MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  minvecolem5 Structured version   Visualization version   GIF version

Theorem minvecolem5 30566
Description: Lemma for minveco 30569. Discharge the assumption about the sequence 𝐹 by applying countable choice ax-cc 10436. (Contributed by Mario Carneiro, 9-May-2014.) (Revised by AV, 4-Oct-2020.) (New usage is discouraged.)
Hypotheses
Ref Expression
minveco.x 𝑋 = (BaseSet‘𝑈)
minveco.m 𝑀 = ( −𝑣𝑈)
minveco.n 𝑁 = (normCV𝑈)
minveco.y 𝑌 = (BaseSet‘𝑊)
minveco.u (𝜑𝑈 ∈ CPreHilOLD)
minveco.w (𝜑𝑊 ∈ ((SubSp‘𝑈) ∩ CBan))
minveco.a (𝜑𝐴𝑋)
minveco.d 𝐷 = (IndMet‘𝑈)
minveco.j 𝐽 = (MetOpen‘𝐷)
minveco.r 𝑅 = ran (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦)))
minveco.s 𝑆 = inf(𝑅, ℝ, < )
Assertion
Ref Expression
minvecolem5 (𝜑 → ∃𝑥𝑌𝑦𝑌 (𝑁‘(𝐴𝑀𝑥)) ≤ (𝑁‘(𝐴𝑀𝑦)))
Distinct variable groups:   𝑥,𝑦,𝐽   𝑥,𝑀,𝑦   𝑥,𝑁,𝑦   𝜑,𝑥,𝑦   𝑥,𝑅   𝑥,𝑆,𝑦   𝑥,𝐴,𝑦   𝑥,𝐷,𝑦   𝑥,𝑈,𝑦   𝑥,𝑊,𝑦   𝑥,𝑋   𝑥,𝑌,𝑦
Allowed substitution hints:   𝑅(𝑦)   𝑋(𝑦)

Proof of Theorem minvecolem5
Dummy variables 𝑛 𝑘 𝑤 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnrecgt0 12262 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → 0 < (1 / 𝑛))
21adantl 481 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → 0 < (1 / 𝑛))
3 nnrecre 12261 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → (1 / 𝑛) ∈ ℝ)
43adantl 481 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → (1 / 𝑛) ∈ ℝ)
5 minveco.s . . . . . . . . . . . . . 14 𝑆 = inf(𝑅, ℝ, < )
6 minveco.x . . . . . . . . . . . . . . . . . 18 𝑋 = (BaseSet‘𝑈)
7 minveco.m . . . . . . . . . . . . . . . . . 18 𝑀 = ( −𝑣𝑈)
8 minveco.n . . . . . . . . . . . . . . . . . 18 𝑁 = (normCV𝑈)
9 minveco.y . . . . . . . . . . . . . . . . . 18 𝑌 = (BaseSet‘𝑊)
10 minveco.u . . . . . . . . . . . . . . . . . 18 (𝜑𝑈 ∈ CPreHilOLD)
11 minveco.w . . . . . . . . . . . . . . . . . 18 (𝜑𝑊 ∈ ((SubSp‘𝑈) ∩ CBan))
12 minveco.a . . . . . . . . . . . . . . . . . 18 (𝜑𝐴𝑋)
13 minveco.d . . . . . . . . . . . . . . . . . 18 𝐷 = (IndMet‘𝑈)
14 minveco.j . . . . . . . . . . . . . . . . . 18 𝐽 = (MetOpen‘𝐷)
15 minveco.r . . . . . . . . . . . . . . . . . 18 𝑅 = ran (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦)))
166, 7, 8, 9, 10, 11, 12, 13, 14, 15minvecolem1 30559 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∀𝑤𝑅 0 ≤ 𝑤))
1716adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ ℕ) → (𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∀𝑤𝑅 0 ≤ 𝑤))
