![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > minvecolem4b | Structured version Visualization version GIF version |
Description: Lemma for minveco 28439. The convergent point of the cauchy sequence 𝐹 is a member of the base space. (Contributed by Mario Carneiro, 16-Jun-2014.) (New usage is discouraged.) |
Ref | Expression |
---|---|
minveco.x | ⊢ 𝑋 = (BaseSet‘𝑈) |
minveco.m | ⊢ 𝑀 = ( −𝑣 ‘𝑈) |
minveco.n | ⊢ 𝑁 = (normCV‘𝑈) |
minveco.y | ⊢ 𝑌 = (BaseSet‘𝑊) |
minveco.u | ⊢ (𝜑 → 𝑈 ∈ CPreHilOLD) |
minveco.w | ⊢ (𝜑 → 𝑊 ∈ ((SubSp‘𝑈) ∩ CBan)) |
minveco.a | ⊢ (𝜑 → 𝐴 ∈ 𝑋) |
minveco.d | ⊢ 𝐷 = (IndMet‘𝑈) |
minveco.j | ⊢ 𝐽 = (MetOpen‘𝐷) |
minveco.r | ⊢ 𝑅 = ran (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴𝑀𝑦))) |
minveco.s | ⊢ 𝑆 = inf(𝑅, ℝ, < ) |
minveco.f | ⊢ (𝜑 → 𝐹:ℕ⟶𝑌) |
minveco.1 | ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((𝐴𝐷(𝐹‘𝑛))↑2) ≤ ((𝑆↑2) + (1 / 𝑛))) |
Ref | Expression |
---|---|
minvecolem4b | ⊢ (𝜑 → ((⇝𝑡‘𝐽)‘𝐹) ∈ 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | minveco.u | . . . 4 ⊢ (𝜑 → 𝑈 ∈ CPreHilOLD) | |
2 | phnv 28368 | . . . 4 ⊢ (𝑈 ∈ CPreHilOLD → 𝑈 ∈ NrmCVec) | |
3 | 1, 2 | syl 17 | . . 3 ⊢ (𝜑 → 𝑈 ∈ NrmCVec) |
4 | minveco.w | . . . . 5 ⊢ (𝜑 → 𝑊 ∈ ((SubSp‘𝑈) ∩ CBan)) | |
5 | elin 4058 | . . . . 5 ⊢ (𝑊 ∈ ((SubSp‘𝑈) ∩ CBan) ↔ (𝑊 ∈ (SubSp‘𝑈) ∧ 𝑊 ∈ CBan)) | |
6 | 4, 5 | sylib 210 | . . . 4 ⊢ (𝜑 → (𝑊 ∈ (SubSp‘𝑈) ∧ 𝑊 ∈ CBan)) |
7 | 6 | simpld 487 | . . 3 ⊢ (𝜑 → 𝑊 ∈ (SubSp‘𝑈)) |
8 | minveco.x | . . . 4 ⊢ 𝑋 = (BaseSet‘𝑈) | |
9 | minveco.y | . . . 4 ⊢ 𝑌 = (BaseSet‘𝑊) | |
10 | eqid 2779 | . . . 4 ⊢ (SubSp‘𝑈) = (SubSp‘𝑈) | |
11 | 8, 9, 10 | sspba 28281 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ (SubSp‘𝑈)) → 𝑌 ⊆ 𝑋) |
12 | 3, 7, 11 | syl2anc 576 | . 2 ⊢ (𝜑 → 𝑌 ⊆ 𝑋) |
13 | minveco.d | . . . . . . . 8 ⊢ 𝐷 = (IndMet‘𝑈) | |
14 | 8, 13 | imsxmet 28246 | . . . . . . 7 ⊢ (𝑈 ∈ NrmCVec → 𝐷 ∈ (∞Met‘𝑋)) |
15 | 3, 14 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝑋)) |
16 | minveco.j | . . . . . . 7 ⊢ 𝐽 = (MetOpen‘𝐷) | |
17 | 16 | methaus 22833 | . . . . . 6 ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ Haus) |
18 | 15, 17 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐽 ∈ Haus) |
19 | lmfun 21693 | . . . . 5 ⊢ (𝐽 ∈ Haus → Fun (⇝𝑡‘𝐽)) | |
20 | 18, 19 | syl 17 | . . . 4 ⊢ (𝜑 → Fun (⇝𝑡‘𝐽)) |
21 | minveco.m | . . . . . 6 ⊢ 𝑀 = ( −𝑣 ‘𝑈) | |
22 | minveco.n | . . . . . 6 ⊢ 𝑁 = (normCV‘𝑈) | |
23 | minveco.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ 𝑋) | |
24 | minveco.r | . . . . . 6 ⊢ 𝑅 = ran (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴𝑀𝑦))) | |
25 | minveco.s | . . . . . 6 ⊢ 𝑆 = inf(𝑅, ℝ, < ) | |
26 | minveco.f | . . . . . 6 ⊢ (𝜑 → 𝐹:ℕ⟶𝑌) | |
27 | minveco.1 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((𝐴𝐷(𝐹‘𝑛))↑2) ≤ ((𝑆↑2) + (1 / 𝑛))) | |
28 | 8, 21, 22, 9, 1, 4, 23, 13, 16, 24, 25, 26, 27 | minvecolem4a 28432 | . . . . 5 ⊢ (𝜑 → 𝐹(⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))((⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))‘𝐹)) |
29 | eqid 2779 | . . . . . . 7 ⊢ (𝐽 ↾t 𝑌) = (𝐽 ↾t 𝑌) | |
30 | nnuz 12095 | . . . . . . 7 ⊢ ℕ = (ℤ≥‘1) | |
