Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  minvecolem6 Structured version   Visualization version   GIF version

Theorem minvecolem6 28672
 Description: Lemma for minveco 28674. Any minimal point is less than 𝑆 away from 𝐴. (Contributed by Mario Carneiro, 9-May-2014.) (Revised by AV, 4-Oct-2020.) (New usage is discouraged.)
Hypotheses
Ref Expression
minveco.x 𝑋 = (BaseSet‘𝑈)
minveco.m 𝑀 = ( −𝑣𝑈)
minveco.n 𝑁 = (normCV𝑈)
minveco.y 𝑌 = (BaseSet‘𝑊)
minveco.u (𝜑𝑈 ∈ CPreHilOLD)
minveco.w (𝜑𝑊 ∈ ((SubSp‘𝑈) ∩ CBan))
minveco.a (𝜑𝐴𝑋)
minveco.d 𝐷 = (IndMet‘𝑈)
minveco.j 𝐽 = (MetOpen‘𝐷)
minveco.r 𝑅 = ran (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦)))
minveco.s 𝑆 = inf(𝑅, ℝ, < )
Assertion
Ref Expression
minvecolem6 ((𝜑𝑥𝑌) → (((𝐴𝐷𝑥)↑2) ≤ ((𝑆↑2) + 0) ↔ ∀𝑦𝑌 (𝑁‘(𝐴𝑀𝑥)) ≤ (𝑁‘(𝐴𝑀𝑦))))
Distinct variable groups:   𝑥,𝑦,𝐽   𝑥,𝑀,𝑦   𝑥,𝑁,𝑦   𝜑,𝑥,𝑦   𝑥,𝑅   𝑥,𝑆,𝑦   𝑥,𝐴,𝑦   𝑥,𝐷,𝑦   𝑥,𝑈,𝑦   𝑥,𝑊,𝑦   𝑥,𝑋   𝑥,𝑌,𝑦
Allowed substitution hints:   𝑅(𝑦)   𝑋(𝑦)

Proof of Theorem minvecolem6
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 minveco.u . . . . . . . 8 (𝜑𝑈 ∈ CPreHilOLD)
2 phnv 28604 . . . . . . . 8 (𝑈 ∈ CPreHilOLD𝑈 ∈ NrmCVec)
31, 2syl 17 . . . . . . 7 (𝜑𝑈 ∈ NrmCVec)
43adantr 484 . . . . . 6 ((𝜑𝑥𝑌) → 𝑈 ∈ NrmCVec)
5 minveco.a . . . . . . 7 (𝜑𝐴𝑋)
65adantr 484 . . . . . 6 ((𝜑𝑥𝑌) → 𝐴𝑋)
7 inss1 4155 . . . . . . . . 9 ((SubSp‘𝑈) ∩ CBan) ⊆ (SubSp‘𝑈)
8 minveco.w . . . . . . . . 9 (𝜑𝑊 ∈ ((SubSp‘𝑈) ∩ CBan))
97, 8sseldi 3913 . . . . . . . 8 (𝜑𝑊 ∈ (SubSp‘𝑈))
10 minveco.x . . . . . . . . 9 𝑋 = (BaseSet‘𝑈)
11 minveco.y . . . . . . . . 9 𝑌 = (BaseSet‘𝑊)
12 eqid 2798 . . . . . . . . 9 (SubSp‘𝑈) = (SubSp‘𝑈)
1310, 11, 12sspba 28517 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ (SubSp‘𝑈)) → 𝑌𝑋)
143, 9, 13syl2anc 587 . . . . . . 7 (𝜑𝑌𝑋)
1514sselda 3915 . . . . . 6 ((𝜑𝑥𝑌) → 𝑥𝑋)
16 minveco.m . . . . . . 7 𝑀 = ( −𝑣𝑈)
17 minveco.n . . . . . . 7 𝑁 = (normCV𝑈)