1817simp1d 1141 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ) → 𝑅 ⊆ ℝ)
1917simp2d 1142 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ) → 𝑅 ≠ ∅)
20 0re 11223 . . . . . . . . . . . . . . . 16 0 ∈ ℝ
2117simp3d 1143 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ ℕ) → ∀𝑤𝑅 0 ≤ 𝑤)
22 breq1 5151 . . . . . . . . . . . . . . . . . 18 (𝑥 = 0 → (𝑥𝑤 ↔ 0 ≤ 𝑤))
2322ralbidv 3176 . . . . . . . . . . . . . . . . 17 (𝑥 = 0 → (∀𝑤𝑅 𝑥𝑤 ↔ ∀𝑤𝑅 0 ≤ 𝑤))
2423rspcev 3612 . . . . . . . . . . . . . . . 16 ((0 ∈ ℝ ∧ ∀𝑤𝑅 0 ≤ 𝑤) → ∃𝑥 ∈ ℝ ∀𝑤𝑅 𝑥𝑤)
2520, 21, 24sylancr 586 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ) → ∃𝑥 ∈ ℝ ∀𝑤𝑅 𝑥𝑤)
26 infrecl 12203 . . . . . . . . . . . . . . 15 ((𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑤𝑅 𝑥𝑤) → inf(𝑅, ℝ, < ) ∈ ℝ)
2718, 19, 25, 26syl3anc 1370 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ) → inf(𝑅, ℝ, < ) ∈ ℝ)
285, 27eqeltrid 2836 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → 𝑆 ∈ ℝ)
2928resqcld 14097 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → (𝑆↑2) ∈ ℝ)
304, 29ltaddposd 11805 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (0 < (1 / 𝑛) ↔ (𝑆↑2) < ((𝑆↑2) + (1 / 𝑛))))
312, 30mpbid 231 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (𝑆↑2) < ((𝑆↑2) + (1 / 𝑛)))
3229, 4readdcld 11250 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → ((𝑆↑2) + (1 / 𝑛)) ∈ ℝ)
3328sqge0d 14109 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ) → 0 ≤ (𝑆↑2))
3429, 4, 33, 2addgegt0d 11794 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → 0 < ((𝑆↑2) + (1 / 𝑛)))
3532, 34elrpd 13020 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → ((𝑆↑2) + (1 / 𝑛)) ∈ ℝ+)
3635rpge0d 13027 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → 0 ≤ ((𝑆↑2) + (1 / 𝑛)))
37 resqrtth 15209 . . . . . . . . . . 11 ((((𝑆↑2) + (1 / 𝑛)) ∈ ℝ ∧ 0 ≤ ((𝑆↑2) + (1 / 𝑛))) → ((√‘((𝑆↑2) + (1 / 𝑛)))↑2) = ((𝑆↑2) + (1 / 𝑛)))
3832, 36, 37syl2anc 583 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → ((√‘((𝑆↑2) + (1 / 𝑛)))↑2) = ((𝑆↑2) + (1 / 𝑛)))
3931, 38breqtrrd 5176 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (𝑆↑2) < ((√‘((𝑆↑2) + (1 / 𝑛)))↑2))
4035rpsqrtcld 15365 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (√‘((𝑆↑2) + (1 / 𝑛))) ∈ ℝ+)
4140rpred 13023 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (√‘((𝑆↑2) + (1 / 𝑛))) ∈ ℝ)
