MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  minvecolem5 Structured version   Visualization version   GIF version

Theorem minvecolem5 30817
Description: Lemma for minveco 30820. Discharge the assumption about the sequence 𝐹 by applying countable choice ax-cc 10395. (Contributed by Mario Carneiro, 9-May-2014.) (Revised by AV, 4-Oct-2020.) (New usage is discouraged.)
Hypotheses
Ref Expression
minveco.x 𝑋 = (BaseSet‘𝑈)
minveco.m 𝑀 = ( −𝑣𝑈)
minveco.n 𝑁 = (normCV𝑈)
minveco.y 𝑌 = (BaseSet‘𝑊)
minveco.u (𝜑𝑈 ∈ CPreHilOLD)
minveco.w (𝜑𝑊 ∈ ((SubSp‘𝑈) ∩ CBan))
minveco.a (𝜑𝐴𝑋)
minveco.d 𝐷 = (IndMet‘𝑈)
minveco.j 𝐽 = (MetOpen‘𝐷)
minveco.r 𝑅 = ran (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦)))
minveco.s 𝑆 = inf(𝑅, ℝ, < )
Assertion
Ref Expression
minvecolem5 (𝜑 → ∃𝑥𝑌𝑦𝑌 (𝑁‘(𝐴𝑀𝑥)) ≤ (𝑁‘(𝐴𝑀𝑦)))
Distinct variable groups:   𝑥,𝑦,𝐽   𝑥,𝑀,𝑦   𝑥,𝑁,𝑦   𝜑,𝑥,𝑦   𝑥,𝑅   𝑥,𝑆,𝑦   𝑥,𝐴,𝑦   𝑥,𝐷,𝑦   𝑥,𝑈,𝑦   𝑥,𝑊,𝑦   𝑥,𝑋   𝑥,𝑌,𝑦
Allowed substitution hints:   𝑅(𝑦)   𝑋(𝑦)

Proof of Theorem minvecolem5
Dummy variables 𝑛 𝑘 𝑤 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnrecgt0 12236 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → 0 < (1 / 𝑛))
21adantl 481 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → 0 < (1 / 𝑛))
3 nnrecre 12235 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → (1 / 𝑛) ∈ ℝ)
43adantl 481 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → (1 / 𝑛) ∈ ℝ)
5 minveco.s . . . . . . . . . . . . . 14 𝑆 = inf(𝑅, ℝ, < )
6 minveco.x . . . . . . . . . . . . . . . . . 18 𝑋 = (BaseSet‘𝑈)
7 minveco.m . . . . . . . . . . . . . . . . . 18 𝑀 = ( −𝑣𝑈)
8 minveco.n . . . . . . . . . . . . . . . . . 18 𝑁 = (normCV𝑈)
9 minveco.y . . . . . . . . . . . . . . . . . 18 𝑌 = (BaseSet‘𝑊)
10 minveco.u . . . . . . . . . . . . . . . . . 18 (𝜑𝑈 ∈ CPreHilOLD)
11 minveco.w . . . . . . . . . . . . . . . . . 18 (𝜑𝑊 ∈ ((SubSp‘𝑈) ∩ CBan))
12 minveco.a . . . . . . . . . . . . . . . . . 18 (𝜑𝐴𝑋)
13 minveco.d . . . . . . . . . . . . . . . . . 18 𝐷 = (IndMet‘𝑈)
14 minveco.j . . . . . . . . . . . . . . . . . 18 𝐽 = (MetOpen‘𝐷)
15 minveco.r . . . . . . . . . . . . . . . . . 18 𝑅 = ran (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦)))
166, 7, 8, 9, 10, 11, 12, 13, 14, 15minvecolem1 30810 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∀𝑤𝑅 0 ≤ 𝑤))
