MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  minvecolem5 Structured version   Visualization version   GIF version

Theorem minvecolem5 29243
Description: Lemma for minveco 29246. Discharge the assumption about the sequence 𝐹 by applying countable choice ax-cc 10191. (Contributed by Mario Carneiro, 9-May-2014.) (Revised by AV, 4-Oct-2020.) (New usage is discouraged.)
Hypotheses
Ref Expression
minveco.x 𝑋 = (BaseSet‘𝑈)
minveco.m 𝑀 = ( −𝑣𝑈)
minveco.n 𝑁 = (normCV𝑈)
minveco.y 𝑌 = (BaseSet‘𝑊)
minveco.u (𝜑𝑈 ∈ CPreHilOLD)
minveco.w (𝜑𝑊 ∈ ((SubSp‘𝑈) ∩ CBan))
minveco.a (𝜑𝐴𝑋)
minveco.d 𝐷 = (IndMet‘𝑈)
minveco.j 𝐽 = (MetOpen‘𝐷)
minveco.r 𝑅 = ran (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦)))
minveco.s 𝑆 = inf(𝑅, ℝ, < )
Assertion
Ref Expression
minvecolem5 (𝜑 → ∃𝑥𝑌𝑦𝑌 (𝑁‘(𝐴𝑀𝑥)) ≤ (𝑁‘(𝐴𝑀𝑦)))
Distinct variable groups:   𝑥,𝑦,𝐽   𝑥,𝑀,𝑦   𝑥,𝑁,𝑦   𝜑,𝑥,𝑦   𝑥,𝑅   𝑥,𝑆,𝑦   𝑥,𝐴,𝑦   𝑥,𝐷,𝑦   𝑥,𝑈,𝑦   𝑥,𝑊,𝑦   𝑥,𝑋   𝑥,𝑌,𝑦
Allowed substitution hints:   𝑅(𝑦)   𝑋(𝑦)

Proof of Theorem minvecolem5
Dummy variables 𝑛 𝑘 𝑤 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnrecgt0 12016 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → 0 < (1 / 𝑛))
21adantl 482 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → 0 < (1 / 𝑛))
3 nnrecre 12015 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → (1 / 𝑛) ∈ ℝ)
43adantl 482 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → (1 / 𝑛) ∈ ℝ)
5 minveco.s . . . . . . . . . . . . . 14 𝑆 = inf(𝑅, ℝ, < )
6 minveco.x . . . . . . . . . . . . . . . . . 18 𝑋 = (BaseSet‘𝑈)
7 minveco.m . . . . . . . . . . . . . . . . . 18 𝑀 = ( −𝑣𝑈)
8 minveco.n . . . . . . . . . . . . . . . . . 18 𝑁 = (normCV𝑈)
9 minveco.y . . . . . . . . . . . . . . . . . 18 𝑌 = (BaseSet‘𝑊)
10 minveco.u . . . . . . . . . . . . . . . . . 18 (𝜑𝑈 ∈ CPreHilOLD)
11 minveco.w . . . . . . . . . . . . . . . . . 18 (𝜑𝑊 ∈ ((SubSp‘𝑈) ∩ CBan))
12 minveco.a . . . . . . . . . . . . . . . . . 18 (𝜑𝐴𝑋)
13 minveco.d . . . . . . . . . . . . . . . . . 18 𝐷 = (IndMet‘𝑈)
14 minveco.j . . . . . . . . . . . . . . . . . 18 𝐽 = (MetOpen‘𝐷)
15 minveco.r . . . . . . . . . . . . . . . . . 18 𝑅 = ran (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦)))
166, 7, 8, 9, 10, 11, 12, 13, 14, 15minvecolem1 29236 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∀𝑤𝑅 0 ≤ 𝑤))