42 0red 11224 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → 0 ∈ ℝ)
43 infregelb 12205 . . . . . . . . . . . . 13 (((𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑤𝑅 𝑥𝑤) ∧ 0 ∈ ℝ) → (0 ≤ inf(𝑅, ℝ, < ) ↔ ∀𝑤𝑅 0 ≤ 𝑤))
4418, 19, 25, 42, 43syl31anc 1372 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → (0 ≤ inf(𝑅, ℝ, < ) ↔ ∀𝑤𝑅 0 ≤ 𝑤))
4521, 44mpbird 257 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → 0 ≤ inf(𝑅, ℝ, < ))
4645, 5breqtrrdi 5190 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → 0 ≤ 𝑆)
4732, 36sqrtge0d 15374 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → 0 ≤ (√‘((𝑆↑2) + (1 / 𝑛))))
4828, 41, 46, 47lt2sqd 14226 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (𝑆 < (√‘((𝑆↑2) + (1 / 𝑛))) ↔ (𝑆↑2) < ((√‘((𝑆↑2) + (1 / 𝑛)))↑2)))
4939, 48mpbird 257 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → 𝑆 < (√‘((𝑆↑2) + (1 / 𝑛))))
5028, 41ltnled 11368 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (𝑆 < (√‘((𝑆↑2) + (1 / 𝑛))) ↔ ¬ (√‘((𝑆↑2) + (1 / 𝑛))) ≤ 𝑆))
5149, 50mpbid 231 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → ¬ (√‘((𝑆↑2) + (1 / 𝑛))) ≤ 𝑆)
525breq2i 5156 . . . . . . . . 9 ((√‘((𝑆↑2) + (1 / 𝑛))) ≤ 𝑆 ↔ (√‘((𝑆↑2) + (1 / 𝑛))) ≤ inf(𝑅, ℝ, < ))
53 infregelb 12205 . . . . . . . . . 10 (((𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑤𝑅 𝑥𝑤) ∧ (√‘((𝑆↑2) + (1 / 𝑛))) ∈ ℝ) → ((√‘((𝑆↑2) + (1 / 𝑛))) ≤ inf(𝑅, ℝ, < ) ↔ ∀𝑤𝑅 (√‘((𝑆↑2) + (1 / 𝑛))) ≤ 𝑤))
5418, 19, 25, 41, 53syl31anc 1372 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → ((√‘((𝑆↑2) + (1 / 𝑛))) ≤ inf(𝑅, ℝ, < ) ↔ ∀𝑤𝑅 (√‘((𝑆↑2) + (1 / 𝑛))) ≤ 𝑤))
5552, 54bitrid 283 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → ((√‘((𝑆↑2) + (1 / 𝑛))) ≤ 𝑆 ↔ ∀𝑤𝑅 (√‘((𝑆↑2) + (1 / 𝑛))) ≤ 𝑤))
5615raleqi 3322 . . . . . . . . 9 (∀𝑤𝑅 (√‘((𝑆↑2) + (1 / 𝑛))) ≤ 𝑤 ↔ ∀𝑤 ∈ ran (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦)))(√‘((𝑆↑2) + (1 / 𝑛))) ≤ 𝑤)
57 fvex 6904 . . . . . . . . . . 11 (𝑁‘(𝐴𝑀𝑦)) ∈ V
5857rgenw 3064 . . . . . . . . . 10 𝑦𝑌 (𝑁‘(𝐴𝑀𝑦)) ∈ V
59 eqid 2731 . . . . . . . . . . 11 (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦))) = (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦)))
60 breq2 5152 . . . . . . . . . . 11 (𝑤 = (𝑁‘(𝐴𝑀𝑦)) → ((√‘((𝑆↑2) + (1 / 𝑛))) ≤ 𝑤 ↔ (√‘((𝑆↑2) + (1 / 𝑛))) ≤ (𝑁‘(𝐴𝑀𝑦))))
