MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  minvecolem5 Structured version   Visualization version   GIF version

Theorem minvecolem5 29823
Description: Lemma for minveco 29826. Discharge the assumption about the sequence 𝐹 by applying countable choice ax-cc 10371. (Contributed by Mario Carneiro, 9-May-2014.) (Revised by AV, 4-Oct-2020.) (New usage is discouraged.)
Hypotheses
Ref Expression
minveco.x 𝑋 = (BaseSet‘𝑈)
minveco.m 𝑀 = ( −𝑣𝑈)
minveco.n 𝑁 = (normCV𝑈)
minveco.y 𝑌 = (BaseSet‘𝑊)
minveco.u (𝜑𝑈 ∈ CPreHilOLD)
minveco.w (𝜑𝑊 ∈ ((SubSp‘𝑈) ∩ CBan))
minveco.a (𝜑𝐴𝑋)
minveco.d 𝐷 = (IndMet‘𝑈)
minveco.j 𝐽 = (MetOpen‘𝐷)
minveco.r 𝑅 = ran (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦)))
minveco.s 𝑆 = inf(𝑅, ℝ, < )
Assertion
Ref Expression
minvecolem5 (𝜑 → ∃𝑥𝑌𝑦𝑌 (𝑁‘(𝐴𝑀𝑥)) ≤ (𝑁‘(𝐴𝑀𝑦)))
Distinct variable groups:   𝑥,𝑦,𝐽   𝑥,𝑀,𝑦   𝑥,𝑁,𝑦   𝜑,𝑥,𝑦   𝑥,𝑅   𝑥,𝑆,𝑦   𝑥,𝐴,𝑦   𝑥,𝐷,𝑦   𝑥,𝑈,𝑦   𝑥,𝑊,𝑦   𝑥,𝑋   𝑥,𝑌,𝑦
Allowed substitution hints:   𝑅(𝑦)   𝑋(𝑦)

Proof of Theorem minvecolem5
Dummy variables 𝑛 𝑘 𝑤 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnrecgt0 12196 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → 0 < (1 / 𝑛))
21adantl 482 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → 0 < (1 / 𝑛))
3 nnrecre 12195 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → (1 / 𝑛) ∈ ℝ)
43adantl 482 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → (1 / 𝑛) ∈ ℝ)
5 minveco.s . . . . . . . . . . . . . 14 𝑆 = inf(𝑅, ℝ, < )
6 minveco.x . . . . . . . . . . . . . . . . . 18 𝑋 = (BaseSet‘𝑈)
7 minveco.m . . . . . . . . . . . . . . . . . 18 𝑀 = ( −𝑣𝑈)
8 minveco.n . . . . . . . . . . . . . . . . . 18 𝑁 = (normCV𝑈)
9 minveco.y . . . . . . . . . . . . . . . . . 18 𝑌 = (BaseSet‘𝑊)
10 minveco.u . . . . . . . . . . . . . . . . . 18 (𝜑𝑈 ∈ CPreHilOLD)
11 minveco.w . . . . . . . . . . . . . . . . . 18 (𝜑𝑊 ∈ ((SubSp‘𝑈) ∩ CBan))
12 minveco.a . . . . . . . . . . . . . . . . . 18 (𝜑𝐴𝑋)
13 minveco.d . . . . . . . . . . . . . . . . . 18 𝐷 = (IndMet‘𝑈)
14 minveco.j . . . . . . . . . . . . . . . . . 18 𝐽 = (MetOpen‘𝐷)
15 minveco.r . . . . . . . . . . . . . . . . . 18 𝑅 = ran (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦)))
166, 7, 8, 9, 10, 11, 12, 13, 14, 15minvecolem1 29816 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∀𝑤𝑅 0 ≤ 𝑤))
