MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  minvecolem6 Structured version   Visualization version   GIF version

Theorem minvecolem6 30769
Description: Lemma for minveco 30771. Any minimal point is less than 𝑆 away from 𝐴. (Contributed by Mario Carneiro, 9-May-2014.) (Revised by AV, 4-Oct-2020.) (New usage is discouraged.)
Hypotheses
Ref Expression
minveco.x 𝑋 = (BaseSet‘𝑈)
minveco.m 𝑀 = ( −𝑣𝑈)
minveco.n 𝑁 = (normCV𝑈)
minveco.y 𝑌 = (BaseSet‘𝑊)
minveco.u (𝜑𝑈 ∈ CPreHilOLD)
minveco.w (𝜑𝑊 ∈ ((SubSp‘𝑈) ∩ CBan))
minveco.a (𝜑𝐴𝑋)
minveco.d 𝐷 = (IndMet‘𝑈)
minveco.j 𝐽 = (MetOpen‘𝐷)
minveco.r 𝑅 = ran (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦)))
minveco.s 𝑆 = inf(𝑅, ℝ, < )
Assertion
Ref Expression
minvecolem6 ((𝜑𝑥𝑌) → (((𝐴𝐷𝑥)↑2) ≤ ((𝑆↑2) + 0) ↔ ∀𝑦𝑌 (𝑁‘(𝐴𝑀𝑥)) ≤ (𝑁‘(𝐴𝑀𝑦))))
Distinct variable groups:   𝑥,𝑦,𝐽   𝑥,𝑀,𝑦   𝑥,𝑁,𝑦   𝜑,𝑥,𝑦   𝑥,𝑅   𝑥,𝑆,𝑦   𝑥,𝐴,𝑦   𝑥,𝐷,𝑦   𝑥,𝑈,𝑦   𝑥,𝑊,𝑦   𝑥,𝑋   𝑥,𝑌,𝑦
Allowed substitution hints:   𝑅(𝑦)   𝑋(𝑦)

Proof of Theorem minvecolem6
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 minveco.u . . . . . . . 8 (𝜑𝑈 ∈ CPreHilOLD)
2 phnv 30701 . . . . . . . 8 (𝑈 ∈ CPreHilOLD𝑈 ∈ NrmCVec)
31, 2syl 17 . . . . . . 7 (𝜑𝑈 ∈ NrmCVec)
43adantr 479 . . . . . 6 ((𝜑𝑥𝑌) → 𝑈 ∈ NrmCVec)
5 minveco.a . . . . . . 7 (𝜑𝐴𝑋)
65adantr 479 . . . . . 6 ((𝜑𝑥𝑌) → 𝐴𝑋)
7 inss1 4227 . . . . . . . . 9 ((SubSp‘𝑈) ∩ CBan) ⊆ (SubSp‘𝑈)
8 minveco.w . . . . . . . . 9 (𝜑𝑊 ∈ ((SubSp‘𝑈) ∩ CBan))
97, 8sselid 3974 . . . . . . . 8 (𝜑𝑊 ∈ (SubSp‘𝑈))
10 minveco.x . . . . . . . . 9 𝑋 = (BaseSet‘𝑈)
11 minveco.y . . . . . . . . 9 𝑌 = (BaseSet‘𝑊)
12 eqid 2725 . . . . . . . . 9 (SubSp‘𝑈) = (SubSp‘𝑈)
1310, 11, 12sspba 30614 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ (SubSp‘𝑈)) → 𝑌𝑋)
143, 9, 13syl2anc 582 . . . . . . 7 (𝜑𝑌𝑋)
1514sselda 3976 . . . . . 6 ((𝜑𝑥𝑌) → 𝑥𝑋)
16 minveco.m . . . . . . 7 𝑀 = ( −𝑣𝑈)
17 minveco.n . . . . . . 7 𝑁 = (normCV𝑈)