1716adantr 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ ℕ) → (𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∀𝑤𝑅 0 ≤ 𝑤))
1817simp1d 1141 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ) → 𝑅 ⊆ ℝ)
1917simp2d 1142 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ) → 𝑅 ≠ ∅)
20 0re 10977 . . . . . . . . . . . . . . . 16 0 ∈ ℝ
2117simp3d 1143 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ ℕ) → ∀𝑤𝑅 0 ≤ 𝑤)
22 breq1 5077 . . . . . . . . . . . . . . . . . 18 (𝑥 = 0 → (𝑥𝑤 ↔ 0 ≤ 𝑤))
2322ralbidv 3112 . . . . . . . . . . . . . . . . 17 (𝑥 = 0 → (∀𝑤𝑅 𝑥𝑤 ↔ ∀𝑤𝑅 0 ≤ 𝑤))
2423rspcev 3561 . . . . . . . . . . . . . . . 16 ((0 ∈ ℝ ∧ ∀𝑤𝑅 0 ≤ 𝑤) → ∃𝑥 ∈ ℝ ∀𝑤𝑅 𝑥𝑤)
2520, 21, 24sylancr 587 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ) → ∃𝑥 ∈ ℝ ∀𝑤𝑅 𝑥𝑤)
26 infrecl 11957 . . . . . . . . . . . . . . 15 ((𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑤𝑅 𝑥𝑤) → inf(𝑅, ℝ, < ) ∈ ℝ)
2718, 19, 25, 26syl3anc 1370 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ) → inf(𝑅, ℝ, < ) ∈ ℝ)
285, 27eqeltrid 2843 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → 𝑆 ∈ ℝ)
2928resqcld 13965 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → (𝑆↑2) ∈ ℝ)
304, 29ltaddposd 11559 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (0 < (1 / 𝑛) ↔ (𝑆↑2) < ((𝑆↑2) + (1 / 𝑛))))
312, 30mpbid 231 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (𝑆↑2) < ((𝑆↑2) + (1 / 𝑛)))
3229, 4readdcld 11004 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → ((𝑆↑2) + (1 / 𝑛)) ∈ ℝ)
3328sqge0d 13966 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ) → 0 ≤ (𝑆↑2))
3429, 4, 33, 2addgegt0d 11548 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → 0 < ((𝑆↑2) + (1 / 𝑛)))
3532, 34elrpd 12769 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → ((𝑆↑2) + (1 / 𝑛)) ∈ ℝ+)
3635rpge0d 12776 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → 0 ≤ ((𝑆↑2) + (1 / 𝑛)))
37 resqrtth 14967 . . . . . . . . . . 11 ((((𝑆↑2) + (1 / 𝑛)) ∈ ℝ ∧ 0 ≤ ((𝑆↑2) + (1 / 𝑛))) → ((√‘((𝑆↑2) + (1 / 𝑛)))↑2) = ((𝑆↑2) + (1 / 𝑛)))
3832, 36, 37syl2anc 584 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → ((√‘((𝑆↑2) + (1 / 𝑛)))↑2) = ((𝑆↑2) + (1 / 𝑛)))
3931, 38breqtrrd 5102 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (𝑆↑2) < ((√‘((𝑆↑2) + (1 / 𝑛)))↑2))