6159, 60ralrnmptw 7095 . . . . . . . . . 10 (∀𝑦𝑌 (𝑁‘(𝐴𝑀𝑦)) ∈ V → (∀𝑤 ∈ ran (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦)))(√‘((𝑆↑2) + (1 / 𝑛))) ≤ 𝑤 ↔ ∀𝑦𝑌 (√‘((𝑆↑2) + (1 / 𝑛))) ≤ (𝑁‘(𝐴𝑀𝑦))))
6258, 61ax-mp 5 . . . . . . . . 9 (∀𝑤 ∈ ran (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦)))(√‘((𝑆↑2) + (1 / 𝑛))) ≤ 𝑤 ↔ ∀𝑦𝑌 (√‘((𝑆↑2) + (1 / 𝑛))) ≤ (𝑁‘(𝐴𝑀𝑦)))
6356, 62bitri 275 . . . . . . . 8 (∀𝑤𝑅 (√‘((𝑆↑2) + (1 / 𝑛))) ≤ 𝑤 ↔ ∀𝑦𝑌 (√‘((𝑆↑2) + (1 / 𝑛))) ≤ (𝑁‘(𝐴𝑀𝑦)))
6455, 63bitrdi 287 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → ((√‘((𝑆↑2) + (1 / 𝑛))) ≤ 𝑆 ↔ ∀𝑦𝑌 (√‘((𝑆↑2) + (1 / 𝑛))) ≤ (𝑁‘(𝐴𝑀𝑦))))
6551, 64mtbid 324 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → ¬ ∀𝑦𝑌 (√‘((𝑆↑2) + (1 / 𝑛))) ≤ (𝑁‘(𝐴𝑀𝑦)))
66 rexnal 3099 . . . . . 6 (∃𝑦𝑌 ¬ (√‘((𝑆↑2) + (1 / 𝑛))) ≤ (𝑁‘(𝐴𝑀𝑦)) ↔ ¬ ∀𝑦𝑌 (√‘((𝑆↑2) + (1 / 𝑛))) ≤ (𝑁‘(𝐴𝑀𝑦)))
6765, 66sylibr 233 . . . . 5 ((𝜑𝑛 ∈ ℕ) → ∃𝑦𝑌 ¬ (√‘((𝑆↑2) + (1 / 𝑛))) ≤ (𝑁‘(𝐴𝑀𝑦)))
6832adantr 480 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑦𝑌) → ((𝑆↑2) + (1 / 𝑛)) ∈ ℝ)
69 phnv 30499 . . . . . . . . . . . . 13 (𝑈 ∈ CPreHilOLD𝑈 ∈ NrmCVec)
7010, 69syl 17 . . . . . . . . . . . 12 (𝜑𝑈 ∈ NrmCVec)
7170ad2antrr 723 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑦𝑌) → 𝑈 ∈ NrmCVec)
7212ad2antrr 723 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ) ∧ 𝑦𝑌) → 𝐴𝑋)
73 inss1 4228 . . . . . . . . . . . . . . . 16 ((SubSp‘𝑈) ∩ CBan) ⊆ (SubSp‘𝑈)
7473, 11sselid 3980 . . . . . . . . . . . . . . 15 (𝜑𝑊 ∈ (SubSp‘𝑈))
75 eqid 2731 . . . . . . . . . . . . . . . 16 (SubSp‘𝑈) = (SubSp‘𝑈)
766, 9, 75sspba 30412 . . . . . . . . . . . . . . 15 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ (SubSp‘𝑈)) → 𝑌𝑋)
7770, 74, 76syl2anc 583 . . . . . . . . . . . . . 14 (𝜑𝑌𝑋)
7877adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → 𝑌𝑋)
7978sselda 3982 . . . . . . . . . . . 12 (((𝜑𝑛 ∈ ℕ) ∧ 𝑦𝑌) → 𝑦𝑋)
806, 7nvmcl 30331 . . . . . . . . . . . 12 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝑦𝑋) → (𝐴𝑀𝑦) ∈ 𝑋)
8171, 72, 79, 80syl3anc 1370 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑦𝑌) → (𝐴𝑀𝑦) ∈ 𝑋)
826, 8nvcl 30346 . . . . . . . . . . 11 ((𝑈 ∈ NrmCVec ∧ (𝐴𝑀𝑦) ∈ 𝑋) → (𝑁‘(𝐴𝑀𝑦)) ∈ ℝ)
8371, 81, 82syl2anc 583 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑦𝑌) → (𝑁‘(𝐴𝑀𝑦)) ∈ ℝ)
8483resqcld 14097 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑦𝑌) → ((𝑁‘(𝐴𝑀𝑦))↑2) ∈ ℝ)
