MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  minvecolem4b Structured version   Visualization version   GIF version

Theorem minvecolem4b 30910
Description: Lemma for minveco 30916. The convergent point of the Cauchy sequence 𝐹 is a member of the base space. (Contributed by Mario Carneiro, 16-Jun-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
minveco.x 𝑋 = (BaseSet‘𝑈)
minveco.m 𝑀 = ( −𝑣𝑈)
minveco.n 𝑁 = (normCV𝑈)
minveco.y 𝑌 = (BaseSet‘𝑊)
minveco.u (𝜑𝑈 ∈ CPreHilOLD)
minveco.w (𝜑𝑊 ∈ ((SubSp‘𝑈) ∩ CBan))
minveco.a (𝜑𝐴𝑋)
minveco.d 𝐷 = (IndMet‘𝑈)
minveco.j 𝐽 = (MetOpen‘𝐷)
minveco.r 𝑅 = ran (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦)))
minveco.s 𝑆 = inf(𝑅, ℝ, < )
minveco.f (𝜑𝐹:ℕ⟶𝑌)
minveco.1 ((𝜑𝑛 ∈ ℕ) → ((𝐴𝐷(𝐹𝑛))↑2) ≤ ((𝑆↑2) + (1 / 𝑛)))
Assertion
Ref Expression
minvecolem4b (𝜑 → ((⇝𝑡𝐽)‘𝐹) ∈ 𝑋)
Distinct variable groups:   𝑦,𝑛,𝐹   𝑛,𝐽,𝑦   𝑦,𝑀   𝑦,𝑁   𝜑,𝑛,𝑦   𝑆,𝑛,𝑦   𝐴,𝑛,𝑦   𝐷,𝑛,𝑦   𝑦,𝑈   𝑦,𝑊   𝑛,𝑋   𝑛,𝑌,𝑦
Allowed substitution hints:   𝑅(𝑦,𝑛)   𝑈(𝑛)   𝑀(𝑛)   𝑁(𝑛)   𝑊(𝑛)   𝑋(𝑦)

Proof of Theorem minvecolem4b
StepHypRef Expression
1 minveco.u . . . 4 (𝜑𝑈 ∈ CPreHilOLD)
2 phnv 30846 . . . 4 (𝑈 ∈ CPreHilOLD𝑈 ∈ NrmCVec)
31, 2syl 17 . . 3 (𝜑𝑈 ∈ NrmCVec)
4 minveco.w . . . . 5 (𝜑𝑊 ∈ ((SubSp‘𝑈) ∩ CBan))
5 elin 3992 . . . . 5 (𝑊 ∈ ((SubSp‘𝑈) ∩ CBan) ↔ (𝑊 ∈ (SubSp‘𝑈) ∧ 𝑊 ∈ CBan))
64, 5sylib 218 . . . 4 (𝜑 → (𝑊 ∈ (SubSp‘𝑈) ∧ 𝑊 ∈ CBan))
76simpld 494 . . 3 (𝜑𝑊 ∈ (SubSp‘𝑈))
8 minveco.x . . . 4 𝑋 = (BaseSet‘𝑈)
9 minveco.y . . . 4 𝑌 = (BaseSet‘𝑊)
10 eqid 2740 . . . 4 (SubSp‘𝑈) = (SubSp‘𝑈)
118, 9, 10sspba 30759 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ (SubSp‘𝑈)) → 𝑌𝑋)
123, 7, 11syl2anc 583 . 2 (𝜑𝑌𝑋)
13 minveco.d . . . . . . . 8 𝐷 = (IndMet‘𝑈)
148, 13imsxmet 30724 . . . . . . 7 (𝑈 ∈ NrmCVec → 𝐷 ∈ (∞Met‘𝑋))
153, 14syl 17 . . . . . 6 (𝜑𝐷 ∈ (∞Met‘𝑋))
16 minveco.j . . . . . . 7 𝐽 = (MetOpen‘𝐷)
1716methaus 24554 . . . . . 6 (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ Haus)
1815, 17syl 17 . . . . 5 (𝜑𝐽 ∈ Haus)
19 lmfun 23410 . . . . 5 (𝐽 ∈ Haus → Fun (⇝𝑡𝐽))
2018, 19syl 17 . . . 4 (𝜑 → Fun (⇝𝑡𝐽))
21 minveco.m . . . . . 6 𝑀 = ( −𝑣𝑈)
22 minveco.n . . . . . 6 𝑁 = (normCV𝑈)
23 minveco.a . . . . . 6 (𝜑𝐴𝑋)
24 minveco.r . . . . . 6 𝑅 = ran (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦)))
25 minveco.s . . . . . 6 𝑆 = inf(𝑅, ℝ, < )
26 minveco.f . . . . . 6 (𝜑𝐹:ℕ⟶𝑌)
27 minveco.1 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → ((𝐴𝐷(𝐹𝑛))↑2) ≤ ((𝑆↑2) + (1 / 𝑛)))
288, 21, 22, 9, 1, 4, 23, 13, 16, 24, 25, 26, 27minvecolem4a 30909 . . . . 5 (𝜑𝐹(⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))((⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))‘𝐹))
29 eqid 2740 . . . . . . 7 (𝐽t 𝑌) = (𝐽t 𝑌)
30 nnuz 12946 . . . . . . 7 ℕ = (ℤ‘1)
319fvexi 6934 . . . . . . . 8 𝑌 ∈ V
3231a1i 11 . . . . . . 7 (𝜑𝑌 ∈ V)
3316mopntop 24471 . . . . . . . 8 (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ Top)
3415, 33syl 17 . . . . . . 7 (𝜑𝐽 ∈ Top)
35 xmetres2 24392 . . . . . . . . . 10 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) → (𝐷 ↾ (𝑌 × 𝑌)) ∈ (∞Met‘𝑌))
3615, 12, 35syl2anc 583 . . . . . . . . 9 (𝜑 → (𝐷 ↾ (𝑌 × 𝑌)) ∈ (∞Met‘𝑌))
37 eqid 2740 . . . . . . . . . 10 (MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))) = (MetOpen‘(𝐷 ↾ (𝑌 × 𝑌)))
3837mopntopon 24470 . . . . . . . . 9 ((𝐷 ↾ (𝑌 × 𝑌)) ∈ (∞Met‘𝑌) → (MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))) ∈ (TopOn‘𝑌))
3936, 38syl 17 . . . . . . . 8 (𝜑 → (MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))) ∈ (TopOn‘𝑌))
40 lmcl 23326 . . . . . . . 8 (((MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))) ∈ (TopOn‘𝑌) ∧ 𝐹(⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))((⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))‘𝐹)) → ((⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))‘𝐹) ∈ 𝑌)
