MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  minvecolem6 Structured version   Visualization version   GIF version

Theorem minvecolem6 30914
Description: Lemma for minveco 30916. Any minimal point is less than 𝑆 away from 𝐴. (Contributed by Mario Carneiro, 9-May-2014.) (Revised by AV, 4-Oct-2020.) (New usage is discouraged.)
Hypotheses
Ref Expression
minveco.x 𝑋 = (BaseSet‘𝑈)
minveco.m 𝑀 = ( −𝑣𝑈)
minveco.n 𝑁 = (normCV𝑈)
minveco.y 𝑌 = (BaseSet‘𝑊)
minveco.u (𝜑𝑈 ∈ CPreHilOLD)
minveco.w (𝜑𝑊 ∈ ((SubSp‘𝑈) ∩ CBan))
minveco.a (𝜑𝐴𝑋)
minveco.d 𝐷 = (IndMet‘𝑈)
minveco.j 𝐽 = (MetOpen‘𝐷)
minveco.r 𝑅 = ran (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦)))
minveco.s 𝑆 = inf(𝑅, ℝ, < )
Assertion
Ref Expression
minvecolem6 ((𝜑𝑥𝑌) → (((𝐴𝐷𝑥)↑2) ≤ ((𝑆↑2) + 0) ↔ ∀𝑦𝑌 (𝑁‘(𝐴𝑀𝑥)) ≤ (𝑁‘(𝐴𝑀𝑦))))
Distinct variable groups:   𝑥,𝑦,𝐽   𝑥,𝑀,𝑦   𝑥,𝑁,𝑦   𝜑,𝑥,𝑦   𝑥,𝑅   𝑥,𝑆,𝑦   𝑥,𝐴,𝑦   𝑥,𝐷,𝑦   𝑥,𝑈,𝑦   𝑥,𝑊,𝑦   𝑥,𝑋   𝑥,𝑌,𝑦
Allowed substitution hints:   𝑅(𝑦)   𝑋(𝑦)

Proof of Theorem minvecolem6
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 minveco.u . . . . . . . 8 (𝜑𝑈 ∈ CPreHilOLD)
2 phnv 30846 . . . . . . . 8 (𝑈 ∈ CPreHilOLD𝑈 ∈ NrmCVec)
31, 2syl 17 . . . . . . 7 (𝜑𝑈 ∈ NrmCVec)
43adantr 480 . . . . . 6 ((𝜑𝑥𝑌) → 𝑈 ∈ NrmCVec)
5 minveco.a . . . . . . 7 (𝜑𝐴𝑋)
65adantr 480 . . . . . 6 ((𝜑𝑥𝑌) → 𝐴𝑋)
7 inss1 4258 . . . . . . . . 9 ((SubSp‘𝑈) ∩ CBan) ⊆ (SubSp‘𝑈)
8 minveco.w . . . . . . . . 9 (𝜑𝑊 ∈ ((SubSp‘𝑈) ∩ CBan))
97, 8sselid 4006 . . . . . . . 8 (𝜑𝑊 ∈ (SubSp‘𝑈))
10 minveco.x . . . . . . . . 9 𝑋 = (BaseSet‘𝑈)
11 minveco.y . . . . . . . . 9 𝑌 = (BaseSet‘𝑊)
12 eqid 2740 . . . . . . . . 9 (SubSp‘𝑈) = (SubSp‘𝑈)
1310, 11, 12sspba 30759 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ (SubSp‘𝑈)) → 𝑌𝑋)
143, 9, 13syl2anc 583 . . . . . . 7 (𝜑𝑌𝑋)
1514sselda 4008 . . . . . 6 ((𝜑𝑥𝑌) → 𝑥𝑋)
16 minveco.m . . . . . . 7 𝑀 = ( −𝑣𝑈)
17 minveco.n . . . . . . 7 𝑁 = (normCV𝑈)
18 minveco.d . . . . . . 7 𝐷 = (IndMet‘𝑈)
1910, 16, 17, 18imsdval 30718 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝑥𝑋) → (𝐴𝐷𝑥) = (𝑁‘(𝐴𝑀𝑥)))
204, 6, 15, 19syl3anc 1371 . . . . 5 ((𝜑𝑥𝑌) → (𝐴𝐷𝑥) = (𝑁‘(𝐴𝑀𝑥)))
2120oveq1d 7463 . . . 4 ((𝜑𝑥𝑌) → ((𝐴𝐷𝑥)↑2) = ((𝑁‘(𝐴𝑀𝑥))↑2))
22 minveco.s . . . . . . . 8 𝑆 = inf(𝑅, ℝ, < )
23 minveco.j . . . . . . . . . . . 12 𝐽 = (MetOpen‘𝐷)