1716adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ ℕ) → (𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∀𝑤𝑅 0 ≤ 𝑤))
1817simp1d 1142 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ) → 𝑅 ⊆ ℝ)
1917simp2d 1143 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ) → 𝑅 ≠ ∅)
20 0re 11183 . . . . . . . . . . . . . . . 16 0 ∈ ℝ
2117simp3d 1144 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ ℕ) → ∀𝑤𝑅 0 ≤ 𝑤)
22 breq1 5113 . . . . . . . . . . . . . . . . . 18 (𝑥 = 0 → (𝑥𝑤 ↔ 0 ≤ 𝑤))
2322ralbidv 3157 . . . . . . . . . . . . . . . . 17 (𝑥 = 0 → (∀𝑤𝑅 𝑥𝑤 ↔ ∀𝑤𝑅 0 ≤ 𝑤))
2423rspcev 3591 . . . . . . . . . . . . . . . 16 ((0 ∈ ℝ ∧ ∀𝑤𝑅 0 ≤ 𝑤) → ∃𝑥 ∈ ℝ ∀𝑤𝑅 𝑥𝑤)
2520, 21, 24sylancr 587 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ) → ∃𝑥 ∈ ℝ ∀𝑤𝑅 𝑥𝑤)
26 infrecl 12172 . . . . . . . . . . . . . . 15 ((𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑤𝑅 𝑥𝑤) → inf(𝑅, ℝ, < ) ∈ ℝ)
2718, 19, 25, 26syl3anc 1373 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ) → inf(𝑅, ℝ, < ) ∈ ℝ)
285, 27eqeltrid 2833 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → 𝑆 ∈ ℝ)
2928resqcld 14097 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → (𝑆↑2) ∈ ℝ)
304, 29ltaddposd 11769 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (0 < (1 / 𝑛) ↔ (𝑆↑2) < ((𝑆↑2) + (1 / 𝑛))))
312, 30mpbid 232 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (𝑆↑2) < ((𝑆↑2) + (1 / 𝑛)))
3229, 4readdcld 11210 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → ((𝑆↑2) + (1 / 𝑛)) ∈ ℝ)
3328sqge0d 14109 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ) → 0 ≤ (𝑆↑2))
3429, 4, 33, 2addgegt0d 11758 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → 0 < ((𝑆↑2) + (1 / 𝑛)))
3532, 34elrpd 12999 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → ((𝑆↑2) + (1 / 𝑛)) ∈ ℝ+)
3635rpge0d 13006 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → 0 ≤ ((𝑆↑2) + (1 / 𝑛)))
37 resqrtth 15228 . . . . . . . . . . 11 ((((𝑆↑2) + (1 / 𝑛)) ∈ ℝ ∧ 0 ≤ ((𝑆↑2) + (1 / 𝑛))) → ((√‘((𝑆↑2) + (1 / 𝑛)))↑2) = ((𝑆↑2) + (1 / 𝑛)))
3832, 36, 37syl2anc 584 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → ((√‘((𝑆↑2) + (1 / 𝑛)))↑2) = ((𝑆↑2) + (1 / 𝑛)))
3931, 38breqtrrd 5138 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (𝑆↑2) < ((√‘((𝑆↑2) + (1 / 𝑛)))↑2))
