| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dipsubdi | Structured version Visualization version GIF version | ||
| Description: Distributive law for inner product subtraction. (Contributed by NM, 20-Nov-2007.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ipsubdir.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
| ipsubdir.3 | ⊢ 𝑀 = ( −𝑣 ‘𝑈) |
| ipsubdir.7 | ⊢ 𝑃 = (·𝑖OLD‘𝑈) |
| Ref | Expression |
|---|---|
| dipsubdi | ⊢ ((𝑈 ∈ CPreHilOLD ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐴𝑃(𝐵𝑀𝐶)) = ((𝐴𝑃𝐵) − (𝐴𝑃𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . . 3 ⊢ ((𝐶 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) → (𝐶 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) | |
| 2 | 1 | 3com13 1124 | . 2 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → (𝐶 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) |
| 3 | id 22 | . . . . . 6 ⊢ ((𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) → (𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) | |
| 4 | 3 | 3com12 1123 | . . . . 5 ⊢ ((𝐶 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) → (𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) |
| 5 | ipsubdir.1 | . . . . . 6 ⊢ 𝑋 = (BaseSet‘𝑈) | |
| 6 | ipsubdir.3 | . . . . . 6 ⊢ 𝑀 = ( −𝑣 ‘𝑈) | |
| 7 | ipsubdir.7 | . . . . . 6 ⊢ 𝑃 = (·𝑖OLD‘𝑈) | |
| 8 | 5, 6, 7 | dipsubdir 30823 | . . . . 5 ⊢ ((𝑈 ∈ CPreHilOLD ∧ (𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) → ((𝐵𝑀𝐶)𝑃𝐴) = ((𝐵𝑃𝐴) − (𝐶𝑃𝐴))) |
| 9 | 4, 8 | sylan2 593 | . . . 4 ⊢ ((𝑈 ∈ CPreHilOLD ∧ (𝐶 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) → ((𝐵𝑀𝐶)𝑃𝐴) = ((𝐵𝑃𝐴) − (𝐶𝑃𝐴))) |
| 10 | 9 | fveq2d 6826 | . . 3 ⊢ ((𝑈 ∈ CPreHilOLD ∧ (𝐶 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) → (∗‘((𝐵𝑀𝐶)𝑃𝐴)) = (∗‘((𝐵𝑃𝐴) − (𝐶𝑃𝐴)))) |
| 11 | phnv 30789 | . . . 4 ⊢ (𝑈 ∈ CPreHilOLD → 𝑈 ∈ NrmCVec) | |
| 12 | simpl 482 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ (𝐶 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) → 𝑈 ∈ NrmCVec) | |
| 13 | 5, 6 | nvmcl 30621 | . . . . . . 7 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → (𝐵𝑀𝐶) ∈ 𝑋) |
| 14 | 13 | 3com23 1126 | . . . . . 6 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐶 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐵𝑀𝐶) ∈ 𝑋) |
| 15 | 14 | 3adant3r3 1185 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ (𝐶 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) → (𝐵𝑀𝐶) ∈ 𝑋) |
| 16 | simpr3 1197 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ (𝐶 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) → 𝐴 ∈ 𝑋) | |
| 17 | 5, 7 | dipcj 30689 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ (𝐵𝑀𝐶) ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) → (∗‘((𝐵𝑀𝐶)𝑃𝐴)) = (𝐴𝑃(𝐵𝑀𝐶))) |
| 18 | 12, 15, 16, 17 | syl3anc 1373 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ (𝐶 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) → (∗‘((𝐵𝑀𝐶)𝑃𝐴)) = (𝐴𝑃(𝐵𝑀𝐶))) |
| 19 | 11, 18 | sylan 580 | . . 3 ⊢ ((𝑈 ∈ CPreHilOLD ∧ (𝐶 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) → (∗‘((𝐵𝑀𝐶)𝑃𝐴)) = (𝐴𝑃(𝐵𝑀𝐶))) |
| 20 | 5, 7 | dipcl 30687 | . . . . . . 7 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) → (𝐵𝑃𝐴) ∈ ℂ) |
| 21 | 20 | 3adant3r1 1183 | . . . . . 6 ⊢ ((𝑈 ∈ NrmCVec ∧ (𝐶 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) → (𝐵𝑃𝐴) ∈ ℂ) |
| 22 | 5, 7 | dipcl 30687 | . . . . . . 7 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐶 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) → (𝐶𝑃𝐴) ∈ ℂ) |