4035rpsqrtcld 15123 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (√‘((𝑆↑2) + (1 / 𝑛))) ∈ ℝ+)
4140rpred 12772 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (√‘((𝑆↑2) + (1 / 𝑛))) ∈ ℝ)
42 0red 10978 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → 0 ∈ ℝ)
43 infregelb 11959 . . . . . . . . . . . . 13 (((𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑤𝑅 𝑥𝑤) ∧ 0 ∈ ℝ) → (0 ≤ inf(𝑅, ℝ, < ) ↔ ∀𝑤𝑅 0 ≤ 𝑤))
4418, 19, 25, 42, 43syl31anc 1372 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → (0 ≤ inf(𝑅, ℝ, < ) ↔ ∀𝑤𝑅 0 ≤ 𝑤))
4521, 44mpbird 256 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → 0 ≤ inf(𝑅, ℝ, < ))
4645, 5breqtrrdi 5116 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → 0 ≤ 𝑆)
4732, 36sqrtge0d 15132 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → 0 ≤ (√‘((𝑆↑2) + (1 / 𝑛))))
4828, 41, 46, 47lt2sqd 13973 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (𝑆 < (√‘((𝑆↑2) + (1 / 𝑛))) ↔ (𝑆↑2) < ((√‘((𝑆↑2) + (1 / 𝑛)))↑2)))
4939, 48mpbird 256 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → 𝑆 < (√‘((𝑆↑2) + (1 / 𝑛))))
5028, 41ltnled 11122 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (𝑆 < (√‘((𝑆↑2) + (1 / 𝑛))) ↔ ¬ (√‘((𝑆↑2) + (1 / 𝑛))) ≤ 𝑆))
5149, 50mpbid 231 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → ¬ (√‘((𝑆↑2) + (1 / 𝑛))) ≤ 𝑆)
525breq2i 5082 . . . . . . . . 9 ((√‘((𝑆↑2) + (1 / 𝑛))) ≤ 𝑆 ↔ (√‘((𝑆↑2) + (1 / 𝑛))) ≤ inf(𝑅, ℝ, < ))
53 infregelb 11959 . . . . . . . . . 10 (((𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑤𝑅 𝑥𝑤) ∧ (√‘((𝑆↑2) + (1 / 𝑛))) ∈ ℝ) → ((√‘((𝑆↑2) + (1 / 𝑛))) ≤ inf(𝑅, ℝ, < ) ↔ ∀𝑤𝑅 (√‘((𝑆↑2) + (1 / 𝑛))) ≤ 𝑤))
5418, 19, 25, 41, 53syl31anc 1372 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → ((√‘((𝑆↑2) + (1 / 𝑛))) ≤ inf(𝑅, ℝ, < ) ↔ ∀𝑤𝑅 (√‘((𝑆↑2) + (1 / 𝑛))) ≤ 𝑤))
5552, 54syl5bb 283 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → ((√‘((𝑆↑2) + (1 / 𝑛))) ≤ 𝑆 ↔ ∀𝑤𝑅 (√‘((𝑆↑2) + (1 / 𝑛))) ≤ 𝑤))
5615raleqi 3346 . . . . . . . . 9 (∀𝑤𝑅 (√‘((𝑆↑2) + (1 / 𝑛))) ≤ 𝑤 ↔ ∀𝑤 ∈ ran (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦)))(√‘((𝑆↑2) + (1 / 𝑛))) ≤ 𝑤)
57 fvex 6787 . . . . . . . . . . 11 (𝑁‘(𝐴𝑀𝑦)) ∈ V
5857rgenw 3076 . . . . . . . . . 10 𝑦𝑌 (𝑁‘(𝐴𝑀𝑦)) ∈ V