4035rpsqrtcld 15385 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (√‘((𝑆↑2) + (1 / 𝑛))) ∈ ℝ+)
4140rpred 13002 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (√‘((𝑆↑2) + (1 / 𝑛))) ∈ ℝ)
42 0red 11184 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → 0 ∈ ℝ)
43 infregelb 12174 . . . . . . . . . . . . 13 (((𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑤𝑅 𝑥𝑤) ∧ 0 ∈ ℝ) → (0 ≤ inf(𝑅, ℝ, < ) ↔ ∀𝑤𝑅 0 ≤ 𝑤))
4418, 19, 25, 42, 43syl31anc 1375 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → (0 ≤ inf(𝑅, ℝ, < ) ↔ ∀𝑤𝑅 0 ≤ 𝑤))
4521, 44mpbird 257 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → 0 ≤ inf(𝑅, ℝ, < ))
4645, 5breqtrrdi 5152 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → 0 ≤ 𝑆)
4732, 36sqrtge0d 15394 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → 0 ≤ (√‘((𝑆↑2) + (1 / 𝑛))))
4828, 41, 46, 47lt2sqd 14228 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (𝑆 < (√‘((𝑆↑2) + (1 / 𝑛))) ↔ (𝑆↑2) < ((√‘((𝑆↑2) + (1 / 𝑛)))↑2)))
4939, 48mpbird 257 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → 𝑆 < (√‘((𝑆↑2) + (1 / 𝑛))))
5028, 41ltnled 11328 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (𝑆 < (√‘((𝑆↑2) + (1 / 𝑛))) ↔ ¬ (√‘((𝑆↑2) + (1 / 𝑛))) ≤ 𝑆))
5149, 50mpbid 232 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → ¬ (√‘((𝑆↑2) + (1 / 𝑛))) ≤ 𝑆)
525breq2i 5118 . . . . . . . . 9 ((√‘((𝑆↑2) + (1 / 𝑛))) ≤ 𝑆 ↔ (√‘((𝑆↑2) + (1 / 𝑛))) ≤ inf(𝑅, ℝ, < ))
53 infregelb 12174 . . . . . . . . . 10 (((𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑤𝑅 𝑥𝑤) ∧ (√‘((𝑆↑2) + (1 / 𝑛))) ∈ ℝ) → ((√‘((𝑆↑2) + (1 / 𝑛))) ≤ inf(𝑅, ℝ, < ) ↔ ∀𝑤𝑅 (√‘((𝑆↑2) + (1 / 𝑛))) ≤ 𝑤))
5418, 19, 25, 41, 53syl31anc 1375 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → ((√‘((𝑆↑2) + (1 / 𝑛))) ≤ inf(𝑅, ℝ, < ) ↔ ∀𝑤𝑅 (√‘((𝑆↑2) + (1 / 𝑛))) ≤ 𝑤))
5552, 54bitrid 283 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → ((√‘((𝑆↑2) + (1 / 𝑛))) ≤ 𝑆 ↔ ∀𝑤𝑅 (√‘((𝑆↑2) + (1 / 𝑛))) ≤ 𝑤))
5615raleqi 3299 . . . . . . . . 9 (∀𝑤𝑅 (√‘((𝑆↑2) + (1 / 𝑛))) ≤ 𝑤 ↔ ∀𝑤 ∈ ran (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦)))(√‘((𝑆↑2) + (1 / 𝑛))) ≤ 𝑤)
57 fvex 6874 . . . . . . . . . . 11 (𝑁‘(𝐴𝑀𝑦)) ∈ V
5857rgenw 3049 . . . . . . . . . 10 𝑦𝑌 (𝑁‘(𝐴𝑀𝑦)) ∈ V
