MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  minvecolem4b Structured version   Visualization version   GIF version

Theorem minvecolem4b 28433
Description: Lemma for minveco 28439. The convergent point of the cauchy sequence 𝐹 is a member of the base space. (Contributed by Mario Carneiro, 16-Jun-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
minveco.x 𝑋 = (BaseSet‘𝑈)
minveco.m 𝑀 = ( −𝑣𝑈)
minveco.n 𝑁 = (normCV𝑈)
minveco.y 𝑌 = (BaseSet‘𝑊)
minveco.u (𝜑𝑈 ∈ CPreHilOLD)
minveco.w (𝜑𝑊 ∈ ((SubSp‘𝑈) ∩ CBan))
minveco.a (𝜑𝐴𝑋)
minveco.d 𝐷 = (IndMet‘𝑈)
minveco.j 𝐽 = (MetOpen‘𝐷)
minveco.r 𝑅 = ran (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦)))
minveco.s 𝑆 = inf(𝑅, ℝ, < )
minveco.f (𝜑𝐹:ℕ⟶𝑌)
minveco.1 ((𝜑𝑛 ∈ ℕ) → ((𝐴𝐷(𝐹𝑛))↑2) ≤ ((𝑆↑2) + (1 / 𝑛)))
Assertion
Ref Expression
minvecolem4b (𝜑 → ((⇝𝑡𝐽)‘𝐹) ∈ 𝑋)
Distinct variable groups:   𝑦,𝑛,𝐹   𝑛,𝐽,𝑦   𝑦,𝑀   𝑦,𝑁   𝜑,𝑛,𝑦   𝑆,𝑛,𝑦   𝐴,𝑛,𝑦   𝐷,𝑛,𝑦   𝑦,𝑈   𝑦,𝑊   𝑛,𝑋   𝑛,𝑌,𝑦
Allowed substitution hints:   𝑅(𝑦,𝑛)   𝑈(𝑛)   𝑀(𝑛)   𝑁(𝑛)   𝑊(𝑛)   𝑋(𝑦)

Proof of Theorem minvecolem4b
StepHypRef Expression
1 minveco.u . . . 4 (𝜑𝑈 ∈ CPreHilOLD)
2 phnv 28368 . . . 4 (𝑈 ∈ CPreHilOLD𝑈 ∈ NrmCVec)
31, 2syl 17 . . 3 (𝜑𝑈 ∈ NrmCVec)
4 minveco.w . . . . 5 (𝜑𝑊 ∈ ((SubSp‘𝑈) ∩ CBan))
5 elin 4058 . . . . 5 (𝑊 ∈ ((SubSp‘𝑈) ∩ CBan) ↔ (𝑊 ∈ (SubSp‘𝑈) ∧ 𝑊 ∈ CBan))
64, 5sylib 210 . . . 4 (𝜑 → (𝑊 ∈ (SubSp‘𝑈) ∧ 𝑊 ∈ CBan))
76simpld 487 . . 3 (𝜑𝑊 ∈ (SubSp‘𝑈))
8 minveco.x . . . 4 𝑋 = (BaseSet‘𝑈)
9 minveco.y . . . 4 𝑌 = (BaseSet‘𝑊)
10 eqid 2779 . . . 4 (SubSp‘𝑈) = (SubSp‘𝑈)
118, 9, 10sspba 28281 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ (SubSp‘𝑈)) → 𝑌𝑋)
123, 7, 11syl2anc 576 . 2 (𝜑𝑌𝑋)
13 minveco.d . . . . . . . 8 𝐷 = (IndMet‘𝑈)
148, 13imsxmet 28246 . . . . . . 7 (𝑈 ∈ NrmCVec → 𝐷 ∈ (∞Met‘𝑋))
153, 14syl 17 . . . . . 6 (𝜑𝐷 ∈ (∞Met‘𝑋))
16 minveco.j . . . . . . 7 𝐽 = (MetOpen‘𝐷)
1716methaus 22833 . . . . . 6 (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ Haus)
1815, 17syl 17 . . . . 5 (𝜑𝐽 ∈ Haus)
19 lmfun 21693 . . . . 5 (𝐽 ∈ Haus → Fun (⇝𝑡𝐽))
2018, 19syl 17 . . . 4 (𝜑 → Fun (⇝𝑡𝐽))
21 minveco.m . . . . . 6 𝑀 = ( −𝑣𝑈)
22 minveco.n . . . . . 6 𝑁 = (normCV𝑈)
23 minveco.a . . . . . 6 (𝜑𝐴𝑋)
24 minveco.r . . . . . 6 𝑅 = ran (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦)))
25 minveco.s . . . . . 6 𝑆 = inf(𝑅, ℝ, < )
26 minveco.f . . . . . 6 (𝜑𝐹:ℕ⟶𝑌)
27 minveco.1 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → ((𝐴𝐷(𝐹𝑛))↑2) ≤ ((𝑆↑2) + (1 / 𝑛)))
288, 21, 22, 9, 1, 4, 23, 13, 16, 24, 25, 26, 27minvecolem4a 28432 . . . . 5 (𝜑𝐹(⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))((⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))‘𝐹))
29 eqid 2779 . . . . . . 7 (𝐽t 𝑌) = (𝐽t 𝑌)
30 nnuz 12095 . . . . . . 7 ℕ = (ℤ‘1)
319fvexi 6513 . . . . . . . 8 𝑌 ∈ V
3231a1i 11 . . . . . . 7 (𝜑𝑌 ∈ V)
3316mopntop 22753 . . . . . . . 8 (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ Top)
3415, 33syl 17 . . . . . . 7 (𝜑𝐽 ∈ Top)