24 minveco.r . . . . . . . . . . . 12 𝑅 = ran (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦)))
2510, 16, 17, 11, 1, 8, 5, 18, 23, 24minvecolem1 30906 . . . . . . . . . . 11 (𝜑 → (𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∀𝑤𝑅 0 ≤ 𝑤))
2625adantr 480 . . . . . . . . . 10 ((𝜑𝑥𝑌) → (𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∀𝑤𝑅 0 ≤ 𝑤))
2726simp1d 1142 . . . . . . . . 9 ((𝜑𝑥𝑌) → 𝑅 ⊆ ℝ)
2826simp2d 1143 . . . . . . . . 9 ((𝜑𝑥𝑌) → 𝑅 ≠ ∅)
29 0red 11293 . . . . . . . . . 10 ((𝜑𝑥𝑌) → 0 ∈ ℝ)
3026simp3d 1144 . . . . . . . . . 10 ((𝜑𝑥𝑌) → ∀𝑤𝑅 0 ≤ 𝑤)
31 breq1 5169 . . . . . . . . . . . 12 (𝑥 = 0 → (𝑥𝑤 ↔ 0 ≤ 𝑤))
3231ralbidv 3184 . . . . . . . . . . 11 (𝑥 = 0 → (∀𝑤𝑅 𝑥𝑤 ↔ ∀𝑤𝑅 0 ≤ 𝑤))
3332rspcev 3635 . . . . . . . . . 10 ((0 ∈ ℝ ∧ ∀𝑤𝑅 0 ≤ 𝑤) → ∃𝑥 ∈ ℝ ∀𝑤𝑅 𝑥𝑤)
3429, 30, 33syl2anc 583 . . . . . . . . 9 ((𝜑𝑥𝑌) → ∃𝑥 ∈ ℝ ∀𝑤𝑅 𝑥𝑤)
35 infrecl 12277 . . . . . . . . 9 ((𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑤𝑅 𝑥𝑤) → inf(𝑅, ℝ, < ) ∈ ℝ)
3627, 28, 34, 35syl3anc 1371 . . . . . . . 8 ((𝜑𝑥𝑌) → inf(𝑅, ℝ, < ) ∈ ℝ)
3722, 36eqeltrid 2848 . . . . . . 7 ((𝜑𝑥𝑌) → 𝑆 ∈ ℝ)
3837resqcld 14175 . . . . . 6 ((𝜑𝑥𝑌) → (𝑆↑2) ∈ ℝ)
3938recnd 11318 . . . . 5 ((𝜑𝑥𝑌) → (𝑆↑2) ∈ ℂ)
4039addridd 11490 . . . 4 ((𝜑𝑥𝑌) → ((𝑆↑2) + 0) = (𝑆↑2))
4121, 40breq12d 5179 . . 3 ((𝜑𝑥𝑌) → (((𝐴𝐷𝑥)↑2) ≤ ((𝑆↑2) + 0) ↔ ((𝑁‘(𝐴𝑀𝑥))↑2) ≤ (𝑆↑2)))
4210, 16nvmcl 30678 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝑥𝑋) → (𝐴𝑀𝑥) ∈ 𝑋)
434, 6, 15, 42syl3anc 1371 . . . . 5 ((𝜑𝑥𝑌) → (𝐴𝑀𝑥) ∈ 𝑋)
4410, 17nvcl 30693 . . . . 5 ((𝑈 ∈ NrmCVec ∧ (𝐴𝑀𝑥) ∈ 𝑋) → (𝑁‘(𝐴𝑀𝑥)) ∈ ℝ)
454, 43, 44syl2anc 583 . . . 4 ((𝜑𝑥𝑌) → (𝑁‘(𝐴𝑀𝑥)) ∈ ℝ)
4610, 17nvge0 30705 . . . . 5 ((𝑈 ∈ NrmCVec ∧ (𝐴𝑀𝑥) ∈ 𝑋) → 0 ≤ (𝑁‘(𝐴𝑀𝑥)))
474, 43, 46syl2anc 583 . . . 4 ((𝜑𝑥𝑌) → 0 ≤ (𝑁‘(𝐴𝑀𝑥)))
48 infregelb 12279 . . . . . . 7 (((𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑤𝑅 𝑥𝑤) ∧ 0 ∈ ℝ) → (0 ≤ inf(𝑅, ℝ, < ) ↔ ∀𝑤𝑅 0 ≤ 𝑤))
4927, 28, 34, 29, 48syl31anc 1373 . . . . . 6 ((𝜑𝑥𝑌) → (0 ≤ inf(𝑅, ℝ, < ) ↔ ∀𝑤𝑅 0 ≤ 𝑤))
5030, 49mpbird 257 . . . . 5 ((𝜑𝑥𝑌) → 0 ≤ inf(𝑅, ℝ, < ))
5150, 22breqtrrdi 5208 . . . 4 ((𝜑𝑥𝑌) → 0 ≤ 𝑆)
5245, 37, 47, 51le2sqd 14306 . . 3 ((𝜑𝑥𝑌) → ((𝑁‘(𝐴𝑀𝑥)) ≤ 𝑆 ↔ ((𝑁‘(𝐴𝑀𝑥))↑2) ≤ (𝑆↑2)))
5322breq2i 5174 . . . 4 ((𝑁‘(𝐴𝑀𝑥)) ≤ 𝑆 ↔ (𝑁‘(𝐴𝑀𝑥)) ≤ inf(𝑅, ℝ, < ))