59 eqid 2730 . . . . . . . . . . 11 (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦))) = (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦)))
60 breq2 5114 . . . . . . . . . . 11 (𝑤 = (𝑁‘(𝐴𝑀𝑦)) → ((√‘((𝑆↑2) + (1 / 𝑛))) ≤ 𝑤 ↔ (√‘((𝑆↑2) + (1 / 𝑛))) ≤ (𝑁‘(𝐴𝑀𝑦))))
6159, 60ralrnmptw 7069 . . . . . . . . . 10 (∀𝑦𝑌 (𝑁‘(𝐴𝑀𝑦)) ∈ V → (∀𝑤 ∈ ran (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦)))(√‘((𝑆↑2) + (1 / 𝑛))) ≤ 𝑤 ↔ ∀𝑦𝑌 (√‘((𝑆↑2) + (1 / 𝑛))) ≤ (𝑁‘(𝐴𝑀𝑦))))
6258, 61ax-mp 5 . . . . . . . . 9 (∀𝑤 ∈ ran (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦)))(√‘((𝑆↑2) + (1 / 𝑛))) ≤ 𝑤 ↔ ∀𝑦𝑌 (√‘((𝑆↑2) + (1 / 𝑛))) ≤ (𝑁‘(𝐴𝑀𝑦)))
6356, 62bitri 275 . . . . . . . 8 (∀𝑤𝑅 (√‘((𝑆↑2) + (1 / 𝑛))) ≤ 𝑤 ↔ ∀𝑦𝑌 (√‘((𝑆↑2) + (1 / 𝑛))) ≤ (𝑁‘(𝐴𝑀𝑦)))
6455, 63bitrdi 287 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → ((√‘((𝑆↑2) + (1 / 𝑛))) ≤ 𝑆 ↔ ∀𝑦𝑌 (√‘((𝑆↑2) + (1 / 𝑛))) ≤ (𝑁‘(𝐴𝑀𝑦))))
6551, 64mtbid 324 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → ¬ ∀𝑦𝑌 (√‘((𝑆↑2) + (1 / 𝑛))) ≤ (𝑁‘(𝐴𝑀𝑦)))
66 rexnal 3083 . . . . . 6 (∃𝑦𝑌 ¬ (√‘((𝑆↑2) + (1 / 𝑛))) ≤ (𝑁‘(𝐴𝑀𝑦)) ↔ ¬ ∀𝑦𝑌 (√‘((𝑆↑2) + (1 / 𝑛))) ≤ (𝑁‘(𝐴𝑀𝑦)))
6765, 66sylibr 234 . . . . 5 ((𝜑𝑛 ∈ ℕ) → ∃𝑦𝑌 ¬ (√‘((𝑆↑2) + (1 / 𝑛))) ≤ (𝑁‘(𝐴𝑀𝑦)))
6832adantr 480 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑦𝑌) → ((𝑆↑2) + (1 / 𝑛)) ∈ ℝ)
69 phnv 30750 . . . . . . . . . . . . 13 (𝑈 ∈ CPreHilOLD𝑈 ∈ NrmCVec)
7010, 69syl 17 . . . . . . . . . . . 12 (𝜑𝑈 ∈ NrmCVec)
7170ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑦𝑌) → 𝑈 ∈ NrmCVec)
7212ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ) ∧ 𝑦𝑌) → 𝐴𝑋)
73 inss1 4203 . . . . . . . . . . . . . . . 16 ((SubSp‘𝑈) ∩ CBan) ⊆ (SubSp‘𝑈)
7473, 11sselid 3947 . . . . . . . . . . . . . . 15 (𝜑𝑊 ∈ (SubSp‘𝑈))
75 eqid 2730 . . . . . . . . . . . . . . . 16 (SubSp‘𝑈) = (SubSp‘𝑈)
766, 9, 75sspba 30663 . . . . . . . . . . . . . . 15 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ (SubSp‘𝑈)) → 𝑌𝑋)
7770, 74, 76syl2anc 584 . . . . . . . . . . . . . 14 (𝜑𝑌𝑋)
7877adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → 𝑌𝑋)
7978sselda 3949 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ) ∧ 𝑦𝑌) → 𝑦𝑋)
806, 7nvmcl 30582 . . . . . . . . . . . 12 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝑦𝑋) → (𝐴𝑀𝑦) ∈ 𝑋)
8171, 72, 79, 80syl3anc 1373 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑦𝑌) → (𝐴𝑀𝑦) ∈ 𝑋)