59 eqid 2738 . . . . . . . . . . 11 (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦))) = (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦)))
60 breq2 5078 . . . . . . . . . . 11 (𝑤 = (𝑁‘(𝐴𝑀𝑦)) → ((√‘((𝑆↑2) + (1 / 𝑛))) ≤ 𝑤 ↔ (√‘((𝑆↑2) + (1 / 𝑛))) ≤ (𝑁‘(𝐴𝑀𝑦))))
6159, 60ralrnmptw 6970 . . . . . . . . . 10 (∀𝑦𝑌 (𝑁‘(𝐴𝑀𝑦)) ∈ V → (∀𝑤 ∈ ran (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦)))(√‘((𝑆↑2) + (1 / 𝑛))) ≤ 𝑤 ↔ ∀𝑦𝑌 (√‘((𝑆↑2) + (1 / 𝑛))) ≤ (𝑁‘(𝐴𝑀𝑦))))
6258, 61ax-mp 5 . . . . . . . . 9 (∀𝑤 ∈ ran (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦)))(√‘((𝑆↑2) + (1 / 𝑛))) ≤ 𝑤 ↔ ∀𝑦𝑌 (√‘((𝑆↑2) + (1 / 𝑛))) ≤ (𝑁‘(𝐴𝑀𝑦)))
6356, 62bitri 274 . . . . . . . 8 (∀𝑤𝑅 (√‘((𝑆↑2) + (1 / 𝑛))) ≤ 𝑤 ↔ ∀𝑦𝑌 (√‘((𝑆↑2) + (1 / 𝑛))) ≤ (𝑁‘(𝐴𝑀𝑦)))
6455, 63bitrdi 287 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → ((√‘((𝑆↑2) + (1 / 𝑛))) ≤ 𝑆 ↔ ∀𝑦𝑌 (√‘((𝑆↑2) + (1 / 𝑛))) ≤ (𝑁‘(𝐴𝑀𝑦))))
6551, 64mtbid 324 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → ¬ ∀𝑦𝑌 (√‘((𝑆↑2) + (1 / 𝑛))) ≤ (𝑁‘(𝐴𝑀𝑦)))
66 rexnal 3169 . . . . . 6 (∃𝑦𝑌 ¬ (√‘((𝑆↑2) + (1 / 𝑛))) ≤ (𝑁‘(𝐴𝑀𝑦)) ↔ ¬ ∀𝑦𝑌 (√‘((𝑆↑2) + (1 / 𝑛))) ≤ (𝑁‘(𝐴𝑀𝑦)))
6765, 66sylibr 233 . . . . 5 ((𝜑𝑛 ∈ ℕ) → ∃𝑦𝑌 ¬ (√‘((𝑆↑2) + (1 / 𝑛))) ≤ (𝑁‘(𝐴𝑀𝑦)))
6832adantr 481 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑦𝑌) → ((𝑆↑2) + (1 / 𝑛)) ∈ ℝ)
69 phnv 29176 . . . . . . . . . . . . 13 (𝑈 ∈ CPreHilOLD𝑈 ∈ NrmCVec)
7010, 69syl 17 . . . . . . . . . . . 12 (𝜑𝑈 ∈ NrmCVec)
7170ad2antrr 723 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑦𝑌) → 𝑈 ∈ NrmCVec)
7212ad2antrr 723 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ) ∧ 𝑦𝑌) → 𝐴𝑋)
73 inss1 4162 . . . . . . . . . . . . . . . 16 ((SubSp‘𝑈) ∩ CBan) ⊆ (SubSp‘𝑈)
7473, 11sselid 3919 . . . . . . . . . . . . . . 15 (𝜑𝑊 ∈ (SubSp‘𝑈))
75 eqid 2738 . . . . . . . . . . . . . . . 16 (SubSp‘𝑈) = (SubSp‘𝑈)
766, 9, 75sspba 29089 . . . . . . . . . . . . . . 15 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ (SubSp‘𝑈)) → 𝑌𝑋)
7770, 74, 76syl2anc 584 . . . . . . . . . . . . . 14 (𝜑𝑌𝑋)
7877adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → 𝑌𝑋)
7978sselda 3921 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ) ∧ 𝑦𝑌) → 𝑦𝑋)
806, 7nvmcl 29008 . . . . . . . . . . . 12 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝑦𝑋) → (𝐴𝑀𝑦) ∈ 𝑋)
8171, 72, 79, 80syl3anc 1370 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑦𝑌) → (𝐴𝑀𝑦) ∈ 𝑋)