31 | 9 | fvexi 6513 | . . . . . . . 8 ⊢ 𝑌 ∈ V |
32 | 31 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → 𝑌 ∈ V) |
33 | 16 | mopntop 22753 | . . . . . . . 8 ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ Top) |
34 | 15, 33 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝐽 ∈ Top) |
35 | xmetres2 22674 | . . . . . . . . . 10 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) → (𝐷 ↾ (𝑌 × 𝑌)) ∈ (∞Met‘𝑌)) | |
36 | 15, 12, 35 | syl2anc 576 | . . . . . . . . 9 ⊢ (𝜑 → (𝐷 ↾ (𝑌 × 𝑌)) ∈ (∞Met‘𝑌)) |
37 | eqid 2779 | . . . . . . . . . 10 ⊢ (MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))) = (MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))) | |
38 | 37 | mopntopon 22752 | . . . . . . . . 9 ⊢ ((𝐷 ↾ (𝑌 × 𝑌)) ∈ (∞Met‘𝑌) → (MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))) ∈ (TopOn‘𝑌)) |
39 | 36, 38 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → (MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))) ∈ (TopOn‘𝑌)) |
40 | lmcl 21609 | . . . . . . . 8 ⊢ (((MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))) ∈ (TopOn‘𝑌) ∧ 𝐹(⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))((⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))‘𝐹)) → ((⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))‘𝐹) ∈ 𝑌) | |
41 | 39, 28, 40 | syl2anc 576 | . . . . . . 7 ⊢ (𝜑 → ((⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))‘𝐹) ∈ 𝑌) |
42 | 1zzd 11826 | . . . . . . 7 ⊢ (𝜑 → 1 ∈ ℤ) | |
43 | 29, 30, 32, 34, 41, 42, 26 | lmss 21610 | . . . . . 6 ⊢ (𝜑 → (𝐹(⇝𝑡‘𝐽)((⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))‘𝐹) ↔ 𝐹(⇝𝑡‘(𝐽 ↾t 𝑌))((⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))‘𝐹))) |
44 | eqid 2779 | . . . . . . . . . 10 ⊢ (𝐷 ↾ (𝑌 × 𝑌)) = (𝐷 ↾ (𝑌 × 𝑌)) | |
45 | 44, 16, 37 | metrest 22837 | . . . . . . . . 9 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) → (𝐽 ↾t 𝑌) = (MetOpen‘(𝐷 ↾ (𝑌 × 𝑌)))) |
46 | 15, 12, 45 | syl2anc 576 | . . . . . . . 8 ⊢ (𝜑 → (𝐽 ↾t 𝑌) = (MetOpen‘(𝐷 ↾ (𝑌 × 𝑌)))) |
47 | 46 | fveq2d 6503 | . . . . . . 7 ⊢ (𝜑 → (⇝𝑡‘(𝐽 ↾t 𝑌)) = (⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))) |
48 | 47 | breqd 4940 | . . . . . 6 ⊢ (𝜑 → (𝐹(⇝𝑡‘(𝐽 ↾t 𝑌))((⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))‘𝐹) ↔ 𝐹(⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))((⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))‘𝐹))) |
49 | 43, 48 | bitrd 271 | . . . . 5 ⊢ (𝜑 → (𝐹(⇝𝑡‘𝐽)((⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))‘𝐹) ↔ 𝐹(⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))((⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))‘𝐹))) |
50 | 28, 49 | mpbird 249 | . . . 4 ⊢ (𝜑 → 𝐹(⇝𝑡‘𝐽)((⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))‘𝐹)) |
51 | funbrfv 6546 | . . . 4 ⊢ (Fun (⇝𝑡‘𝐽) → (𝐹(⇝𝑡‘𝐽)((⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))‘𝐹) → ((⇝𝑡‘𝐽)‘𝐹) = ((⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))‘𝐹))) | |
52 | 20, 50, 51 | sylc 65 | . . 3 ⊢ (𝜑 → ((⇝𝑡‘𝐽)‘𝐹) = ((⇝𝑡‘(MetOpen‘(𝐷 ↾ (𝑌 × 𝑌))))‘𝐹)) |
53 | 52, 41 | eqeltrd 2867 | . 2 ⊢ (𝜑 → ((⇝𝑡‘𝐽)‘𝐹) ∈ 𝑌) |