1716adantr 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ ℕ) → (𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∀𝑤𝑅 0 ≤ 𝑤))
1817simp1d 1142 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ) → 𝑅 ⊆ ℝ)
1917simp2d 1143 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ) → 𝑅 ≠ ∅)
20 0re 11157 . . . . . . . . . . . . . . . 16 0 ∈ ℝ
2117simp3d 1144 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ ℕ) → ∀𝑤𝑅 0 ≤ 𝑤)
22 breq1 5108 . . . . . . . . . . . . . . . . . 18 (𝑥 = 0 → (𝑥𝑤 ↔ 0 ≤ 𝑤))
2322ralbidv 3174 . . . . . . . . . . . . . . . . 17 (𝑥 = 0 → (∀𝑤𝑅 𝑥𝑤 ↔ ∀𝑤𝑅 0 ≤ 𝑤))
2423rspcev 3581 . . . . . . . . . . . . . . . 16 ((0 ∈ ℝ ∧ ∀𝑤𝑅 0 ≤ 𝑤) → ∃𝑥 ∈ ℝ ∀𝑤𝑅 𝑥𝑤)
2520, 21, 24sylancr 587 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ) → ∃𝑥 ∈ ℝ ∀𝑤𝑅 𝑥𝑤)
26 infrecl 12137 . . . . . . . . . . . . . . 15 ((𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑤𝑅 𝑥𝑤) → inf(𝑅, ℝ, < ) ∈ ℝ)
2718, 19, 25, 26syl3anc 1371 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ) → inf(𝑅, ℝ, < ) ∈ ℝ)
285, 27eqeltrid 2842 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → 𝑆 ∈ ℝ)
2928resqcld 14030 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → (𝑆↑2) ∈ ℝ)
304, 29ltaddposd 11739 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (0 < (1 / 𝑛) ↔ (𝑆↑2) < ((𝑆↑2) + (1 / 𝑛))))
312, 30mpbid 231 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (𝑆↑2) < ((𝑆↑2) + (1 / 𝑛)))
3229, 4readdcld 11184 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → ((𝑆↑2) + (1 / 𝑛)) ∈ ℝ)
3328sqge0d 14042 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ) → 0 ≤ (𝑆↑2))
3429, 4, 33, 2addgegt0d 11728 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → 0 < ((𝑆↑2) + (1 / 𝑛)))
3532, 34elrpd 12954 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → ((𝑆↑2) + (1 / 𝑛)) ∈ ℝ+)
3635rpge0d 12961 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → 0 ≤ ((𝑆↑2) + (1 / 𝑛)))
37 resqrtth 15140 . . . . . . . . . . 11 ((((𝑆↑2) + (1 / 𝑛)) ∈ ℝ ∧ 0 ≤ ((𝑆↑2) + (1 / 𝑛))) → ((√‘((𝑆↑2) + (1 / 𝑛)))↑2) = ((𝑆↑2) + (1 / 𝑛)))
3832, 36, 37syl2anc 584 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → ((√‘((𝑆↑2) + (1 / 𝑛)))↑2) = ((𝑆↑2) + (1 / 𝑛)))
3931, 38breqtrrd 5133 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (𝑆↑2) < ((√‘((𝑆↑2) + (1 / 𝑛)))↑2))