4139, 28, 40syl2anc 583 . . . . . . 7 (𝜑 → ((⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))‘𝐹) ∈ 𝑌)
42 1zzd 12674 . . . . . . 7 (𝜑 → 1 ∈ ℤ)
4329, 30, 32, 34, 41, 42, 26lmss 23327 . . . . . 6 (𝜑 → (𝐹(⇝𝑡𝐽)((⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))‘𝐹) ↔ 𝐹(⇝𝑡‘(𝐽t 𝑌))((⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))‘𝐹)))
44 eqid 2740 . . . . . . . . . 10 (𝐷 ↾ (𝑌 × 𝑌)) = (𝐷 ↾ (𝑌 × 𝑌))
4544, 16, 37metrest 24558 . . . . . . . . 9 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) → (𝐽t 𝑌) = (MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))
4615, 12, 45syl2anc 583 . . . . . . . 8 (𝜑 → (𝐽t 𝑌) = (MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))
4746fveq2d 6924 . . . . . . 7 (𝜑 → (⇝𝑡‘(𝐽t 𝑌)) = (⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌)))))
4847breqd 5177 . . . . . 6 (𝜑 → (𝐹(⇝𝑡‘(𝐽t 𝑌))((⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))‘𝐹) ↔ 𝐹(⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))((⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))‘𝐹)))
4943, 48bitrd 279 . . . . 5 (𝜑 → (𝐹(⇝𝑡𝐽)((⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))‘𝐹) ↔ 𝐹(⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))((⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))‘𝐹)))
5028, 49mpbird 257 . . . 4 (𝜑𝐹(⇝𝑡𝐽)((⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))‘𝐹))
51 funbrfv 6971 . . . 4 (Fun (⇝𝑡𝐽) → (𝐹(⇝𝑡𝐽)((⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))‘𝐹) → ((⇝𝑡𝐽)‘𝐹) = ((⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))‘𝐹)))
5220, 50, 51sylc 65 . . 3 (𝜑 → ((⇝𝑡𝐽)‘𝐹) = ((⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))‘𝐹))
5352, 41eqeltrd 2844 . 2 (𝜑 → ((⇝𝑡𝐽)‘𝐹) ∈ 𝑌)
5412, 53sseldd 4009 1 (𝜑 → ((⇝𝑡𝐽)‘𝐹) ∈ 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  Vcvv 3488  cin 3975  wss 3976   class class class wbr 5166  cmpt 5249   × cxp 5698  ran crn 5701  cres 5702  Fun wfun 6567  wf 6569  cfv 6573  (class class class)co 7448  infcinf 9510  cr 11183  1c1 11185   + caddc 11187   < clt 11324  cle 11325   / cdiv 11947  cn 12293  2c2 12348  cexp 14112  t crest 17480  ∞Metcxmet 21372  MetOpencmopn 21377  Topctop 22920  TopOnctopon 22937  𝑡clm 23255  Hauscha 23337  NrmCVeccnv 30616  BaseSetcba 30618  𝑣 cnsb 30621  normCVcnmcv 30622  IndMetcims 30623  SubSpcss 30753  CPreHilOLDccphlo 30844  CBanccbn 30894
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262  ax-addf 11263  ax-mulf 11264
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-map 8886  df-pm 8887  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fi 9480  df-sup 9511  df-inf 9512  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-n0 12554  df-z 12640  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-ico 13413  df-icc 13414  df-fl 13843  df-seq 14053  df-exp 14113  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-rest 17482  df-topgen 17503  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382  df-mopn 21383  df-fbas 21384  df-fg 21385  df-top 22921  df-topon 22938  df-bases 22974  df-ntr 23049  df-nei 23127  df-lm 23258  df-haus 23344  df-fil 23875  df-fm 23967  df-flim 23968  df-flf 23969  df-cfil 25308  df-cau 25309  df-cmet 25310  df-grpo 30525  df-gid 30526  df-ginv 30527  df-gdiv 30528  df-ablo 30577  df-vc 30591  df-nv 30624  df-va 30627  df-ba 30628  df-sm 30629  df-0v 30630  df-vs 30631  df-nmcv 30632  df-ims 30633  df-ssp 30754  df-ph 30845  df-cbn 30895
This theorem is referenced by:  minvecolem4  30912
  Copyright terms: Public domain W3C validator