18 minveco.d . . . . . . 7 𝐷 = (IndMet‘𝑈)
1910, 16, 17, 18imsdval 30573 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝑥𝑋) → (𝐴𝐷𝑥) = (𝑁‘(𝐴𝑀𝑥)))
204, 6, 15, 19syl3anc 1368 . . . . 5 ((𝜑𝑥𝑌) → (𝐴𝐷𝑥) = (𝑁‘(𝐴𝑀𝑥)))
2120oveq1d 7434 . . . 4 ((𝜑𝑥𝑌) → ((𝐴𝐷𝑥)↑2) = ((𝑁‘(𝐴𝑀𝑥))↑2))
22 minveco.s . . . . . . . 8 𝑆 = inf(𝑅, ℝ, < )
23 minveco.j . . . . . . . . . . . 12 𝐽 = (MetOpen‘𝐷)
24 minveco.r . . . . . . . . . . . 12 𝑅 = ran (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦)))
2510, 16, 17, 11, 1, 8, 5, 18, 23, 24minvecolem1 30761 . . . . . . . . . . 11 (𝜑 → (𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∀𝑤𝑅 0 ≤ 𝑤))
2625adantr 479 . . . . . . . . . 10 ((𝜑𝑥𝑌) → (𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∀𝑤𝑅 0 ≤ 𝑤))
2726simp1d 1139 . . . . . . . . 9 ((𝜑𝑥𝑌) → 𝑅 ⊆ ℝ)
2826simp2d 1140 . . . . . . . . 9 ((𝜑𝑥𝑌) → 𝑅 ≠ ∅)
29 0red 11254 . . . . . . . . . 10 ((𝜑𝑥𝑌) → 0 ∈ ℝ)
3026simp3d 1141 . . . . . . . . . 10 ((𝜑𝑥𝑌) → ∀𝑤𝑅 0 ≤ 𝑤)
31 breq1 5152 . . . . . . . . . . . 12 (𝑥 = 0 → (𝑥𝑤 ↔ 0 ≤ 𝑤))
3231ralbidv 3167 . . . . . . . . . . 11 (𝑥 = 0 → (∀𝑤𝑅 𝑥𝑤 ↔ ∀𝑤𝑅 0 ≤ 𝑤))
3332rspcev 3606 . . . . . . . . . 10 ((0 ∈ ℝ ∧ ∀𝑤𝑅 0 ≤ 𝑤) → ∃𝑥 ∈ ℝ ∀𝑤𝑅 𝑥𝑤)
3429, 30, 33syl2anc 582 . . . . . . . . 9 ((𝜑𝑥𝑌) → ∃𝑥 ∈ ℝ ∀𝑤𝑅 𝑥𝑤)
35 infrecl 12234 . . . . . . . . 9 ((𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑤𝑅 𝑥𝑤) → inf(𝑅, ℝ, < ) ∈ ℝ)
3627, 28, 34, 35syl3anc 1368 . . . . . . . 8 ((𝜑𝑥𝑌) → inf(𝑅, ℝ, < ) ∈ ℝ)
3722, 36eqeltrid 2829 . . . . . . 7 ((𝜑𝑥𝑌) → 𝑆 ∈ ℝ)
3837resqcld 14130 . . . . . 6 ((𝜑𝑥𝑌) → (𝑆↑2) ∈ ℝ)
3938recnd 11279 . . . . 5 ((𝜑𝑥𝑌) → (𝑆↑2) ∈ ℂ)
4039addridd 11451 . . . 4 ((𝜑𝑥𝑌) → ((𝑆↑2) + 0) = (𝑆↑2))
4121, 40breq12d 5162 . . 3 ((𝜑𝑥𝑌) → (((𝐴𝐷𝑥)↑2) ≤ ((𝑆↑2) + 0) ↔ ((𝑁‘(𝐴𝑀𝑥))↑2) ≤ (𝑆↑2)))
4210, 16nvmcl 30533 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝑥𝑋) → (𝐴𝑀𝑥) ∈ 𝑋)
434, 6, 15, 42syl3anc 1368 . . . . 5 ((𝜑𝑥𝑌) → (𝐴𝑀𝑥) ∈ 𝑋)
4410, 17nvcl 30548 . . . . 5 ((𝑈 ∈ NrmCVec ∧ (𝐴𝑀𝑥) ∈ 𝑋) → (𝑁‘(𝐴𝑀𝑥)) ∈ ℝ)