826, 8nvcl 29023 . . . . . . . . . . 11 ((𝑈 ∈ NrmCVec ∧ (𝐴𝑀𝑦) ∈ 𝑋) → (𝑁‘(𝐴𝑀𝑦)) ∈ ℝ)
8371, 81, 82syl2anc 584 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑦𝑌) → (𝑁‘(𝐴𝑀𝑦)) ∈ ℝ)
8483resqcld 13965 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑦𝑌) → ((𝑁‘(𝐴𝑀𝑦))↑2) ∈ ℝ)
8568, 84letrid 11127 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑦𝑌) → (((𝑆↑2) + (1 / 𝑛)) ≤ ((𝑁‘(𝐴𝑀𝑦))↑2) ∨ ((𝑁‘(𝐴𝑀𝑦))↑2) ≤ ((𝑆↑2) + (1 / 𝑛))))
8685ord 861 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑦𝑌) → (¬ ((𝑆↑2) + (1 / 𝑛)) ≤ ((𝑁‘(𝐴𝑀𝑦))↑2) → ((𝑁‘(𝐴𝑀𝑦))↑2) ≤ ((𝑆↑2) + (1 / 𝑛))))
8741adantr 481 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑦𝑌) → (√‘((𝑆↑2) + (1 / 𝑛))) ∈ ℝ)
8847adantr 481 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑦𝑌) → 0 ≤ (√‘((𝑆↑2) + (1 / 𝑛))))
896, 8nvge0 29035 . . . . . . . . . . 11 ((𝑈 ∈ NrmCVec ∧ (𝐴𝑀𝑦) ∈ 𝑋) → 0 ≤ (𝑁‘(𝐴𝑀𝑦)))
9071, 81, 89syl2anc 584 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑦𝑌) → 0 ≤ (𝑁‘(𝐴𝑀𝑦)))
9187, 83, 88, 90le2sqd 13974 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑦𝑌) → ((√‘((𝑆↑2) + (1 / 𝑛))) ≤ (𝑁‘(𝐴𝑀𝑦)) ↔ ((√‘((𝑆↑2) + (1 / 𝑛)))↑2) ≤ ((𝑁‘(𝐴𝑀𝑦))↑2)))
9238adantr 481 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑦𝑌) → ((√‘((𝑆↑2) + (1 / 𝑛)))↑2) = ((𝑆↑2) + (1 / 𝑛)))
9392breq1d 5084 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑦𝑌) → (((√‘((𝑆↑2) + (1 / 𝑛)))↑2) ≤ ((𝑁‘(𝐴𝑀𝑦))↑2) ↔ ((𝑆↑2) + (1 / 𝑛)) ≤ ((𝑁‘(𝐴𝑀𝑦))↑2)))
9491, 93bitrd 278 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑦𝑌) → ((√‘((𝑆↑2) + (1 / 𝑛))) ≤ (𝑁‘(𝐴𝑀𝑦)) ↔ ((𝑆↑2) + (1 / 𝑛)) ≤ ((𝑁‘(𝐴𝑀𝑦))↑2)))
9594notbid 318 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑦𝑌) → (¬ (√‘((𝑆↑2) + (1 / 𝑛))) ≤ (𝑁‘(𝐴𝑀𝑦)) ↔ ¬ ((𝑆↑2) + (1 / 𝑛)) ≤ ((𝑁‘(𝐴𝑀𝑦))↑2)))
966, 7, 8, 13imsdval 29048 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝑦𝑋) → (𝐴𝐷𝑦) = (𝑁‘(𝐴𝑀𝑦)))
9771, 72, 79, 96syl3anc 1370 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑦𝑌) → (𝐴𝐷𝑦) = (𝑁‘(𝐴𝑀𝑦)))
9897oveq1d 7290 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑦𝑌) → ((𝐴𝐷𝑦)↑2) = ((𝑁‘(𝐴𝑀𝑦))↑2))
9998breq1d 5084 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑦𝑌) → (((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (1 / 𝑛)) ↔ ((𝑁‘(𝐴𝑀𝑦))↑2) ≤ ((𝑆↑2) + (1 / 𝑛))))