826, 8nvcl 30597 . . . . . . . . . . 11 ((𝑈 ∈ NrmCVec ∧ (𝐴𝑀𝑦) ∈ 𝑋) → (𝑁‘(𝐴𝑀𝑦)) ∈ ℝ)
8371, 81, 82syl2anc 584 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑦𝑌) → (𝑁‘(𝐴𝑀𝑦)) ∈ ℝ)
8483resqcld 14097 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑦𝑌) → ((𝑁‘(𝐴𝑀𝑦))↑2) ∈ ℝ)
8568, 84letrid 11333 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑦𝑌) → (((𝑆↑2) + (1 / 𝑛)) ≤ ((𝑁‘(𝐴𝑀𝑦))↑2) ∨ ((𝑁‘(𝐴𝑀𝑦))↑2) ≤ ((𝑆↑2) + (1 / 𝑛))))
8685ord 864 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑦𝑌) → (¬ ((𝑆↑2) + (1 / 𝑛)) ≤ ((𝑁‘(𝐴𝑀𝑦))↑2) → ((𝑁‘(𝐴𝑀𝑦))↑2) ≤ ((𝑆↑2) + (1 / 𝑛))))
8741adantr 480 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑦𝑌) → (√‘((𝑆↑2) + (1 / 𝑛))) ∈ ℝ)
8847adantr 480 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑦𝑌) → 0 ≤ (√‘((𝑆↑2) + (1 / 𝑛))))
896, 8nvge0 30609 . . . . . . . . . . 11 ((𝑈 ∈ NrmCVec ∧ (𝐴𝑀𝑦) ∈ 𝑋) → 0 ≤ (𝑁‘(𝐴𝑀𝑦)))
9071, 81, 89syl2anc 584 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑦𝑌) → 0 ≤ (𝑁‘(𝐴𝑀𝑦)))
9187, 83, 88, 90le2sqd 14229 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑦𝑌) → ((√‘((𝑆↑2) + (1 / 𝑛))) ≤ (𝑁‘(𝐴𝑀𝑦)) ↔ ((√‘((𝑆↑2) + (1 / 𝑛)))↑2) ≤ ((𝑁‘(𝐴𝑀𝑦))↑2)))
9238adantr 480 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑦𝑌) → ((√‘((𝑆↑2) + (1 / 𝑛)))↑2) = ((𝑆↑2) + (1 / 𝑛)))
9392breq1d 5120 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑦𝑌) → (((√‘((𝑆↑2) + (1 / 𝑛)))↑2) ≤ ((𝑁‘(𝐴𝑀𝑦))↑2) ↔ ((𝑆↑2) + (1 / 𝑛)) ≤ ((𝑁‘(𝐴𝑀𝑦))↑2)))
9491, 93bitrd 279 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑦𝑌) → ((√‘((𝑆↑2) + (1 / 𝑛))) ≤ (𝑁‘(𝐴𝑀𝑦)) ↔ ((𝑆↑2) + (1 / 𝑛)) ≤ ((𝑁‘(𝐴𝑀𝑦))↑2)))
9594notbid 318 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑦𝑌) → (¬ (√‘((𝑆↑2) + (1 / 𝑛))) ≤ (𝑁‘(𝐴𝑀𝑦)) ↔ ¬ ((𝑆↑2) + (1 / 𝑛)) ≤ ((𝑁‘(𝐴𝑀𝑦))↑2)))
966, 7, 8, 13imsdval 30622 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝑦𝑋) → (𝐴𝐷𝑦) = (𝑁‘(𝐴𝑀𝑦)))
9771, 72, 79, 96syl3anc 1373 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑦𝑌) → (𝐴𝐷𝑦) = (𝑁‘(𝐴𝑀𝑦)))
9897oveq1d 7405 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑦𝑌) → ((𝐴𝐷𝑦)↑2) = ((𝑁‘(𝐴𝑀𝑦))↑2))
9998breq1d 5120 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑦𝑌) → (((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (1 / 𝑛)) ↔ ((𝑁‘(𝐴𝑀𝑦))↑2) ≤ ((𝑆↑2) + (1 / 𝑛))))