18 minveco.d . . . . . . 7 𝐷 = (IndMet‘𝑈)
1910, 16, 17, 18imsdval 28476 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝑥𝑋) → (𝐴𝐷𝑥) = (𝑁‘(𝐴𝑀𝑥)))
204, 6, 15, 19syl3anc 1368 . . . . 5 ((𝜑𝑥𝑌) → (𝐴𝐷𝑥) = (𝑁‘(𝐴𝑀𝑥)))
2120oveq1d 7150 . . . 4 ((𝜑𝑥𝑌) → ((𝐴𝐷𝑥)↑2) = ((𝑁‘(𝐴𝑀𝑥))↑2))
22 minveco.s . . . . . . . 8 𝑆 = inf(𝑅, ℝ, < )
23 minveco.j . . . . . . . . . . . 12 𝐽 = (MetOpen‘𝐷)
24 minveco.r . . . . . . . . . . . 12 𝑅 = ran (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦)))
2510, 16, 17, 11, 1, 8, 5, 18, 23, 24minvecolem1 28664 . . . . . . . . . . 11 (𝜑 → (𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∀𝑤𝑅 0 ≤ 𝑤))
2625adantr 484 . . . . . . . . . 10 ((𝜑𝑥𝑌) → (𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∀𝑤𝑅 0 ≤ 𝑤))
2726simp1d 1139 . . . . . . . . 9 ((𝜑𝑥𝑌) → 𝑅 ⊆ ℝ)
2826simp2d 1140 . . . . . . . . 9 ((𝜑𝑥𝑌) → 𝑅 ≠ ∅)
29 0red 10635 . . . . . . . . . 10 ((𝜑𝑥𝑌) → 0 ∈ ℝ)
3026simp3d 1141 . . . . . . . . . 10 ((𝜑𝑥𝑌) → ∀𝑤𝑅 0 ≤ 𝑤)
31 breq1 5033 . . . . . . . . . . . 12 (𝑥 = 0 → (𝑥𝑤 ↔ 0 ≤ 𝑤))
3231ralbidv 3162 . . . . . . . . . . 11 (𝑥 = 0 → (∀𝑤𝑅 𝑥𝑤 ↔ ∀𝑤𝑅 0 ≤ 𝑤))
3332rspcev 3571 . . . . . . . . . 10 ((0 ∈ ℝ ∧ ∀𝑤𝑅 0 ≤ 𝑤) → ∃𝑥 ∈ ℝ ∀𝑤𝑅 𝑥𝑤)
3429, 30, 33syl2anc 587 . . . . . . . . 9 ((𝜑𝑥𝑌) → ∃𝑥 ∈ ℝ ∀𝑤𝑅 𝑥𝑤)
35 infrecl 11612 . . . . . . . . 9 ((𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑤𝑅 𝑥𝑤) → inf(𝑅, ℝ, < ) ∈ ℝ)
3627, 28, 34, 35syl3anc 1368 . . . . . . . 8 ((𝜑𝑥𝑌) → inf(𝑅, ℝ, < ) ∈ ℝ)
3722, 36eqeltrid 2894 . . . . . . 7 ((𝜑𝑥𝑌) → 𝑆 ∈ ℝ)
3837resqcld 13609 . . . . . 6 ((𝜑𝑥𝑌) → (𝑆↑2) ∈ ℝ)
3938recnd 10660 . . . . 5 ((𝜑𝑥𝑌) → (𝑆↑2) ∈ ℂ)
4039addid1d 10831 . . . 4 ((𝜑𝑥𝑌) → ((𝑆↑2) + 0) = (𝑆↑2))
4121, 40breq12d 5043 . . 3 ((𝜑𝑥𝑌) → (((𝐴𝐷𝑥)↑2) ≤ ((𝑆↑2) + 0) ↔ ((𝑁‘(𝐴𝑀𝑥))↑2) ≤ (𝑆↑2)))
4210, 16nvmcl 28436 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝑥𝑋) → (𝐴𝑀𝑥) ∈ 𝑋)
434, 6, 15, 42syl3anc 1368 . . . . 5 ((𝜑𝑥𝑌) → (𝐴𝑀𝑥) ∈ 𝑋)
4410, 17nvcl 28451 . . . . 5 ((𝑈 ∈ NrmCVec ∧ (𝐴𝑀𝑥) ∈ 𝑋) → (𝑁‘(𝐴𝑀𝑥)) ∈ ℝ)