454, 43, 44syl2anc 582 . . . 4 ((𝜑𝑥𝑌) → (𝑁‘(𝐴𝑀𝑥)) ∈ ℝ)
4610, 17nvge0 30560 . . . . 5 ((𝑈 ∈ NrmCVec ∧ (𝐴𝑀𝑥) ∈ 𝑋) → 0 ≤ (𝑁‘(𝐴𝑀𝑥)))
474, 43, 46syl2anc 582 . . . 4 ((𝜑𝑥𝑌) → 0 ≤ (𝑁‘(𝐴𝑀𝑥)))
48 infregelb 12236 . . . . . . 7 (((𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑤𝑅 𝑥𝑤) ∧ 0 ∈ ℝ) → (0 ≤ inf(𝑅, ℝ, < ) ↔ ∀𝑤𝑅 0 ≤ 𝑤))
4927, 28, 34, 29, 48syl31anc 1370 . . . . . 6 ((𝜑𝑥𝑌) → (0 ≤ inf(𝑅, ℝ, < ) ↔ ∀𝑤𝑅 0 ≤ 𝑤))
5030, 49mpbird 256 . . . . 5 ((𝜑𝑥𝑌) → 0 ≤ inf(𝑅, ℝ, < ))
5150, 22breqtrrdi 5191 . . . 4 ((𝜑𝑥𝑌) → 0 ≤ 𝑆)
5245, 37, 47, 51le2sqd 14260 . . 3 ((𝜑𝑥𝑌) → ((𝑁‘(𝐴𝑀𝑥)) ≤ 𝑆 ↔ ((𝑁‘(𝐴𝑀𝑥))↑2) ≤ (𝑆↑2)))
5322breq2i 5157 . . . 4 ((𝑁‘(𝐴𝑀𝑥)) ≤ 𝑆 ↔ (𝑁‘(𝐴𝑀𝑥)) ≤ inf(𝑅, ℝ, < ))
54 infregelb 12236 . . . . 5 (((𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑤𝑅 𝑥𝑤) ∧ (𝑁‘(𝐴𝑀𝑥)) ∈ ℝ) → ((𝑁‘(𝐴𝑀𝑥)) ≤ inf(𝑅, ℝ, < ) ↔ ∀𝑤𝑅 (𝑁‘(𝐴𝑀𝑥)) ≤ 𝑤))
5527, 28, 34, 45, 54syl31anc 1370 . . . 4 ((𝜑𝑥𝑌) → ((𝑁‘(𝐴𝑀𝑥)) ≤ inf(𝑅, ℝ, < ) ↔ ∀𝑤𝑅 (𝑁‘(𝐴𝑀𝑥)) ≤ 𝑤))
5653, 55bitrid 282 . . 3 ((𝜑𝑥𝑌) → ((𝑁‘(𝐴𝑀𝑥)) ≤ 𝑆 ↔ ∀𝑤𝑅 (𝑁‘(𝐴𝑀𝑥)) ≤ 𝑤))
5741, 52, 563bitr2d 306 . 2 ((𝜑𝑥𝑌) → (((𝐴𝐷𝑥)↑2) ≤ ((𝑆↑2) + 0) ↔ ∀𝑤𝑅 (𝑁‘(𝐴𝑀𝑥)) ≤ 𝑤))
5824raleqi 3312 . . 3 (∀𝑤𝑅 (𝑁‘(𝐴𝑀𝑥)) ≤ 𝑤 ↔ ∀𝑤 ∈ ran (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦)))(𝑁‘(𝐴𝑀𝑥)) ≤ 𝑤)
59 fvex 6909 . . . . 5 (𝑁‘(𝐴𝑀𝑦)) ∈ V
6059rgenw 3054 . . . 4 𝑦𝑌 (𝑁‘(𝐴𝑀𝑦)) ∈ V
61 eqid 2725 . . . . 5 (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦))) = (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦)))
62 breq2 5153 . . . . 5 (𝑤 = (𝑁‘(𝐴𝑀𝑦)) → ((𝑁‘(𝐴𝑀𝑥)) ≤ 𝑤 ↔ (𝑁‘(𝐴𝑀𝑥)) ≤ (𝑁‘(𝐴𝑀𝑦))))
6361, 62ralrnmptw 7103 . . . 4 (∀𝑦𝑌 (𝑁‘(𝐴𝑀𝑦)) ∈ V → (∀𝑤 ∈ ran (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦)))(𝑁‘(𝐴𝑀𝑥)) ≤ 𝑤 ↔ ∀𝑦𝑌 (𝑁‘(𝐴𝑀𝑥)) ≤ (𝑁‘(𝐴𝑀𝑦))))
6460, 63ax-mp 5 . . 3 (∀𝑤 ∈ ran (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦)))(𝑁‘(𝐴𝑀𝑥)) ≤ 𝑤 ↔ ∀𝑦𝑌 (𝑁‘(𝐴𝑀𝑥)) ≤ (𝑁‘(𝐴𝑀𝑦)))
6558, 64bitri 274 . 2 (∀𝑤𝑅 (𝑁‘(𝐴𝑀𝑥)) ≤ 𝑤 ↔ ∀𝑦𝑌 (𝑁‘(𝐴𝑀𝑥)) ≤ (𝑁‘(𝐴𝑀𝑦)))