10086, 95, 993imtr4d 294 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ 𝑦𝑌) → (¬ (√‘((𝑆↑2) + (1 / 𝑛))) ≤ (𝑁‘(𝐴𝑀𝑦)) → ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (1 / 𝑛))))
101100reximdva 3147 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (∃𝑦𝑌 ¬ (√‘((𝑆↑2) + (1 / 𝑛))) ≤ (𝑁‘(𝐴𝑀𝑦)) → ∃𝑦𝑌 ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (1 / 𝑛))))
10267, 101mpd 15 . . . 4 ((𝜑𝑛 ∈ ℕ) → ∃𝑦𝑌 ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (1 / 𝑛)))
103102ralrimiva 3126 . . 3 (𝜑 → ∀𝑛 ∈ ℕ ∃𝑦𝑌 ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (1 / 𝑛)))
1049fvexi 6875 . . . 4 𝑌 ∈ V
105 nnenom 13952 . . . 4 ℕ ≈ ω
106 oveq2 7398 . . . . . 6 (𝑦 = (𝑓𝑛) → (𝐴𝐷𝑦) = (𝐴𝐷(𝑓𝑛)))
107106oveq1d 7405 . . . . 5 (𝑦 = (𝑓𝑛) → ((𝐴𝐷𝑦)↑2) = ((𝐴𝐷(𝑓𝑛))↑2))
108107breq1d 5120 . . . 4 (𝑦 = (𝑓𝑛) → (((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (1 / 𝑛)) ↔ ((𝐴𝐷(𝑓𝑛))↑2) ≤ ((𝑆↑2) + (1 / 𝑛))))
109104, 105, 108axcc4 10399 . . 3 (∀𝑛 ∈ ℕ ∃𝑦𝑌 ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (1 / 𝑛)) → ∃𝑓(𝑓:ℕ⟶𝑌 ∧ ∀𝑛 ∈ ℕ ((𝐴𝐷(𝑓𝑛))↑2) ≤ ((𝑆↑2) + (1 / 𝑛))))
110103, 109syl 17 . 2 (𝜑 → ∃𝑓(𝑓:ℕ⟶𝑌 ∧ ∀𝑛 ∈ ℕ ((𝐴𝐷(𝑓𝑛))↑2) ≤ ((𝑆↑2) + (1 / 𝑛))))
11110adantr 480 . . 3 ((𝜑 ∧ (𝑓:ℕ⟶𝑌 ∧ ∀𝑛 ∈ ℕ ((𝐴𝐷(𝑓𝑛))↑2) ≤ ((𝑆↑2) + (1 / 𝑛)))) → 𝑈 ∈ CPreHilOLD)
11211adantr 480 . . 3 ((𝜑 ∧ (𝑓:ℕ⟶𝑌 ∧ ∀𝑛 ∈ ℕ ((𝐴𝐷(𝑓𝑛))↑2) ≤ ((𝑆↑2) + (1 / 𝑛)))) → 𝑊 ∈ ((SubSp‘𝑈) ∩ CBan))
11312adantr 480 . . 3 ((𝜑 ∧ (𝑓:ℕ⟶𝑌 ∧ ∀𝑛 ∈ ℕ ((𝐴𝐷(𝑓𝑛))↑2) ≤ ((𝑆↑2) + (1 / 𝑛)))) → 𝐴𝑋)
114 simprl 770 . . 3 ((𝜑 ∧ (𝑓:ℕ⟶𝑌 ∧ ∀𝑛 ∈ ℕ ((𝐴𝐷(𝑓𝑛))↑2) ≤ ((𝑆↑2) + (1 / 𝑛)))) → 𝑓:ℕ⟶𝑌)
115 simprr 772 . . . 4 ((𝜑 ∧ (𝑓:ℕ⟶𝑌 ∧ ∀𝑛 ∈ ℕ ((𝐴𝐷(𝑓𝑛))↑2) ≤ ((𝑆↑2) + (1 / 𝑛)))) → ∀𝑛 ∈ ℕ ((𝐴𝐷(𝑓𝑛))↑2) ≤ ((𝑆↑2) + (1 / 𝑛)))
116 fveq2 6861 . . . . . . . 8 (𝑛 = 𝑘 → (𝑓𝑛) = (𝑓𝑘))
117116oveq2d 7406 . . . . . . 7 (𝑛 = 𝑘 → (𝐴𝐷(𝑓𝑛)) = (𝐴𝐷(𝑓𝑘)))
118117oveq1d 7405 . . . . . 6 (𝑛 = 𝑘 → ((𝐴𝐷(𝑓𝑛))↑2) = ((𝐴𝐷(𝑓𝑘))↑2))
119 oveq2 7398 . . . . . . 7 (𝑛 = 𝑘 → (1 / 𝑛) = (1 / 𝑘))
120119oveq2d 7406 . . . . . 6 (𝑛 = 𝑘 → ((𝑆↑2) + (1 / 𝑛)) = ((𝑆↑2) + (1 / 𝑘)))
121118, 120breq12d 5123 . . . . 5 (𝑛 = 𝑘 → (((𝐴𝐷(𝑓𝑛))↑2) ≤ ((𝑆↑2) + (1 / 𝑛)) ↔ ((𝐴𝐷(𝑓𝑘))↑2) ≤ ((𝑆↑2) + (1 / 𝑘))))
122121rspccva 3590 . . . 4 ((∀𝑛 ∈ ℕ ((𝐴𝐷(𝑓𝑛))↑2) ≤ ((𝑆↑2) + (1 / 𝑛)) ∧ 𝑘 ∈ ℕ) → ((𝐴𝐷(𝑓𝑘))↑2) ≤ ((𝑆↑2) + (1 / 𝑘)))
123115, 122sylan 580 . . 3 (((𝜑 ∧ (𝑓:ℕ⟶𝑌 ∧ ∀𝑛 ∈ ℕ ((𝐴𝐷(𝑓𝑛))↑2) ≤ ((𝑆↑2) + (1 / 𝑛)))) ∧ 𝑘 ∈ ℕ) → ((𝐴𝐷(𝑓𝑘))↑2) ≤ ((𝑆↑2) + (1 / 𝑘)))