8568, 84letrid 11373 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑦𝑌) → (((𝑆↑2) + (1 / 𝑛)) ≤ ((𝑁‘(𝐴𝑀𝑦))↑2) ∨ ((𝑁‘(𝐴𝑀𝑦))↑2) ≤ ((𝑆↑2) + (1 / 𝑛))))
8685ord 861 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑦𝑌) → (¬ ((𝑆↑2) + (1 / 𝑛)) ≤ ((𝑁‘(𝐴𝑀𝑦))↑2) → ((𝑁‘(𝐴𝑀𝑦))↑2) ≤ ((𝑆↑2) + (1 / 𝑛))))
8741adantr 480 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑦𝑌) → (√‘((𝑆↑2) + (1 / 𝑛))) ∈ ℝ)
8847adantr 480 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑦𝑌) → 0 ≤ (√‘((𝑆↑2) + (1 / 𝑛))))
896, 8nvge0 30358 . . . . . . . . . . 11 ((𝑈 ∈ NrmCVec ∧ (𝐴𝑀𝑦) ∈ 𝑋) → 0 ≤ (𝑁‘(𝐴𝑀𝑦)))
9071, 81, 89syl2anc 583 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑦𝑌) → 0 ≤ (𝑁‘(𝐴𝑀𝑦)))
9187, 83, 88, 90le2sqd 14227 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑦𝑌) → ((√‘((𝑆↑2) + (1 / 𝑛))) ≤ (𝑁‘(𝐴𝑀𝑦)) ↔ ((√‘((𝑆↑2) + (1 / 𝑛)))↑2) ≤ ((𝑁‘(𝐴𝑀𝑦))↑2)))
9238adantr 480 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑦𝑌) → ((√‘((𝑆↑2) + (1 / 𝑛)))↑2) = ((𝑆↑2) + (1 / 𝑛)))
9392breq1d 5158 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑦𝑌) → (((√‘((𝑆↑2) + (1 / 𝑛)))↑2) ≤ ((𝑁‘(𝐴𝑀𝑦))↑2) ↔ ((𝑆↑2) + (1 / 𝑛)) ≤ ((𝑁‘(𝐴𝑀𝑦))↑2)))
9491, 93bitrd 279 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑦𝑌) → ((√‘((𝑆↑2) + (1 / 𝑛))) ≤ (𝑁‘(𝐴𝑀𝑦)) ↔ ((𝑆↑2) + (1 / 𝑛)) ≤ ((𝑁‘(𝐴𝑀𝑦))↑2)))
9594notbid 318 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑦𝑌) → (¬ (√‘((𝑆↑2) + (1 / 𝑛))) ≤ (𝑁‘(𝐴𝑀𝑦)) ↔ ¬ ((𝑆↑2) + (1 / 𝑛)) ≤ ((𝑁‘(𝐴𝑀𝑦))↑2)))
966, 7, 8, 13imsdval 30371 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝑦𝑋) → (𝐴𝐷𝑦) = (𝑁‘(𝐴𝑀𝑦)))
9771, 72, 79, 96syl3anc 1370 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑦𝑌) → (𝐴𝐷𝑦) = (𝑁‘(𝐴𝑀𝑦)))
9897oveq1d 7427 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑦𝑌) → ((𝐴𝐷𝑦)↑2) = ((𝑁‘(𝐴𝑀𝑦))↑2))
9998breq1d 5158 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑦𝑌) → (((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (1 / 𝑛)) ↔ ((𝑁‘(𝐴𝑀𝑦))↑2) ≤ ((𝑆↑2) + (1 / 𝑛))))
10086, 95, 993imtr4d 294 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ 𝑦𝑌) → (¬ (√‘((𝑆↑2) + (1 / 𝑛))) ≤ (𝑁‘(𝐴𝑀𝑦)) → ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (1 / 𝑛))))
101100reximdva 3167 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (∃𝑦𝑌 ¬ (√‘((𝑆↑2) + (1 / 𝑛))) ≤ (𝑁‘(𝐴𝑀𝑦)) → ∃𝑦𝑌 ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (1 / 𝑛))))
10267, 101mpd 15 . . . 4 ((𝜑𝑛 ∈ ℕ) → ∃𝑦𝑌 ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (1 / 𝑛)))