10086, 95, 993imtr4d 294 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ 𝑦𝑌) → (¬ (√‘((𝑆↑2) + (1 / 𝑛))) ≤ (𝑁‘(𝐴𝑀𝑦)) → ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (1 / 𝑛))))
101100reximdva 3203 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (∃𝑦𝑌 ¬ (√‘((𝑆↑2) + (1 / 𝑛))) ≤ (𝑁‘(𝐴𝑀𝑦)) → ∃𝑦𝑌 ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (1 / 𝑛))))
10267, 101mpd 15 . . . 4 ((𝜑𝑛 ∈ ℕ) → ∃𝑦𝑌 ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (1 / 𝑛)))
103102ralrimiva 3103 . . 3 (𝜑 → ∀𝑛 ∈ ℕ ∃𝑦𝑌 ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (1 / 𝑛)))
1049fvexi 6788 . . . 4 𝑌 ∈ V
105 nnenom 13700 . . . 4 ℕ ≈ ω
106 oveq2 7283 . . . . . 6 (𝑦 = (𝑓𝑛) → (𝐴𝐷𝑦) = (𝐴𝐷(𝑓𝑛)))
107106oveq1d 7290 . . . . 5 (𝑦 = (𝑓𝑛) → ((𝐴𝐷𝑦)↑2) = ((𝐴𝐷(𝑓𝑛))↑2))
108107breq1d 5084 . . . 4 (𝑦 = (𝑓𝑛) → (((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (1 / 𝑛)) ↔ ((𝐴𝐷(𝑓𝑛))↑2) ≤ ((𝑆↑2) + (1 / 𝑛))))
109104, 105, 108axcc4 10195 . . 3 (∀𝑛 ∈ ℕ ∃𝑦𝑌 ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (1 / 𝑛)) → ∃𝑓(𝑓:ℕ⟶𝑌 ∧ ∀𝑛 ∈ ℕ ((𝐴𝐷(𝑓𝑛))↑2) ≤ ((𝑆↑2) + (1 / 𝑛))))
110103, 109syl 17 . 2 (𝜑 → ∃𝑓(𝑓:ℕ⟶𝑌 ∧ ∀𝑛 ∈ ℕ ((𝐴𝐷(𝑓𝑛))↑2) ≤ ((𝑆↑2) + (1 / 𝑛))))
11110adantr 481 . . 3 ((𝜑 ∧ (𝑓:ℕ⟶𝑌 ∧ ∀𝑛 ∈ ℕ ((𝐴𝐷(𝑓𝑛))↑2) ≤ ((𝑆↑2) + (1 / 𝑛)))) → 𝑈 ∈ CPreHilOLD)
11211adantr 481 . . 3 ((𝜑 ∧ (𝑓:ℕ⟶𝑌 ∧ ∀𝑛 ∈ ℕ ((𝐴𝐷(𝑓𝑛))↑2) ≤ ((𝑆↑2) + (1 / 𝑛)))) → 𝑊 ∈ ((SubSp‘𝑈) ∩ CBan))
11312adantr 481 . . 3 ((𝜑 ∧ (𝑓:ℕ⟶𝑌 ∧ ∀𝑛 ∈ ℕ ((𝐴𝐷(𝑓𝑛))↑2) ≤ ((𝑆↑2) + (1 / 𝑛)))) → 𝐴𝑋)
114 simprl 768 . . 3 ((𝜑 ∧ (𝑓:ℕ⟶𝑌 ∧ ∀𝑛 ∈ ℕ ((𝐴𝐷(𝑓𝑛))↑2) ≤ ((𝑆↑2) + (1 / 𝑛)))) → 𝑓:ℕ⟶𝑌)
115 simprr 770 . . . 4 ((𝜑 ∧ (𝑓:ℕ⟶𝑌 ∧ ∀𝑛 ∈ ℕ ((𝐴𝐷(𝑓𝑛))↑2) ≤ ((𝑆↑2) + (1 / 𝑛)))) → ∀𝑛 ∈ ℕ ((𝐴𝐷(𝑓𝑛))↑2) ≤ ((𝑆↑2) + (1 / 𝑛)))
116 fveq2 6774 . . . . . . . 8 (𝑛 = 𝑘 → (𝑓𝑛) = (𝑓𝑘))
117116oveq2d 7291 . . . . . . 7 (𝑛 = 𝑘 → (𝐴𝐷(𝑓𝑛)) = (𝐴𝐷(𝑓𝑘)))
118117oveq1d 7290 . . . . . 6 (𝑛 = 𝑘 → ((𝐴𝐷(𝑓𝑛))↑2) = ((𝐴𝐷(𝑓𝑘))↑2))
119 oveq2 7283 . . . . . . 7 (𝑛 = 𝑘 → (1 / 𝑛) = (1 / 𝑘))
120119oveq2d 7291 . . . . . 6 (𝑛 = 𝑘 → ((𝑆↑2) + (1 / 𝑛)) = ((𝑆↑2) + (1 / 𝑘)))
121118, 120breq12d 5087 . . . . 5 (𝑛 = 𝑘 → (((𝐴𝐷(𝑓𝑛))↑2) ≤ ((𝑆↑2) + (1 / 𝑛)) ↔ ((𝐴𝐷(𝑓𝑘))↑2) ≤ ((𝑆↑2) + (1 / 𝑘))))
122121rspccva 3560 . . . 4 ((∀𝑛 ∈ ℕ ((𝐴𝐷(𝑓𝑛))↑2) ≤ ((𝑆↑2) + (1 / 𝑛)) ∧ 𝑘 ∈ ℕ) → ((𝐴𝐷(𝑓𝑘))↑2) ≤ ((𝑆↑2) + (1 / 𝑘)))
123115, 122sylan 580 . . 3 (((𝜑 ∧ (𝑓:ℕ⟶𝑌 ∧ ∀𝑛 ∈ ℕ ((𝐴𝐷(𝑓𝑛))↑2) ≤ ((𝑆↑2) + (1 / 𝑛)))) ∧ 𝑘 ∈ ℕ) → ((𝐴𝐷(𝑓𝑘))↑2) ≤ ((𝑆↑2) + (1 / 𝑘)))