4035rpsqrtcld 15296 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (√‘((𝑆↑2) + (1 / 𝑛))) ∈ ℝ+)
4140rpred 12957 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (√‘((𝑆↑2) + (1 / 𝑛))) ∈ ℝ)
42 0red 11158 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → 0 ∈ ℝ)
43 infregelb 12139 . . . . . . . . . . . . 13 (((𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑤𝑅 𝑥𝑤) ∧ 0 ∈ ℝ) → (0 ≤ inf(𝑅, ℝ, < ) ↔ ∀𝑤𝑅 0 ≤ 𝑤))
4418, 19, 25, 42, 43syl31anc 1373 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → (0 ≤ inf(𝑅, ℝ, < ) ↔ ∀𝑤𝑅 0 ≤ 𝑤))
4521, 44mpbird 256 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → 0 ≤ inf(𝑅, ℝ, < ))
4645, 5breqtrrdi 5147 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → 0 ≤ 𝑆)
4732, 36sqrtge0d 15305 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → 0 ≤ (√‘((𝑆↑2) + (1 / 𝑛))))
4828, 41, 46, 47lt2sqd 14159 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (𝑆 < (√‘((𝑆↑2) + (1 / 𝑛))) ↔ (𝑆↑2) < ((√‘((𝑆↑2) + (1 / 𝑛)))↑2)))
4939, 48mpbird 256 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → 𝑆 < (√‘((𝑆↑2) + (1 / 𝑛))))
5028, 41ltnled 11302 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (𝑆 < (√‘((𝑆↑2) + (1 / 𝑛))) ↔ ¬ (√‘((𝑆↑2) + (1 / 𝑛))) ≤ 𝑆))
5149, 50mpbid 231 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → ¬ (√‘((𝑆↑2) + (1 / 𝑛))) ≤ 𝑆)
525breq2i 5113 . . . . . . . . 9 ((√‘((𝑆↑2) + (1 / 𝑛))) ≤ 𝑆 ↔ (√‘((𝑆↑2) + (1 / 𝑛))) ≤ inf(𝑅, ℝ, < ))
53 infregelb 12139 . . . . . . . . . 10 (((𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑤𝑅 𝑥𝑤) ∧ (√‘((𝑆↑2) + (1 / 𝑛))) ∈ ℝ) → ((√‘((𝑆↑2) + (1 / 𝑛))) ≤ inf(𝑅, ℝ, < ) ↔ ∀𝑤𝑅 (√‘((𝑆↑2) + (1 / 𝑛))) ≤ 𝑤))
5418, 19, 25, 41, 53syl31anc 1373 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → ((√‘((𝑆↑2) + (1 / 𝑛))) ≤ inf(𝑅, ℝ, < ) ↔ ∀𝑤𝑅 (√‘((𝑆↑2) + (1 / 𝑛))) ≤ 𝑤))
5552, 54bitrid 282 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → ((√‘((𝑆↑2) + (1 / 𝑛))) ≤ 𝑆 ↔ ∀𝑤𝑅 (√‘((𝑆↑2) + (1 / 𝑛))) ≤ 𝑤))
5615raleqi 3311 . . . . . . . . 9 (∀𝑤𝑅 (√‘((𝑆↑2) + (1 / 𝑛))) ≤ 𝑤 ↔ ∀𝑤 ∈ ran (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦)))(√‘((𝑆↑2) + (1 / 𝑛))) ≤ 𝑤)
57 fvex 6855 . . . . . . . . . . 11 (𝑁‘(𝐴𝑀𝑦)) ∈ V
5857rgenw 3068 . . . . . . . . . 10 𝑦𝑌 (𝑁‘(𝐴𝑀𝑦)) ∈ V