103102ralrimiva 3145 . . 3 (𝜑 → ∀𝑛 ∈ ℕ ∃𝑦𝑌 ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (1 / 𝑛)))
1049fvexi 6905 . . . 4 𝑌 ∈ V
105 nnenom 13952 . . . 4 ℕ ≈ ω
106 oveq2 7420 . . . . . 6 (𝑦 = (𝑓𝑛) → (𝐴𝐷𝑦) = (𝐴𝐷(𝑓𝑛)))
107106oveq1d 7427 . . . . 5 (𝑦 = (𝑓𝑛) → ((𝐴𝐷𝑦)↑2) = ((𝐴𝐷(𝑓𝑛))↑2))
108107breq1d 5158 . . . 4 (𝑦 = (𝑓𝑛) → (((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (1 / 𝑛)) ↔ ((𝐴𝐷(𝑓𝑛))↑2) ≤ ((𝑆↑2) + (1 / 𝑛))))
109104, 105, 108axcc4 10440 . . 3 (∀𝑛 ∈ ℕ ∃𝑦𝑌 ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (1 / 𝑛)) → ∃𝑓(𝑓:ℕ⟶𝑌 ∧ ∀𝑛 ∈ ℕ ((𝐴𝐷(𝑓𝑛))↑2) ≤ ((𝑆↑2) + (1 / 𝑛))))
110103, 109syl 17 . 2 (𝜑 → ∃𝑓(𝑓:ℕ⟶𝑌 ∧ ∀𝑛 ∈ ℕ ((𝐴𝐷(𝑓𝑛))↑2) ≤ ((𝑆↑2) + (1 / 𝑛))))
11110adantr 480 . . 3 ((𝜑 ∧ (𝑓:ℕ⟶𝑌 ∧ ∀𝑛 ∈ ℕ ((𝐴𝐷(𝑓𝑛))↑2) ≤ ((𝑆↑2) + (1 / 𝑛)))) → 𝑈 ∈ CPreHilOLD)
11211adantr 480 . . 3 ((𝜑 ∧ (𝑓:ℕ⟶𝑌 ∧ ∀𝑛 ∈ ℕ ((𝐴𝐷(𝑓𝑛))↑2) ≤ ((𝑆↑2) + (1 / 𝑛)))) → 𝑊 ∈ ((SubSp‘𝑈) ∩ CBan))
11312adantr 480 . . 3 ((𝜑 ∧ (𝑓:ℕ⟶𝑌 ∧ ∀𝑛 ∈ ℕ ((𝐴𝐷(𝑓𝑛))↑2) ≤ ((𝑆↑2) + (1 / 𝑛)))) → 𝐴𝑋)
114 simprl 768 . . 3 ((𝜑 ∧ (𝑓:ℕ⟶𝑌 ∧ ∀𝑛 ∈ ℕ ((𝐴𝐷(𝑓𝑛))↑2) ≤ ((𝑆↑2) + (1 / 𝑛)))) → 𝑓:ℕ⟶𝑌)
115 simprr 770 . . . 4 ((𝜑 ∧ (𝑓:ℕ⟶𝑌 ∧ ∀𝑛 ∈ ℕ ((𝐴𝐷(𝑓𝑛))↑2) ≤ ((𝑆↑2) + (1 / 𝑛)))) → ∀𝑛 ∈ ℕ ((𝐴𝐷(𝑓𝑛))↑2) ≤ ((𝑆↑2) + (1 / 𝑛)))
116 fveq2 6891 . . . . . . . 8 (𝑛 = 𝑘 → (𝑓𝑛) = (𝑓𝑘))
117116oveq2d 7428 . . . . . . 7 (𝑛 = 𝑘 → (𝐴𝐷(𝑓𝑛)) = (𝐴𝐷(𝑓𝑘)))
118117oveq1d 7427 . . . . . 6 (𝑛 = 𝑘 → ((𝐴𝐷(𝑓𝑛))↑2) = ((𝐴𝐷(𝑓𝑘))↑2))
119 oveq2 7420 . . . . . . 7 (𝑛 = 𝑘 → (1 / 𝑛) = (1 / 𝑘))
120119oveq2d 7428 . . . . . 6 (𝑛 = 𝑘 → ((𝑆↑2) + (1 / 𝑛)) = ((𝑆↑2) + (1 / 𝑘)))
121118, 120breq12d 5161 . . . . 5 (𝑛 = 𝑘 → (((𝐴𝐷(𝑓𝑛))↑2) ≤ ((𝑆↑2) + (1 / 𝑛)) ↔ ((𝐴𝐷(𝑓𝑘))↑2) ≤ ((𝑆↑2) + (1 / 𝑘))))
122121rspccva 3611 . . . 4 ((∀𝑛 ∈ ℕ ((𝐴𝐷(𝑓𝑛))↑2) ≤ ((𝑆↑2) + (1 / 𝑛)) ∧ 𝑘 ∈ ℕ) → ((𝐴𝐷(𝑓𝑘))↑2) ≤ ((𝑆↑2) + (1 / 𝑘)))
123115, 122sylan 579 . . 3 (((𝜑 ∧ (𝑓:ℕ⟶𝑌 ∧ ∀𝑛 ∈ ℕ ((𝐴𝐷(𝑓𝑛))↑2) ≤ ((𝑆↑2) + (1 / 𝑛)))) ∧ 𝑘 ∈ ℕ) → ((𝐴𝐷(𝑓𝑘))↑2) ≤ ((𝑆↑2) + (1 / 𝑘)))
124 eqid 2731 . . 3 (1 / (((((𝐴𝐷((⇝𝑡𝐽)‘𝑓)) + 𝑆) / 2)↑2) − (𝑆↑2))) = (1 / (((((𝐴𝐷((⇝𝑡𝐽)‘𝑓)) + 𝑆) / 2)↑2) − (𝑆↑2)))
1256, 7, 8, 9, 111, 112, 113, 13, 14, 15, 5, 114, 123, 124minvecolem4 30565 . 2 ((𝜑 ∧ (𝑓:ℕ⟶𝑌 ∧ ∀𝑛 ∈ ℕ ((𝐴𝐷(𝑓𝑛))↑2) ≤ ((𝑆↑2) + (1 / 𝑛)))) → ∃𝑥𝑌𝑦𝑌 (𝑁‘(𝐴𝑀𝑥)) ≤ (𝑁‘(𝐴𝑀𝑦)))
