MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  minvecolem4b Structured version   Visualization version   GIF version

Theorem minvecolem4b 28959
Description: Lemma for minveco 28965. The convergent point of the cauchy sequence 𝐹 is a member of the base space. (Contributed by Mario Carneiro, 16-Jun-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
minveco.x 𝑋 = (BaseSet‘𝑈)
minveco.m 𝑀 = ( −𝑣𝑈)
minveco.n 𝑁 = (normCV𝑈)
minveco.y 𝑌 = (BaseSet‘𝑊)
minveco.u (𝜑𝑈 ∈ CPreHilOLD)
minveco.w (𝜑𝑊 ∈ ((SubSp‘𝑈) ∩ CBan))
minveco.a (𝜑𝐴𝑋)
minveco.d 𝐷 = (IndMet‘𝑈)
minveco.j 𝐽 = (MetOpen‘𝐷)
minveco.r 𝑅 = ran (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦)))
minveco.s 𝑆 = inf(𝑅, ℝ, < )
minveco.f (𝜑𝐹:ℕ⟶𝑌)
minveco.1 ((𝜑𝑛 ∈ ℕ) → ((𝐴𝐷(𝐹𝑛))↑2) ≤ ((𝑆↑2) + (1 / 𝑛)))
Assertion
Ref Expression
minvecolem4b (𝜑 → ((⇝𝑡𝐽)‘𝐹) ∈ 𝑋)
Distinct variable groups:   𝑦,𝑛,𝐹   𝑛,𝐽,𝑦   𝑦,𝑀   𝑦,𝑁   𝜑,𝑛,𝑦   𝑆,𝑛,𝑦   𝐴,𝑛,𝑦   𝐷,𝑛,𝑦   𝑦,𝑈   𝑦,𝑊   𝑛,𝑋   𝑛,𝑌,𝑦
Allowed substitution hints:   𝑅(𝑦,𝑛)   𝑈(𝑛)   𝑀(𝑛)   𝑁(𝑛)   𝑊(𝑛)   𝑋(𝑦)

Proof of Theorem minvecolem4b
StepHypRef Expression
1 minveco.u . . . 4 (𝜑𝑈 ∈ CPreHilOLD)
2 phnv 28895 . . . 4 (𝑈 ∈ CPreHilOLD𝑈 ∈ NrmCVec)
31, 2syl 17 . . 3 (𝜑𝑈 ∈ NrmCVec)
4 minveco.w . . . . 5 (𝜑𝑊 ∈ ((SubSp‘𝑈) ∩ CBan))
5 elin 3882 . . . . 5 (𝑊 ∈ ((SubSp‘𝑈) ∩ CBan) ↔ (𝑊 ∈ (SubSp‘𝑈) ∧ 𝑊 ∈ CBan))
64, 5sylib 221 . . . 4 (𝜑 → (𝑊 ∈ (SubSp‘𝑈) ∧ 𝑊 ∈ CBan))
76simpld 498 . . 3 (𝜑𝑊 ∈ (SubSp‘𝑈))
8 minveco.x . . . 4 𝑋 = (BaseSet‘𝑈)
9 minveco.y . . . 4 𝑌 = (BaseSet‘𝑊)
10 eqid 2737 . . . 4 (SubSp‘𝑈) = (SubSp‘𝑈)
118, 9, 10sspba 28808 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ (SubSp‘𝑈)) → 𝑌𝑋)
123, 7, 11syl2anc 587 . 2 (𝜑𝑌𝑋)
13 minveco.d . . . . . . . 8 𝐷 = (IndMet‘𝑈)
148, 13imsxmet 28773 . . . . . . 7 (𝑈 ∈ NrmCVec → 𝐷 ∈ (∞Met‘𝑋))
153, 14syl 17 . . . . . 6 (𝜑𝐷 ∈ (∞Met‘𝑋))
16 minveco.j . . . . . . 7 𝐽 = (MetOpen‘𝐷)
1716methaus 23418 . . . . . 6 (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ Haus)
1815, 17syl 17 . . . . 5 (𝜑𝐽 ∈ Haus)
19 lmfun 22278 . . . . 5 (𝐽 ∈ Haus → Fun (⇝𝑡𝐽))
2018, 19syl 17 . . . 4 (𝜑 → Fun (⇝𝑡𝐽))
21 minveco.m . . . . . 6 𝑀 = ( −𝑣𝑈)
22 minveco.n . . . . . 6 𝑁 = (normCV𝑈)
23 minveco.a . . . . . 6 (𝜑𝐴𝑋)
24 minveco.r . . . . . 6 𝑅 = ran (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦)))
25 minveco.s . . . . . 6 𝑆 = inf(𝑅, ℝ, < )
26 minveco.f . . . . . 6 (𝜑𝐹:ℕ⟶𝑌)
27 minveco.1 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → ((𝐴𝐷(𝐹𝑛))↑2) ≤ ((𝑆↑2) + (1 / 𝑛)))