59 eqid 2736 . . . . . . . . . . 11 (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦))) = (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦)))
60 breq2 5109 . . . . . . . . . . 11 (𝑤 = (𝑁‘(𝐴𝑀𝑦)) → ((√‘((𝑆↑2) + (1 / 𝑛))) ≤ 𝑤 ↔ (√‘((𝑆↑2) + (1 / 𝑛))) ≤ (𝑁‘(𝐴𝑀𝑦))))
6159, 60ralrnmptw 7044 . . . . . . . . . 10 (∀𝑦𝑌 (𝑁‘(𝐴𝑀𝑦)) ∈ V → (∀𝑤 ∈ ran (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦)))(√‘((𝑆↑2) + (1 / 𝑛))) ≤ 𝑤 ↔ ∀𝑦𝑌 (√‘((𝑆↑2) + (1 / 𝑛))) ≤ (𝑁‘(𝐴𝑀𝑦))))
6258, 61ax-mp 5 . . . . . . . . 9 (∀𝑤 ∈ ran (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦)))(√‘((𝑆↑2) + (1 / 𝑛))) ≤ 𝑤 ↔ ∀𝑦𝑌 (√‘((𝑆↑2) + (1 / 𝑛))) ≤ (𝑁‘(𝐴𝑀𝑦)))
6356, 62bitri 274 . . . . . . . 8 (∀𝑤𝑅 (√‘((𝑆↑2) + (1 / 𝑛))) ≤ 𝑤 ↔ ∀𝑦𝑌 (√‘((𝑆↑2) + (1 / 𝑛))) ≤ (𝑁‘(𝐴𝑀𝑦)))
6455, 63bitrdi 286 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → ((√‘((𝑆↑2) + (1 / 𝑛))) ≤ 𝑆 ↔ ∀𝑦𝑌 (√‘((𝑆↑2) + (1 / 𝑛))) ≤ (𝑁‘(𝐴𝑀𝑦))))
6551, 64mtbid 323 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → ¬ ∀𝑦𝑌 (√‘((𝑆↑2) + (1 / 𝑛))) ≤ (𝑁‘(𝐴𝑀𝑦)))
66 rexnal 3103 . . . . . 6 (∃𝑦𝑌 ¬ (√‘((𝑆↑2) + (1 / 𝑛))) ≤ (𝑁‘(𝐴𝑀𝑦)) ↔ ¬ ∀𝑦𝑌 (√‘((𝑆↑2) + (1 / 𝑛))) ≤ (𝑁‘(𝐴𝑀𝑦)))
6765, 66sylibr 233 . . . . 5 ((𝜑𝑛 ∈ ℕ) → ∃𝑦𝑌 ¬ (√‘((𝑆↑2) + (1 / 𝑛))) ≤ (𝑁‘(𝐴𝑀𝑦)))
6832adantr 481 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑦𝑌) → ((𝑆↑2) + (1 / 𝑛)) ∈ ℝ)
69 phnv 29756 . . . . . . . . . . . . 13 (𝑈 ∈ CPreHilOLD𝑈 ∈ NrmCVec)
7010, 69syl 17 . . . . . . . . . . . 12 (𝜑𝑈 ∈ NrmCVec)
7170ad2antrr 724 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑦𝑌) → 𝑈 ∈ NrmCVec)
7212ad2antrr 724 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ) ∧ 𝑦𝑌) → 𝐴𝑋)
73 inss1 4188 . . . . . . . . . . . . . . . 16 ((SubSp‘𝑈) ∩ CBan) ⊆ (SubSp‘𝑈)
7473, 11sselid 3942 . . . . . . . . . . . . . . 15 (𝜑𝑊 ∈ (SubSp‘𝑈))
75 eqid 2736 . . . . . . . . . . . . . . . 16 (SubSp‘𝑈) = (SubSp‘𝑈)
766, 9, 75sspba 29669 . . . . . . . . . . . . . . 15 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ (SubSp‘𝑈)) → 𝑌𝑋)
7770, 74, 76syl2anc 584 . . . . . . . . . . . . . 14 (𝜑𝑌𝑋)
7877adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → 𝑌𝑋)
7978sselda 3944 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ) ∧ 𝑦𝑌) → 𝑦𝑋)
806, 7nvmcl 29588 . . . . . . . . . . . 12 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝑦𝑋) → (𝐴𝑀𝑦) ∈ 𝑋)
8171, 72, 79, 80syl3anc 1371 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑦𝑌) → (𝐴𝑀𝑦) ∈ 𝑋)