54 infregelb 12279 . . . . 5 (((𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑤𝑅 𝑥𝑤) ∧ (𝑁‘(𝐴𝑀𝑥)) ∈ ℝ) → ((𝑁‘(𝐴𝑀𝑥)) ≤ inf(𝑅, ℝ, < ) ↔ ∀𝑤𝑅 (𝑁‘(𝐴𝑀𝑥)) ≤ 𝑤))
5527, 28, 34, 45, 54syl31anc 1373 . . . 4 ((𝜑𝑥𝑌) → ((𝑁‘(𝐴𝑀𝑥)) ≤ inf(𝑅, ℝ, < ) ↔ ∀𝑤𝑅 (𝑁‘(𝐴𝑀𝑥)) ≤ 𝑤))
5653, 55bitrid 283 . . 3 ((𝜑𝑥𝑌) → ((𝑁‘(𝐴𝑀𝑥)) ≤ 𝑆 ↔ ∀𝑤𝑅 (𝑁‘(𝐴𝑀𝑥)) ≤ 𝑤))
5741, 52, 563bitr2d 307 . 2 ((𝜑𝑥𝑌) → (((𝐴𝐷𝑥)↑2) ≤ ((𝑆↑2) + 0) ↔ ∀𝑤𝑅 (𝑁‘(𝐴𝑀𝑥)) ≤ 𝑤))
5824raleqi 3332 . . 3 (∀𝑤𝑅 (𝑁‘(𝐴𝑀𝑥)) ≤ 𝑤 ↔ ∀𝑤 ∈ ran (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦)))(𝑁‘(𝐴𝑀𝑥)) ≤ 𝑤)
59 fvex 6933 . . . . 5 (𝑁‘(𝐴𝑀𝑦)) ∈ V
6059rgenw 3071 . . . 4 𝑦𝑌 (𝑁‘(𝐴𝑀𝑦)) ∈ V
61 eqid 2740 . . . . 5 (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦))) = (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦)))
62 breq2 5170 . . . . 5 (𝑤 = (𝑁‘(𝐴𝑀𝑦)) → ((𝑁‘(𝐴𝑀𝑥)) ≤ 𝑤 ↔ (𝑁‘(𝐴𝑀𝑥)) ≤ (𝑁‘(𝐴𝑀𝑦))))
6361, 62ralrnmptw 7128 . . . 4 (∀𝑦𝑌 (𝑁‘(𝐴𝑀𝑦)) ∈ V → (∀𝑤 ∈ ran (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦)))(𝑁‘(𝐴𝑀𝑥)) ≤ 𝑤 ↔ ∀𝑦𝑌 (𝑁‘(𝐴𝑀𝑥)) ≤ (𝑁‘(𝐴𝑀𝑦))))
6460, 63ax-mp 5 . . 3 (∀𝑤 ∈ ran (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦)))(𝑁‘(𝐴𝑀𝑥)) ≤ 𝑤 ↔ ∀𝑦𝑌 (𝑁‘(𝐴𝑀𝑥)) ≤ (𝑁‘(𝐴𝑀𝑦)))
6558, 64bitri 275 . 2 (∀𝑤𝑅 (𝑁‘(𝐴𝑀𝑥)) ≤ 𝑤 ↔ ∀𝑦𝑌 (𝑁‘(𝐴𝑀𝑥)) ≤ (𝑁‘(𝐴𝑀𝑦)))
6657, 65bitrdi 287 1 ((𝜑𝑥𝑌) → (((𝐴𝐷𝑥)↑2) ≤ ((𝑆↑2) + 0) ↔ ∀𝑦𝑌 (𝑁‘(𝐴𝑀𝑥)) ≤ (𝑁‘(𝐴𝑀𝑦))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946  wral 3067  wrex 3076  Vcvv 3488  cin 3975  wss 3976  c0 4352   class class class wbr 5166  cmpt 5249  ran crn 5701  cfv 6573  (class class class)co 7448  infcinf 9510  cr 11183  0cc0 11184   + caddc 11187   < clt 11324  cle 11325  2c2 12348  cexp 14112  MetOpencmopn 21377  NrmCVeccnv 30616  BaseSetcba 30618  𝑣 cnsb 30621  normCVcnmcv 30622  IndMetcims 30623  SubSpcss 30753  CPreHilOLDccphlo 30844  CBanccbn 30894
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-sup 9511  df-inf 9512  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-seq 14053  df-exp 14113  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-grpo 30525  df-gid 30526  df-ginv 30527  df-gdiv 30528  df-ablo 30577  df-vc 30591  df-nv 30624  df-va 30627  df-ba 30628  df-sm 30629  df-0v 30630  df-vs 30631  df-nmcv 30632  df-ims 30633  df-ssp 30754  df-ph 30845  df-cbn 30895
This theorem is referenced by:  minvecolem7  30915
  Copyright terms: Public domain W3C validator