288, 21, 22, 9, 1, 4, 23, 13, 16, 24, 25, 26, 27minvecolem4a 28958 . . . . 5 (𝜑𝐹(⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))((⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))‘𝐹))
29 eqid 2737 . . . . . . 7 (𝐽t 𝑌) = (𝐽t 𝑌)
30 nnuz 12477 . . . . . . 7 ℕ = (ℤ‘1)
319fvexi 6731 . . . . . . . 8 𝑌 ∈ V
3231a1i 11 . . . . . . 7 (𝜑𝑌 ∈ V)
3316mopntop 23338 . . . . . . . 8 (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ Top)
3415, 33syl 17 . . . . . . 7 (𝜑𝐽 ∈ Top)
35 xmetres2 23259 . . . . . . . . . 10 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) → (𝐷 ↾ (𝑌 × 𝑌)) ∈ (∞Met‘𝑌))
3615, 12, 35syl2anc 587 . . . . . . . . 9 (𝜑 → (𝐷 ↾ (𝑌 × 𝑌)) ∈ (∞Met‘𝑌))
37 eqid 2737 . . . . . . . . . 10 (MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))) = (MetOpen‘(𝐷 ↾ (𝑌 × 𝑌)))
3837mopntopon 23337 . . . . . . . . 9 ((𝐷 ↾ (𝑌 × 𝑌)) ∈ (∞Met‘𝑌) → (MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))) ∈ (TopOn‘𝑌))
3936, 38syl 17 . . . . . . . 8 (𝜑 → (MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))) ∈ (TopOn‘𝑌))
40 lmcl 22194 . . . . . . . 8 (((MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))) ∈ (TopOn‘𝑌) ∧ 𝐹(⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))((⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))‘𝐹)) → ((⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))‘𝐹) ∈ 𝑌)
4139, 28, 40syl2anc 587 . . . . . . 7 (𝜑 → ((⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))‘𝐹) ∈ 𝑌)
42 1zzd 12208 . . . . . . 7 (𝜑 → 1 ∈ ℤ)
4329, 30, 32, 34, 41, 42, 26lmss 22195 . . . . . 6 (𝜑 → (𝐹(⇝𝑡𝐽)((⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))‘𝐹) ↔ 𝐹(⇝𝑡‘(𝐽t 𝑌))((⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))‘𝐹)))
44 eqid 2737 . . . . . . . . . 10 (𝐷 ↾ (𝑌 × 𝑌)) = (𝐷 ↾ (𝑌 × 𝑌))
4544, 16, 37metrest 23422 . . . . . . . . 9 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) → (𝐽t 𝑌) = (MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))
4615, 12, 45syl2anc 587 . . . . . . . 8 (𝜑 → (𝐽t 𝑌) = (MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))
4746fveq2d 6721 . . . . . . 7 (𝜑 → (⇝𝑡‘(𝐽t 𝑌)) = (⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌)))))
4847breqd 5064 . . . . . 6 (𝜑 → (𝐹(⇝𝑡‘(𝐽t 𝑌))((⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))‘𝐹) ↔ 𝐹(⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))((⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))‘𝐹)))
4943, 48bitrd 282 . . . . 5 (𝜑 → (𝐹(⇝𝑡𝐽)((⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))‘𝐹) ↔ 𝐹(⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))((⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))‘𝐹)))