454, 43, 44syl2anc 587 . . . 4 ((𝜑𝑥𝑌) → (𝑁‘(𝐴𝑀𝑥)) ∈ ℝ)
4610, 17nvge0 28463 . . . . 5 ((𝑈 ∈ NrmCVec ∧ (𝐴𝑀𝑥) ∈ 𝑋) → 0 ≤ (𝑁‘(𝐴𝑀𝑥)))
474, 43, 46syl2anc 587 . . . 4 ((𝜑𝑥𝑌) → 0 ≤ (𝑁‘(𝐴𝑀𝑥)))
48 infregelb 11614 . . . . . . 7 (((𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑤𝑅 𝑥𝑤) ∧ 0 ∈ ℝ) → (0 ≤ inf(𝑅, ℝ, < ) ↔ ∀𝑤𝑅 0 ≤ 𝑤))
4927, 28, 34, 29, 48syl31anc 1370 . . . . . 6 ((𝜑𝑥𝑌) → (0 ≤ inf(𝑅, ℝ, < ) ↔ ∀𝑤𝑅 0 ≤ 𝑤))
5030, 49mpbird 260 . . . . 5 ((𝜑𝑥𝑌) → 0 ≤ inf(𝑅, ℝ, < ))
5150, 22breqtrrdi 5072 . . . 4 ((𝜑𝑥𝑌) → 0 ≤ 𝑆)
5245, 37, 47, 51le2sqd 13618 . . 3 ((𝜑𝑥𝑌) → ((𝑁‘(𝐴𝑀𝑥)) ≤ 𝑆 ↔ ((𝑁‘(𝐴𝑀𝑥))↑2) ≤ (𝑆↑2)))
5322breq2i 5038 . . . 4 ((𝑁‘(𝐴𝑀𝑥)) ≤ 𝑆 ↔ (𝑁‘(𝐴𝑀𝑥)) ≤ inf(𝑅, ℝ, < ))
54 infregelb 11614 . . . . 5 (((𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑤𝑅 𝑥𝑤) ∧ (𝑁‘(𝐴𝑀𝑥)) ∈ ℝ) → ((𝑁‘(𝐴𝑀𝑥)) ≤ inf(𝑅, ℝ, < ) ↔ ∀𝑤𝑅 (𝑁‘(𝐴𝑀𝑥)) ≤ 𝑤))
5527, 28, 34, 45, 54syl31anc 1370 . . . 4 ((𝜑𝑥𝑌) → ((𝑁‘(𝐴𝑀𝑥)) ≤ inf(𝑅, ℝ, < ) ↔ ∀𝑤𝑅 (𝑁‘(𝐴𝑀𝑥)) ≤ 𝑤))
5653, 55syl5bb 286 . . 3 ((𝜑𝑥𝑌) → ((𝑁‘(𝐴𝑀𝑥)) ≤ 𝑆 ↔ ∀𝑤𝑅 (𝑁‘(𝐴𝑀𝑥)) ≤ 𝑤))
5741, 52, 563bitr2d 310 . 2 ((𝜑𝑥𝑌) → (((𝐴𝐷𝑥)↑2) ≤ ((𝑆↑2) + 0) ↔ ∀𝑤𝑅 (𝑁‘(𝐴𝑀𝑥)) ≤ 𝑤))
5824raleqi 3362 . . 3 (∀𝑤𝑅 (𝑁‘(𝐴𝑀𝑥)) ≤ 𝑤 ↔ ∀𝑤 ∈ ran (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦)))(𝑁‘(𝐴𝑀𝑥)) ≤ 𝑤)
59 fvex 6658 . . . . 5 (𝑁‘(𝐴𝑀𝑦)) ∈ V
6059rgenw 3118 . . . 4 𝑦𝑌 (𝑁‘(𝐴𝑀𝑦)) ∈ V
61 eqid 2798 . . . . 5 (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦))) = (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦)))
62 breq2 5034 . . . . 5 (𝑤 = (𝑁‘(𝐴𝑀𝑦)) → ((𝑁‘(𝐴𝑀𝑥)) ≤ 𝑤 ↔ (𝑁‘(𝐴𝑀𝑥)) ≤ (𝑁‘(𝐴𝑀𝑦))))
6361, 62ralrnmptw 6837 . . . 4 (∀𝑦𝑌 (𝑁‘(𝐴𝑀𝑦)) ∈ V → (∀𝑤 ∈ ran (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦)))(𝑁‘(𝐴𝑀𝑥)) ≤ 𝑤 ↔ ∀𝑦𝑌 (𝑁‘(𝐴𝑀𝑥)) ≤ (𝑁‘(𝐴𝑀𝑦))))
6460, 63ax-mp 5 . . 3 (∀𝑤 ∈ ran (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦)))(𝑁‘(𝐴𝑀𝑥)) ≤ 𝑤 ↔ ∀𝑦𝑌 (𝑁‘(𝐴𝑀𝑥)) ≤ (𝑁‘(𝐴𝑀𝑦)))
6558, 64bitri 278 . 2 (∀𝑤𝑅 (𝑁‘(𝐴𝑀𝑥)) ≤ 𝑤 ↔ ∀𝑦𝑌 (𝑁‘(𝐴𝑀𝑥)) ≤ (𝑁‘(𝐴𝑀𝑦)))