126110, 125exlimddv 1937 1 (𝜑 → ∃𝑥𝑌𝑦𝑌 (𝑁‘(𝐴𝑀𝑥)) ≤ (𝑁‘(𝐴𝑀𝑦)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1086   = wceq 1540  wex 1780  wcel 2105  wne 2939  wral 3060  wrex 3069  Vcvv 3473  cin 3947  wss 3948  c0 4322   class class class wbr 5148  cmpt 5231  ran crn 5677  wf 6539  cfv 6543  (class class class)co 7412  infcinf 9442  cr 11115  0cc0 11116  1c1 11117   + caddc 11119   < clt 11255  cle 11256  cmin 11451   / cdiv 11878  cn 12219  2c2 12274  cexp 14034  csqrt 15187  MetOpencmopn 21222  𝑡clm 23049  NrmCVeccnv 30269  BaseSetcba 30271  𝑣 cnsb 30274  normCVcnmcv 30275  IndMetcims 30276  SubSpcss 30406  CPreHilOLDccphlo 30497  CBanccbn 30547
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-inf2 9642  ax-cc 10436  ax-cnex 11172  ax-resscn 11173  ax-1cn 11174  ax-icn 11175  ax-addcl 11176  ax-addrcl 11177  ax-mulcl 11178  ax-mulrcl 11179  ax-mulcom 11180  ax-addass 11181  ax-mulass 11182  ax-distr 11183  ax-i2m1 11184  ax-1ne0 11185  ax-1rid 11186  ax-rnegex 11187  ax-rrecex 11188  ax-cnre 11189  ax-pre-lttri 11190  ax-pre-lttrn 11191  ax-pre-ltadd 11192  ax-pre-mulgt0 11193  ax-pre-sup 11194  ax-addf 11195  ax-mulf 11196
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-iin 5000  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7860  df-1st 7979  df-2nd 7980  df-frecs 8272  df-wrecs 8303  df-recs 8377  df-rdg 8416  df-er 8709  df-map 8828  df-pm 8829  df-en 8946  df-dom 8947  df-sdom 8948  df-fin 8949  df-fi 9412  df-sup 9443  df-inf 9444  df-pnf 11257  df-mnf 11258  df-xr 11259  df-ltxr 11260  df-le 11261  df-sub 11453  df-neg 11454  df-div 11879  df-nn 12220  df-2 12282  df-3 12283  df-4 12284  df-n0 12480  df-z 12566  df-uz 12830  df-q 12940  df-rp 12982  df-xneg 13099  df-xadd 13100  df-xmul 13101  df-ico 13337  df-icc 13338  df-fl 13764  df-seq 13974  df-exp 14035  df-cj 15053  df-re 15054  df-im 15055  df-sqrt 15189  df-abs 15190  df-rest 17375  df-topgen 17396  df-psmet 21224  df-xmet 21225  df-met 21226  df-bl 21227  df-mopn 21228  df-fbas 21229  df-fg 21230  df-top 22715  df-topon 22732  df-bases 22768  df-cld 22842  df-ntr 22843  df-cls 22844  df-nei 22921  df-lm 23052  df-haus 23138  df-fil 23669  df-fm 23761  df-flim 23762  df-flf 23763  df-cfil 25102  df-cau 25103  df-cmet 25104  df-grpo 30178  df-gid 30179  df-ginv 30180  df-gdiv 30181  df-ablo 30230  df-vc 30244  df-nv 30277  df-va 30280  df-ba 30281  df-sm 30282  df-0v 30283  df-vs 30284  df-nmcv 30285  df-ims 30286  df-ssp 30407  df-ph 30498  df-cbn 30548
This theorem is referenced by:  minvecolem7  30568
  Copyright terms: Public domain W3C validator