124 eqid 2730 . . 3 (1 / (((((𝐴𝐷((⇝𝑡𝐽)‘𝑓)) + 𝑆) / 2)↑2) − (𝑆↑2))) = (1 / (((((𝐴𝐷((⇝𝑡𝐽)‘𝑓)) + 𝑆) / 2)↑2) − (𝑆↑2)))
1256, 7, 8, 9, 111, 112, 113, 13, 14, 15, 5, 114, 123, 124minvecolem4 30816 . 2 ((𝜑 ∧ (𝑓:ℕ⟶𝑌 ∧ ∀𝑛 ∈ ℕ ((𝐴𝐷(𝑓𝑛))↑2) ≤ ((𝑆↑2) + (1 / 𝑛)))) → ∃𝑥𝑌𝑦𝑌 (𝑁‘(𝐴𝑀𝑥)) ≤ (𝑁‘(𝐴𝑀𝑦)))
126110, 125exlimddv 1935 1 (𝜑 → ∃𝑥𝑌𝑦𝑌 (𝑁‘(𝐴𝑀𝑥)) ≤ (𝑁‘(𝐴𝑀𝑦)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  wne 2926  wral 3045  wrex 3054  Vcvv 3450  cin 3916  wss 3917  c0 4299   class class class wbr 5110  cmpt 5191  ran crn 5642  wf 6510  cfv 6514  (class class class)co 7390  infcinf 9399  cr 11074  0cc0 11075  1c1 11076   + caddc 11078   < clt 11215  cle 11216  cmin 11412   / cdiv 11842  cn 12193  2c2 12248  cexp 14033  csqrt 15206  MetOpencmopn 21261  𝑡clm 23120  NrmCVeccnv 30520  BaseSetcba 30522  𝑣 cnsb 30525  normCVcnmcv 30526  IndMetcims 30527  SubSpcss 30657  CPreHilOLDccphlo 30748  CBanccbn 30798
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cc 10395  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153  ax-addf 11154  ax-mulf 11155
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-map 8804  df-pm 8805  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fi 9369  df-sup 9400  df-inf 9401  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-n0 12450  df-z 12537  df-uz 12801  df-q 12915  df-rp 12959  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-ico 13319  df-icc 13320  df-fl 13761  df-seq 13974  df-exp 14034  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-rest 17392  df-topgen 17413  df-psmet 21263  df-xmet 21264  df-met 21265  df-bl 21266  df-mopn 21267  df-fbas 21268  df-fg 21269  df-top 22788  df-topon 22805  df-bases 22840  df-cld 22913  df-ntr 22914  df-cls 22915  df-nei 22992  df-lm 23123  df-haus 23209  df-fil 23740  df-fm 23832  df-flim 23833  df-flf 23834  df-cfil 25162  df-cau 25163  df-cmet 25164  df-grpo 30429  df-gid 30430  df-ginv 30431  df-gdiv 30432  df-ablo 30481  df-vc 30495  df-nv 30528  df-va 30531  df-ba 30532  df-sm 30533  df-0v 30534  df-vs 30535  df-nmcv 30536  df-ims 30537  df-ssp 30658  df-ph 30749  df-cbn 30799
This theorem is referenced by:  minvecolem7  30819
  Copyright terms: Public domain W3C validator