6657, 65syl6bb 290 1 ((𝜑𝑥𝑌) → (((𝐴𝐷𝑥)↑2) ≤ ((𝑆↑2) + 0) ↔ ∀𝑦𝑌 (𝑁‘(𝐴𝑀𝑥)) ≤ (𝑁‘(𝐴𝑀𝑦))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2111   ≠ wne 2987  ∀wral 3106  ∃wrex 3107  Vcvv 3441   ∩ cin 3880   ⊆ wss 3881  ∅c0 4243   class class class wbr 5030   ↦ cmpt 5110  ran crn 5520  ‘cfv 6324  (class class class)co 7135  infcinf 8891  ℝcr 10527  0cc0 10528   + caddc 10531   < clt 10666   ≤ cle 10667  2c2 11682  ↑cexp 13427  MetOpencmopn 20084  NrmCVeccnv 28374  BaseSetcba 28376   −𝑣 cnsb 28379  normCVcnmcv 28380  IndMetcims 28381  SubSpcss 28511  CPreHilOLDccphlo 28602  CBanccbn 28652 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7443  ax-cnex 10584  ax-resscn 10585  ax-1cn 10586  ax-icn 10587  ax-addcl 10588  ax-addrcl 10589  ax-mulcl 10590  ax-mulrcl 10591  ax-mulcom 10592  ax-addass 10593  ax-mulass 10594  ax-distr 10595  ax-i2m1 10596  ax-1ne0 10597  ax-1rid 10598  ax-rnegex 10599  ax-rrecex 10600  ax-cnre 10601  ax-pre-lttri 10602  ax-pre-lttrn 10603  ax-pre-ltadd 10604  ax-pre-mulgt0 10605  ax-pre-sup 10606 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7563  df-1st 7673  df-2nd 7674  df-wrecs 7932  df-recs 7993  df-rdg 8031  df-er 8274  df-en 8495  df-dom 8496  df-sdom 8497  df-sup 8892  df-inf 8893  df-pnf 10668  df-mnf 10669  df-xr 10670  df-ltxr 10671  df-le 10672  df-sub 10863  df-neg 10864  df-div 11289  df-nn 11628  df-2 11690  df-3 11691  df-n0 11888  df-z 11972  df-uz 12234  df-rp 12380  df-seq 13367  df-exp 13428  df-cj 14452  df-re 14453  df-im 14454  df-sqrt 14588  df-abs 14589  df-grpo 28283  df-gid 28284  df-ginv 28285  df-gdiv 28286  df-ablo 28335  df-vc 28349  df-nv 28382  df-va 28385  df-ba 28386  df-sm 28387  df-0v 28388  df-vs 28389  df-nmcv 28390  df-ims 28391  df-ssp 28512  df-ph 28603  df-cbn 28653 This theorem is referenced by:  minvecolem7  28673
 Copyright terms: Public domain W3C validator