124 eqid 2738 . . 3 (1 / (((((𝐴𝐷((⇝𝑡𝐽)‘𝑓)) + 𝑆) / 2)↑2) − (𝑆↑2))) = (1 / (((((𝐴𝐷((⇝𝑡𝐽)‘𝑓)) + 𝑆) / 2)↑2) − (𝑆↑2)))
1256, 7, 8, 9, 111, 112, 113, 13, 14, 15, 5, 114, 123, 124minvecolem4 29242 . 2 ((𝜑 ∧ (𝑓:ℕ⟶𝑌 ∧ ∀𝑛 ∈ ℕ ((𝐴𝐷(𝑓𝑛))↑2) ≤ ((𝑆↑2) + (1 / 𝑛)))) → ∃𝑥𝑌𝑦𝑌 (𝑁‘(𝐴𝑀𝑥)) ≤ (𝑁‘(𝐴𝑀𝑦)))
126110, 125exlimddv 1938 1 (𝜑 → ∃𝑥𝑌𝑦𝑌 (𝑁‘(𝐴𝑀𝑥)) ≤ (𝑁‘(𝐴𝑀𝑦)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wex 1782  wcel 2106  wne 2943  wral 3064  wrex 3065  Vcvv 3432  cin 3886  wss 3887  c0 4256   class class class wbr 5074  cmpt 5157  ran crn 5590  wf 6429  cfv 6433  (class class class)co 7275  infcinf 9200  cr 10870  0cc0 10871  1c1 10872   + caddc 10874   < clt 11009  cle 11010  cmin 11205   / cdiv 11632  cn 11973  2c2 12028  cexp 13782  csqrt 14944  MetOpencmopn 20587  𝑡clm 22377  NrmCVeccnv 28946  BaseSetcba 28948  𝑣 cnsb 28951  normCVcnmcv 28952  IndMetcims 28953  SubSpcss 29083  CPreHilOLDccphlo 29174  CBanccbn 29224
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cc 10191  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949  ax-addf 10950  ax-mulf 10951
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-map 8617  df-pm 8618  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fi 9170  df-sup 9201  df-inf 9202  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-n0 12234  df-z 12320  df-uz 12583  df-q 12689  df-rp 12731  df-xneg 12848  df-xadd 12849  df-xmul 12850  df-ico 13085  df-icc 13086  df-fl 13512  df-seq 13722  df-exp 13783  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-rest 17133  df-topgen 17154  df-psmet 20589  df-xmet 20590  df-met 20591  df-bl 20592  df-mopn 20593  df-fbas 20594  df-fg 20595  df-top 22043  df-topon 22060  df-bases 22096  df-cld 22170  df-ntr 22171  df-cls 22172  df-nei 22249  df-lm 22380  df-haus 22466  df-fil 22997  df-fm 23089  df-flim 23090  df-flf 23091  df-cfil 24419  df-cau 24420  df-cmet 24421  df-grpo 28855  df-gid 28856  df-ginv 28857  df-gdiv 28858  df-ablo 28907  df-vc 28921  df-nv 28954  df-va 28957  df-ba 28958  df-sm 28959  df-0v 28960  df-vs 28961  df-nmcv 28962  df-ims 28963  df-ssp 29084  df-ph 29175  df-cbn 29225
This theorem is referenced by:  minvecolem7  29245
  Copyright terms: Public domain W3C validator