35 xmetres2 22674 . . . . . . . . . 10 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) → (𝐷 ↾ (𝑌 × 𝑌)) ∈ (∞Met‘𝑌))
3615, 12, 35syl2anc 576 . . . . . . . . 9 (𝜑 → (𝐷 ↾ (𝑌 × 𝑌)) ∈ (∞Met‘𝑌))
37 eqid 2779 . . . . . . . . . 10 (MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))) = (MetOpen‘(𝐷 ↾ (𝑌 × 𝑌)))
3837mopntopon 22752 . . . . . . . . 9 ((𝐷 ↾ (𝑌 × 𝑌)) ∈ (∞Met‘𝑌) → (MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))) ∈ (TopOn‘𝑌))
3936, 38syl 17 . . . . . . . 8 (𝜑 → (MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))) ∈ (TopOn‘𝑌))
40 lmcl 21609 . . . . . . . 8 (((MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))) ∈ (TopOn‘𝑌) ∧ 𝐹(⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))((⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))‘𝐹)) → ((⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))‘𝐹) ∈ 𝑌)
4139, 28, 40syl2anc 576 . . . . . . 7 (𝜑 → ((⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))‘𝐹) ∈ 𝑌)
42 1zzd 11826 . . . . . . 7 (𝜑 → 1 ∈ ℤ)
4329, 30, 32, 34, 41, 42, 26lmss 21610 . . . . . 6 (𝜑 → (𝐹(⇝𝑡𝐽)((⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))‘𝐹) ↔ 𝐹(⇝𝑡‘(𝐽t 𝑌))((⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))‘𝐹)))
44 eqid 2779 . . . . . . . . . 10 (𝐷 ↾ (𝑌 × 𝑌)) = (𝐷 ↾ (𝑌 × 𝑌))
4544, 16, 37metrest 22837 . . . . . . . . 9 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) → (𝐽t 𝑌) = (MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))
4615, 12, 45syl2anc 576 . . . . . . . 8 (𝜑 → (𝐽t 𝑌) = (MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))
4746fveq2d 6503 . . . . . . 7 (𝜑 → (⇝𝑡‘(𝐽t 𝑌)) = (⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌)))))
4847breqd 4940 . . . . . 6 (𝜑 → (𝐹(⇝𝑡‘(𝐽t 𝑌))((⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))‘𝐹) ↔ 𝐹(⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))((⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))‘𝐹)))
4943, 48bitrd 271 . . . . 5 (𝜑 → (𝐹(⇝𝑡𝐽)((⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))‘𝐹) ↔ 𝐹(⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))((⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))‘𝐹)))
5028, 49mpbird 249 . . . 4 (𝜑𝐹(⇝𝑡𝐽)((⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))‘𝐹))
51 funbrfv 6546 . . . 4 (Fun (⇝𝑡𝐽) → (𝐹(⇝𝑡𝐽)((⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))‘𝐹) → ((⇝𝑡𝐽)‘𝐹) = ((⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))‘𝐹)))
5220, 50, 51sylc 65 . . 3 (𝜑 → ((⇝𝑡𝐽)‘𝐹) = ((⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))‘𝐹))
5352, 41eqeltrd 2867 . 2 (𝜑 → ((⇝𝑡𝐽)‘𝐹) ∈ 𝑌)
5412, 53sseldd 3860 1 (𝜑 → ((⇝𝑡𝐽)‘𝐹) ∈ 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 387   = wceq 1507  wcel 2050  Vcvv 3416  cin 3829  wss 3830   class class class wbr 4929  cmpt 5008   × cxp 5405  ran crn 5408  cres 5409  Fun wfun 6182  wf 6184  cfv 6188  (class class class)co 6976  infcinf 8700  cr 10334  1c1 10336   + caddc 10338   < clt 10474  cle 10475   / cdiv 11098  cn 11439  2c2 11495  cexp 13244  t crest 16550  ∞Metcxmet 20232  MetOpencmopn 20237  Topctop 21205  TopOnctopon 21222  𝑡clm 21538  Hauscha 21620  NrmCVeccnv 28138  BaseSetcba 28140  𝑣 cnsb 28143  normCVcnmcv 28144  IndMetcims 28145  SubSpcss 28275  CPreHilOLDccphlo 28366  CBanccbn 28417