6657, 65bitrdi 286 1 ((𝜑𝑥𝑌) → (((𝐴𝐷𝑥)↑2) ≤ ((𝑆↑2) + 0) ↔ ∀𝑦𝑌 (𝑁‘(𝐴𝑀𝑥)) ≤ (𝑁‘(𝐴𝑀𝑦))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  w3a 1084   = wceq 1533  wcel 2098  wne 2929  wral 3050  wrex 3059  Vcvv 3461  cin 3943  wss 3944  c0 4322   class class class wbr 5149  cmpt 5232  ran crn 5679  cfv 6549  (class class class)co 7419  infcinf 9471  cr 11144  0cc0 11145   + caddc 11148   < clt 11285  cle 11286  2c2 12305  cexp 14067  MetOpencmopn 21291  NrmCVeccnv 30471  BaseSetcba 30473  𝑣 cnsb 30476  normCVcnmcv 30477  IndMetcims 30478  SubSpcss 30608  CPreHilOLDccphlo 30699  CBanccbn 30749
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-cnex 11201  ax-resscn 11202  ax-1cn 11203  ax-icn 11204  ax-addcl 11205  ax-addrcl 11206  ax-mulcl 11207  ax-mulrcl 11208  ax-mulcom 11209  ax-addass 11210  ax-mulass 11211  ax-distr 11212  ax-i2m1 11213  ax-1ne0 11214  ax-1rid 11215  ax-rnegex 11216  ax-rrecex 11217  ax-cnre 11218  ax-pre-lttri 11219  ax-pre-lttrn 11220  ax-pre-ltadd 11221  ax-pre-mulgt0 11222  ax-pre-sup 11223
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-om 7872  df-1st 7994  df-2nd 7995  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-er 8725  df-en 8965  df-dom 8966  df-sdom 8967  df-sup 9472  df-inf 9473  df-pnf 11287  df-mnf 11288  df-xr 11289  df-ltxr 11290  df-le 11291  df-sub 11483  df-neg 11484  df-div 11909  df-nn 12251  df-2 12313  df-3 12314  df-n0 12511  df-z 12597  df-uz 12861  df-rp 13015  df-seq 14008  df-exp 14068  df-cj 15087  df-re 15088  df-im 15089  df-sqrt 15223  df-abs 15224  df-grpo 30380  df-gid 30381  df-ginv 30382  df-gdiv 30383  df-ablo 30432  df-vc 30446  df-nv 30479  df-va 30482  df-ba 30483  df-sm 30484  df-0v 30485  df-vs 30486  df-nmcv 30487  df-ims 30488  df-ssp 30609  df-ph 30700  df-cbn 30750
This theorem is referenced by:  minvecolem7  30770
  Copyright terms: Public domain W3C validator