cexp 13968  Metcmet 21277  MetOpencmopn 21281  NrmCVeccnv 30564  BaseSetcba 30566  𝑣 cnsb 30569  normCVcnmcv 30570  IndMetcims 30571  SubSpcss 30701  CPreHilOLDccphlo 30792  CBanccbn 30842
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-inf2 9531  ax-cc 10326  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084  ax-addf 11085  ax-mulf 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-map 8752  df-pm 8753  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fi 9295  df-sup 9326  df-inf 9327  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-n0 12382  df-z 12469  df-uz 12733  df-q 12847  df-rp 12891  df-xneg 13011  df-xadd 13012  df-xmul 13013  df-ico 13251  df-icc 13252  df-fl 13696  df-seq 13909  df-exp 13969  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-rest 17326  df-topgen 17347  df-psmet 21283  df-xmet 21284  df-met 21285  df-bl 21286  df-mopn 21287  df-fbas 21288  df-fg 21289  df-top 22809  df-topon 22826  df-bases 22861  df-cld 22934  df-ntr 22935  df-cls 22936  df-nei 23013  df-lm 23144  df-haus 23230  df-fil 23761  df-fm 23853  df-flim 23854  df-flf 23855  df-cfil 25182  df-cau 25183  df-cmet 25184  df-grpo 30473  df-gid 30474  df-ginv 30475  df-gdiv 30476  df-ablo 30525  df-vc 30539  df-nv 30572  df-va 30575  df-ba 30576  df-sm 30577  df-0v 30578  df-vs 30579  df-nmcv 30580  df-ims 30581  df-ssp 30702  df-ph 30793  df-cbn 30843
This theorem is referenced by:  minveco  30864
  Copyright terms: Public domain W3C validator