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2751  ax-rep 5049  ax-sep 5060  ax-nul 5067  ax-pow 5119  ax-pr 5186  ax-un 7279  ax-cnex 10391  ax-resscn 10392  ax-1cn 10393  ax-icn 10394  ax-addcl 10395  ax-addrcl 10396  ax-mulcl 10397  ax-mulrcl 10398  ax-mulcom 10399  ax-addass 10400  ax-mulass 10401  ax-distr 10402  ax-i2m1 10403  ax-1ne0 10404  ax-1rid 10405  ax-rnegex 10406  ax-rrecex 10407  ax-cnre 10408  ax-pre-lttri 10409  ax-pre-lttrn 10410  ax-pre-ltadd 10411  ax-pre-mulgt0 10412  ax-pre-sup 10413  ax-addf 10414  ax-mulf 10415
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2760  df-cleq 2772  df-clel 2847  df-nfc 2919  df-ne 2969  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rmo 3097  df-rab 3098  df-v 3418  df-sbc 3683  df-csb 3788  df-dif 3833  df-un 3835  df-in 3837  df-ss 3844  df-pss 3846  df-nul 4180  df-if 4351  df-pw 4424  df-sn 4442  df-pr 4444  df-tp 4446  df-op 4448  df-uni 4713  df-int 4750  df-iun 4794  df-br 4930  df-opab 4992  df-mpt 5009  df-tr 5031  df-id 5312  df-eprel 5317  df-po 5326  df-so 5327  df-fr 5366  df-we 5368  df-xp 5413  df-rel 5414  df-cnv 5415  df-co 5416  df-dm 5417  df-rn 5418  df-res 5419  df-ima 5420  df-pred 5986  df-ord 6032  df-on 6033  df-lim 6034  df-suc 6035  df-iota 6152  df-fun 6190  df-fn 6191  df-f 6192  df-f1 6193  df-fo 6194  df-f1o 6195  df-fv 6196  df-riota 6937  df-ov 6979  df-oprab 6980  df-mpo 6981  df-om 7397  df-1st 7501  df-2nd 7502  df-wrecs 7750  df-recs 7812  df-rdg 7850  df-oadd 7909  df-er 8089  df-map 8208  df-pm 8209  df-en 8307  df-dom 8308  df-sdom 8309  df-fin 8310  df-fi 8670  df-sup 8701  df-inf 8702  df-pnf 10476  df-mnf 10477  df-xr 10478  df-ltxr 10479  df-le 10480  df-sub 10672  df-neg 10673  df-div 11099  df-nn 11440  df-2 11503  df-3 11504  df-4 11505  df-n0 11708  df-z 11794  df-uz 12059  df-q 12163  df-rp 12205  df-xneg 12324  df-xadd 12325  df-xmul 12326  df-ico 12560  df-icc 12561  df-fl 12977  df-seq 13185  df-exp 13245  df-cj 14319  df-re 14320  df-im 14321  df-sqrt 14455  df-abs 14456  df-rest 16552  df-topgen 16573  df-psmet 20239  df-xmet 20240  df-met 20241  df-bl 20242  df-mopn 20243  df-fbas 20244  df-fg 20245  df-top 21206  df-topon 21223  df-bases 21258  df-ntr 21332  df-nei 21410  df-lm 21541  df-haus 21627  df-fil 22158  df-fm 22250  df-flim 22251  df-flf 22252  df-cfil 23561  df-cau 23562  df-cmet 23563  df-grpo 28047  df-gid 28048  df-ginv 28049  df-gdiv 28050  df-ablo 28099  df-vc 28113  df-nv 28146  df-va 28149  df-ba 28150  df-sm 28151  df-0v 28152  df-vs 28153  df-nmcv 28154  df-ims 28155  df-ssp 28276  df-ph 28367  df-cbn 28418
This theorem is referenced by:  minvecolem4  28435
  Copyright terms: Public domain W3C validator