826, 8nvcl 29603 . . . . . . . . . . 11 ((𝑈 ∈ NrmCVec ∧ (𝐴𝑀𝑦) ∈ 𝑋) → (𝑁‘(𝐴𝑀𝑦)) ∈ ℝ)
8371, 81, 82syl2anc 584 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑦𝑌) → (𝑁‘(𝐴𝑀𝑦)) ∈ ℝ)
8483resqcld 14030 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑦𝑌) → ((𝑁‘(𝐴𝑀𝑦))↑2) ∈ ℝ)
8568, 84letrid 11307 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑦𝑌) → (((𝑆↑2) + (1 / 𝑛)) ≤ ((𝑁‘(𝐴𝑀𝑦))↑2) ∨ ((𝑁‘(𝐴𝑀𝑦))↑2) ≤ ((𝑆↑2) + (1 / 𝑛))))
8685ord 862 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑦𝑌) → (¬ ((𝑆↑2) + (1 / 𝑛)) ≤ ((𝑁‘(𝐴𝑀𝑦))↑2) → ((𝑁‘(𝐴𝑀𝑦))↑2) ≤ ((𝑆↑2) + (1 / 𝑛))))
8741adantr 481 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑦𝑌) → (√‘((𝑆↑2) + (1 / 𝑛))) ∈ ℝ)
8847adantr 481 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑦𝑌) → 0 ≤ (√‘((𝑆↑2) + (1 / 𝑛))))
896, 8nvge0 29615 . . . . . . . . . . 11 ((𝑈 ∈ NrmCVec ∧ (𝐴𝑀𝑦) ∈ 𝑋) → 0 ≤ (𝑁‘(𝐴𝑀𝑦)))
9071, 81, 89syl2anc 584 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑦𝑌) → 0 ≤ (𝑁‘(𝐴𝑀𝑦)))
9187, 83, 88, 90le2sqd 14160 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑦𝑌) → ((√‘((𝑆↑2) + (1 / 𝑛))) ≤ (𝑁‘(𝐴𝑀𝑦)) ↔ ((√‘((𝑆↑2) + (1 / 𝑛)))↑2) ≤ ((𝑁‘(𝐴𝑀𝑦))↑2)))
9238adantr 481 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑦𝑌) → ((√‘((𝑆↑2) + (1 / 𝑛)))↑2) = ((𝑆↑2) + (1 / 𝑛)))
9392breq1d 5115 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑦𝑌) → (((√‘((𝑆↑2) + (1 / 𝑛)))↑2) ≤ ((𝑁‘(𝐴𝑀𝑦))↑2) ↔ ((𝑆↑2) + (1 / 𝑛)) ≤ ((𝑁‘(𝐴𝑀𝑦))↑2)))
9491, 93bitrd 278 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑦𝑌) → ((√‘((𝑆↑2) + (1 / 𝑛))) ≤ (𝑁‘(𝐴𝑀𝑦)) ↔ ((𝑆↑2) + (1 / 𝑛)) ≤ ((𝑁‘(𝐴𝑀𝑦))↑2)))
9594notbid 317 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑦𝑌) → (¬ (√‘((𝑆↑2) + (1 / 𝑛))) ≤ (𝑁‘(𝐴𝑀𝑦)) ↔ ¬ ((𝑆↑2) + (1 / 𝑛)) ≤ ((𝑁‘(𝐴𝑀𝑦))↑2)))
966, 7, 8, 13imsdval 29628 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝑦𝑋) → (𝐴𝐷𝑦) = (𝑁‘(𝐴𝑀𝑦)))
9771, 72, 79, 96syl3anc 1371 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑦𝑌) → (𝐴𝐷𝑦) = (𝑁‘(𝐴𝑀𝑦)))
9897oveq1d 7372 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑦𝑌) → ((𝐴𝐷𝑦)↑2) = ((𝑁‘(𝐴𝑀𝑦))↑2))
9998breq1d 5115 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑦𝑌) → (((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (1 / 𝑛)) ↔ ((𝑁‘(𝐴𝑀𝑦))↑2) ≤ ((𝑆↑2) + (1 / 𝑛))))