54 | 12, 53 | sseldd 3860 | 1 ⊢ (𝜑 → ((⇝𝑡‘𝐽)‘𝐹) ∈ 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 387 = wceq 1507 ∈ wcel 2050 Vcvv 3416 ∩ cin 3829 ⊆ wss 3830 class class class wbr 4929 ↦ cmpt 5008 × cxp 5405 ran crn 5408 ↾ cres 5409 Fun wfun 6182 ⟶wf 6184 ‘cfv 6188 (class class class)co 6976 infcinf 8700 ℝcr 10334 1c1 10336 + caddc 10338 < clt 10474 ≤ cle 10475 / cdiv 11098 ℕcn 11439 2c2 11495 ↑cexp 13244 ↾t crest 16550 ∞Metcxmet 20232 MetOpencmopn 20237 Topctop 21205 TopOnctopon 21222 ⇝𝑡clm 21538 Hauscha 21620 NrmCVeccnv 28138 BaseSetcba 28140 −𝑣 cnsb 28143 normCVcnmcv 28144 IndMetcims 28145 SubSpcss 28275 CPreHilOLDccphlo 28366 CBanccbn 28417 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2751 ax-rep 5049 ax-sep 5060 ax-nul 5067 ax-pow 5119 ax-pr 5186 ax-un 7279 ax-cnex 10391 ax-resscn 10392 ax-1cn 10393 ax-icn 10394 ax-addcl 10395 ax-addrcl 10396 ax-mulcl 10397 ax-mulrcl 10398 ax-mulcom 10399 ax-addass 10400 ax-mulass 10401 ax-distr 10402 ax-i2m1 10403 ax-1ne0 10404 ax-1rid 10405 ax-rnegex 10406 ax-rrecex 10407 ax-cnre 10408 ax-pre-lttri 10409 ax-pre-lttrn 10410 ax-pre-ltadd 10411 ax-pre-mulgt0 10412 ax-pre-sup 10413 ax-addf 10414 ax-mulf 10415 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2760 df-cleq 2772 df-clel 2847 df-nfc 2919 df-ne 2969 df-nel 3075 df-ral 3094 df-rex 3095 df-reu 3096 df-rmo 3097 df-rab 3098 df-v 3418 df-sbc 3683 df-csb 3788 df-dif 3833 df-un 3835 df-in 3837 df-ss 3844 df-pss 3846 df-nul 4180 df-if 4351 df-pw 4424 df-sn 4442 df-pr 4444 df-tp 4446 df-op 4448 df-uni 4713 df-int 4750 df-iun 4794 df-br 4930 df-opab 4992 df-mpt 5009 df-tr 5031 df-id 5312 df-eprel 5317 df-po 5326 df-so 5327 df-fr 5366 df-we 5368 df-xp 5413 df-rel 5414 df-cnv 5415 df-co 5416 df-dm 5417 df-rn 5418 df-res 5419 df-ima 5420 df-pred 5986 df-ord 6032 df-on 6033 df-lim 6034 df-suc 6035 df-iota 6152 df-fun 6190 df-fn 6191 df-f 6192 df-f1 6193 df-fo 6194 df-f1o 6195 df-fv 6196 df-riota 6937 df-ov 6979 df-oprab 6980 df-mpo 6981 df-om 7397 df-1st 7501 df-2nd 7502 df-wrecs 7750 df-recs 7812 df-rdg 7850 df-oadd 7909 df-er 8089 df-map 8208 df-pm 8209 df-en 8307 df-dom 8308 df-sdom 8309 df-fin 8310 df-fi 8670 df-sup 8701 df-inf 8702 df-pnf 10476 df-mnf 10477 df-xr 10478 df-ltxr 10479 df-le 10480 df-sub 10672 df-neg 10673 df-div 11099 df-nn 11440 df-2 11503 df-3 11504 df-4 11505 df-n0 11708 df-z 11794 df-uz 12059 df-q 12163 df-rp 12205 df-xneg 12324 df-xadd 12325 df-xmul 12326 df-ico 12560 df-icc 12561 df-fl 12977 df-seq 13185 df-exp 13245 df-cj 14319 df-re 14320 df-im 14321 df-sqrt 14455 df-abs 14456 df-rest 16552 df-topgen 16573 df-psmet 20239 df-xmet 20240 df-met 20241 df-bl 20242 df-mopn 20243 df-fbas 20244 df-fg 20245 df-top 21206 df-topon 21223 df-bases 21258 df-ntr 21332 df-nei 21410 df-lm 21541 df-haus 21627 df-fil 22158 df-fm 22250 df-flim 22251 df-flf 22252 df-cfil 23561 df-cau 23562 df-cmet 23563 df-grpo 28047 df-gid 28048 df-ginv 28049 df-gdiv 28050 df-ablo 28099 df-vc 28113 df-nv 28146 df-va 28149 df-ba 28150 df-sm 28151 df-0v 28152 df-vs 28153 df-nmcv 28154 df-ims 28155 df-ssp 28276 df-ph 28367 df-cbn 28418 |
This theorem is referenced by: minvecolem4 28435 |
Copyright terms: Public domain | W3C validator |