5028, 49mpbird 260 . . . 4 (𝜑𝐹(⇝𝑡𝐽)((⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))‘𝐹))
51 funbrfv 6763 . . . 4 (Fun (⇝𝑡𝐽) → (𝐹(⇝𝑡𝐽)((⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))‘𝐹) → ((⇝𝑡𝐽)‘𝐹) = ((⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))‘𝐹)))
5220, 50, 51sylc 65 . . 3 (𝜑 → ((⇝𝑡𝐽)‘𝐹) = ((⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))‘𝐹))
5352, 41eqeltrd 2838 . 2 (𝜑 → ((⇝𝑡𝐽)‘𝐹) ∈ 𝑌)
5412, 53sseldd 3902 1 (𝜑 → ((⇝𝑡𝐽)‘𝐹) ∈ 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wcel 2110  Vcvv 3408  cin 3865  wss 3866   class class class wbr 5053  cmpt 5135   × cxp 5549  ran crn 5552  cres 5553  Fun wfun 6374  wf 6376  cfv 6380  (class class class)co 7213  infcinf 9057  cr 10728  1c1 10730   + caddc 10732   < clt 10867  cle 10868   / cdiv 11489  cn 11830  2c2 11885  cexp 13635  t crest 16925  ∞Metcxmet 20348  MetOpencmopn 20353  Topctop 21790  TopOnctopon 21807  𝑡clm 22123  Hauscha 22205  NrmCVeccnv 28665  BaseSetcba 28667  𝑣 cnsb 28670  normCVcnmcv 28671  IndMetcims 28672  SubSpcss 28802  CPreHilOLDccphlo 28893  CBanccbn 28943
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806  ax-pre-sup 10807  ax-addf 10808  ax-mulf 10809
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-int 4860  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-om 7645  df-1st 7761  df-2nd 7762  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-er 8391  df-map 8510  df-pm 8511  df-en 8627  df-dom 8628  df-sdom 8629  df-fin 8630  df-fi 9027  df-sup 9058  df-inf 9059  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-div 11490  df-nn 11831  df-2 11893  df-3 11894  df-4 11895  df-n0 12091  df-z 12177  df-uz 12439  df-q 12545  df-rp 12587  df-xneg 12704  df-xadd 12705  df-xmul 12706  df-ico 12941  df-icc 12942  df-fl 13367  df-seq 13575  df-exp 13636  df-cj 14662  df-re 14663  df-im 14664  df-sqrt 14798  df-abs 14799  df-rest 16927  df-topgen 16948  df-psmet 20355  df-xmet 20356  df-met 20357  df-bl 20358  df-mopn 20359  df-fbas 20360  df-fg 20361  df-top 21791  df-topon 21808  df-bases 21843  df-ntr 21917  df-nei 21995  df-lm 22126  df-haus 22212  df-fil 22743  df-fm 22835  df-flim 22836  df-flf 22837  df-cfil 24152  df-cau 24153  df-cmet 24154  df-grpo 28574  df-gid 28575  df-ginv 28576  df-gdiv 28577  df-ablo 28626  df-vc 28640  df-nv 28673  df-va 28676  df-ba 28677  df-sm 28678  df-0v 28679  df-vs 28680  df-nmcv 28681  df-ims 28682  df-ssp 28803  df-ph 28894  df-cbn 28944
This theorem is referenced by:  minvecolem4  28961
  Copyright terms: Public domain W3C validator