10086, 95, 993imtr4d 293 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ 𝑦𝑌) → (¬ (√‘((𝑆↑2) + (1 / 𝑛))) ≤ (𝑁‘(𝐴𝑀𝑦)) → ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (1 / 𝑛))))
101100reximdva 3165 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (∃𝑦𝑌 ¬ (√‘((𝑆↑2) + (1 / 𝑛))) ≤ (𝑁‘(𝐴𝑀𝑦)) → ∃𝑦𝑌 ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (1 / 𝑛))))
10267, 101mpd 15 . . . 4 ((𝜑𝑛 ∈ ℕ) → ∃𝑦𝑌 ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (1 / 𝑛)))
103102ralrimiva 3143 . . 3 (𝜑 → ∀𝑛 ∈ ℕ ∃𝑦𝑌 ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (1 / 𝑛)))
1049fvexi 6856 . . . 4 𝑌 ∈ V
105 nnenom 13885 . . . 4 ℕ ≈ ω
106 oveq2 7365 . . . . . 6 (𝑦 = (𝑓𝑛) → (𝐴𝐷𝑦) = (𝐴𝐷(𝑓𝑛)))
107106oveq1d 7372 . . . . 5 (𝑦 = (𝑓𝑛) → ((𝐴𝐷𝑦)↑2) = ((𝐴𝐷(𝑓𝑛))↑2))
108107breq1d 5115 . . . 4 (𝑦 = (𝑓𝑛) → (((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (1 / 𝑛)) ↔ ((𝐴𝐷(𝑓𝑛))↑2) ≤ ((𝑆↑2) + (1 / 𝑛))))
109104, 105, 108axcc4 10375 . . 3 (∀𝑛 ∈ ℕ ∃𝑦𝑌 ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (1 / 𝑛)) → ∃𝑓(𝑓:ℕ⟶𝑌 ∧ ∀𝑛 ∈ ℕ ((𝐴𝐷(𝑓𝑛))↑2) ≤ ((𝑆↑2) + (1 / 𝑛))))
110103, 109syl 17 . 2 (𝜑 → ∃𝑓(𝑓:ℕ⟶𝑌 ∧ ∀𝑛 ∈ ℕ ((𝐴𝐷(𝑓𝑛))↑2) ≤ ((𝑆↑2) + (1 / 𝑛))))
11110adantr 481 . . 3 ((𝜑 ∧ (𝑓:ℕ⟶𝑌 ∧ ∀𝑛 ∈ ℕ ((𝐴𝐷(𝑓𝑛))↑2) ≤ ((𝑆↑2) + (1 / 𝑛)))) → 𝑈 ∈ CPreHilOLD)
11211adantr 481 . . 3 ((𝜑 ∧ (𝑓:ℕ⟶𝑌 ∧ ∀𝑛 ∈ ℕ ((𝐴𝐷(𝑓𝑛))↑2) ≤ ((𝑆↑2) + (1 / 𝑛)))) → 𝑊 ∈ ((SubSp‘𝑈) ∩ CBan))
11312adantr 481 . . 3 ((𝜑 ∧ (𝑓:ℕ⟶𝑌 ∧ ∀𝑛 ∈ ℕ ((𝐴𝐷(𝑓𝑛))↑2) ≤ ((𝑆↑2) + (1 / 𝑛)))) → 𝐴𝑋)
114 simprl 769 . . 3 ((𝜑 ∧ (𝑓:ℕ⟶𝑌 ∧ ∀𝑛 ∈ ℕ ((𝐴𝐷(𝑓𝑛))↑2) ≤ ((𝑆↑2) + (1 / 𝑛)))) → 𝑓:ℕ⟶𝑌)
115 simprr 771 . . . 4 ((𝜑 ∧ (𝑓:ℕ⟶𝑌 ∧ ∀𝑛 ∈ ℕ ((𝐴𝐷(𝑓𝑛))↑2) ≤ ((𝑆↑2) + (1 / 𝑛)))) → ∀𝑛 ∈ ℕ ((𝐴𝐷(𝑓𝑛))↑2) ≤ ((𝑆↑2) + (1 / 𝑛)))
116 fveq2 6842 . . . . . . . 8 (𝑛 = 𝑘 → (𝑓𝑛) = (𝑓𝑘))
117116oveq2d 7373 . . . . . . 7 (𝑛 = 𝑘 → (𝐴𝐷(𝑓𝑛)) = (𝐴𝐷(𝑓𝑘)))
118117oveq1d 7372 . . . . . 6 (𝑛 = 𝑘 → ((𝐴𝐷(𝑓𝑛))↑2) = ((𝐴𝐷(𝑓𝑘))↑2))
119 oveq2 7365 . . . . . . 7 (𝑛 = 𝑘 → (1 / 𝑛) = (1 / 𝑘))
120119oveq2d 7373 . . . . . 6 (𝑛 = 𝑘 → ((𝑆↑2) + (1 / 𝑛)) = ((𝑆↑2) + (1 / 𝑘)))
121118, 120breq12d 5118 . . . . 5 (𝑛 = 𝑘 → (((𝐴𝐷(𝑓𝑛))↑2) ≤ ((𝑆↑2) + (1 / 𝑛)) ↔ ((𝐴𝐷(𝑓𝑘))↑2) ≤ ((𝑆↑2) + (1 / 𝑘))))
122121rspccva 3580 . . . 4 ((∀𝑛 ∈ ℕ ((𝐴𝐷(𝑓𝑛))↑2) ≤ ((𝑆↑2) + (1 / 𝑛)) ∧ 𝑘 ∈ ℕ) → ((𝐴𝐷(𝑓𝑘))↑2) ≤ ((𝑆↑2) + (1 / 𝑘)))
123115, 122sylan 580 . . 3 (((𝜑 ∧ (𝑓:ℕ⟶𝑌 ∧ ∀𝑛 ∈ ℕ ((𝐴𝐷(𝑓𝑛))↑2) ≤ ((𝑆↑2) + (1 / 𝑛)))) ∧ 𝑘 ∈ ℕ) → ((𝐴𝐷(𝑓𝑘))↑2) ≤ ((𝑆↑2) + (1 / 𝑘)))
124 eqid 2736 . . 3 (1 / (((((𝐴𝐷((⇝𝑡𝐽)‘𝑓)) + 𝑆) / 2)↑2) − (𝑆↑2))) = (1 / (((((𝐴𝐷((⇝𝑡𝐽)‘𝑓)) + 𝑆) / 2)↑2) − (𝑆↑2)))
1256, 7, 8, 9, 111, 112, 113, 13, 14, 15, 5, 114, 123, 124minvecolem4 29822 . 2 ((𝜑 ∧ (𝑓:ℕ⟶𝑌 ∧ ∀𝑛 ∈ ℕ ((𝐴𝐷(𝑓𝑛))↑2) ≤ ((𝑆↑2) + (1 / 𝑛)))) → ∃𝑥𝑌𝑦𝑌 (𝑁‘(𝐴𝑀𝑥)) ≤ (𝑁‘(𝐴𝑀𝑦)))
126110, 125exlimddv 1938 1 (𝜑 → ∃𝑥𝑌𝑦𝑌 (𝑁‘(𝐴𝑀𝑥)) ≤ (𝑁‘(𝐴𝑀𝑦)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wex 1781  wcel 2106  wne 2943  wral 3064  wrex 3073  Vcvv 3445  cin 3909  wss 3910  c0 4282   class class class wbr 5105  cmpt 5188  ran crn 5634  wf 6492  cfv 6496  (class class class)co 7357  infcinf 9377  cr 11050  0cc0 11051  1c1 11052   + caddc 11054   < clt 11189  cle 11190  cmin 11385   / cdiv 11812  cn 12153  2c2 12208  cexp 13967  csqrt 15118  MetOpencmopn 20786  𝑡clm 22577  NrmCVeccnv 29526  BaseSetcba 29528  𝑣 cnsb 29531  normCVcnmcv 29532  IndMetcims 29533  SubSpcss 29663  CPreHilOLDccphlo 29754  CBanccbn 29804
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-cc 10371  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129  ax-addf 11130  ax-mulf 11131
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-map 8767  df-pm 8768  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fi 9347  df-sup 9378  df-inf 9379  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-n0 12414  df-z 12500  df-uz 12764  df-q 12874  df-rp 12916  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-ico 13270  df-icc 13271  df-fl 13697  df-seq 13907  df-exp 13968  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-rest 17304  df-topgen 17325  df-psmet 20788  df-xmet 20789  df-met 20790  df-bl 20791  df-mopn 20792  df-fbas 20793  df-fg 20794  df-top 22243  df-topon 22260  df-bases 22296  df-cld 22370  df-ntr 22371  df-cls 22372  df-nei 22449  df-lm 22580  df-haus 22666  df-fil 23197  df-fm 23289  df-flim 23290  df-flf 23291  df-cfil 24619  df-cau 24620  df-cmet 24621  df-grpo 29435  df-gid 29436  df-ginv 29437  df-gdiv 29438  df-ablo 29487  df-vc 29501  df-nv 29534  df-va 29537  df-ba 29538  df-sm 29539  df-0v 29540  df-vs 29541  df-nmcv 29542  df-ims 29543  df-ssp 29664  df-ph 29755  df-cbn 29805
This theorem is referenced by:  minvecolem7  29825
  Copyright terms: Public domain W3C validator