| 23 | 22 | 3adant3r2 1184 | . . . . . 6 ⊢ ((𝑈 ∈ NrmCVec ∧ (𝐶 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) → (𝐶𝑃𝐴) ∈ ℂ) |
| 24 | cjsub 15053 | . . . . . 6 ⊢ (((𝐵𝑃𝐴) ∈ ℂ ∧ (𝐶𝑃𝐴) ∈ ℂ) → (∗‘((𝐵𝑃𝐴) − (𝐶𝑃𝐴))) = ((∗‘(𝐵𝑃𝐴)) − (∗‘(𝐶𝑃𝐴)))) | |
| 25 | 21, 23, 24 | syl2anc 584 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ (𝐶 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) → (∗‘((𝐵𝑃𝐴) − (𝐶𝑃𝐴))) = ((∗‘(𝐵𝑃𝐴)) − (∗‘(𝐶𝑃𝐴)))) |
| 26 | 5, 7 | dipcj 30689 | . . . . . . 7 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) → (∗‘(𝐵𝑃𝐴)) = (𝐴𝑃𝐵)) |
| 27 | 26 | 3adant3r1 1183 | . . . . . 6 ⊢ ((𝑈 ∈ NrmCVec ∧ (𝐶 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) → (∗‘(𝐵𝑃𝐴)) = (𝐴𝑃𝐵)) |
| 28 | 5, 7 | dipcj 30689 | . . . . . . 7 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐶 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) → (∗‘(𝐶𝑃𝐴)) = (𝐴𝑃𝐶)) |
| 29 | 28 | 3adant3r2 1184 | . . . . . 6 ⊢ ((𝑈 ∈ NrmCVec ∧ (𝐶 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) → (∗‘(𝐶𝑃𝐴)) = (𝐴𝑃𝐶)) |
| 30 | 27, 29 | oveq12d 7364 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ (𝐶 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) → ((∗‘(𝐵𝑃𝐴)) − (∗‘(𝐶𝑃𝐴))) = ((𝐴𝑃𝐵) − (𝐴𝑃𝐶))) |
| 31 | 25, 30 | eqtrd 2766 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ (𝐶 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) → (∗‘((𝐵𝑃𝐴) − (𝐶𝑃𝐴))) = ((𝐴𝑃𝐵) − (𝐴𝑃𝐶))) |
| 32 | 11, 31 | sylan 580 | . . 3 ⊢ ((𝑈 ∈ CPreHilOLD ∧ (𝐶 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) → (∗‘((𝐵𝑃𝐴) − (𝐶𝑃𝐴))) = ((𝐴𝑃𝐵) − (𝐴𝑃𝐶))) |
| 33 | 10, 19, 32 | 3eqtr3d 2774 | . 2 ⊢ ((𝑈 ∈ CPreHilOLD ∧ (𝐶 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) → (𝐴𝑃(𝐵𝑀𝐶)) = ((𝐴𝑃𝐵) − (𝐴𝑃𝐶))) |
| 34 | 2, 33 | sylan2 593 | 1 ⊢ ((𝑈 ∈ CPreHilOLD ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐴𝑃(𝐵𝑀𝐶)) = ((𝐴𝑃𝐵) − (𝐴𝑃𝐶))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ‘cfv 6481 (class class class)co 7346 ℂcc 11001 − cmin 11341 ∗ccj 15000 NrmCVeccnv 30559 BaseSetcba 30561 −𝑣 cnsb 30564 ·𝑖OLDcdip 30675 CPreHilOLDccphlo 30787 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-inf2 9531 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 ax-pre-sup 11081 ax-addf 11082 ax-mulf 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-tp 4581 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-iin 4944 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-se 5570 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-of 7610 df-om 7797 df-1st 7921 df-2nd 7922 df-supp 8091 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-er 8622 df-map 8752 df-ixp 8822 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-fsupp 9246 df-fi 9295 df-sup 9326 df-inf 9327 df-oi 9396 df-card 9829 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-div 11772 df-nn 12123 df-2 12185 df-3 12186 df-4 12187 df-5 12188 df-6 12189 df-7 12190 df-8 12191 df-9 12192 df-n0 12379 df-z 12466 df-dec 12586 df-uz 12730 df-q 12844 df-rp 12888 df-xneg 13008 df-xadd 13009 df-xmul 13010 df-ioo 13246 df-icc 13249 df-fz 13405 df-fzo 13552 df-seq 13906 df-exp 13966 df-hash 14235 df-cj 15003 df-re 15004 df-im 15005 df-sqrt 15139 df-abs 15140 df-clim 15392 df-sum 15591 df-struct 17055 df-sets 17072 df-slot 17090 df-ndx 17102 df-base 17118 df-ress 17139 df-plusg 17171 df-mulr 17172 df-starv 17173 df-sca 17174 df-vsca 17175 df-ip 17176 df-tset 17177 df-ple 17178 df-ds 17180 df-unif 17181 df-hom 17182 df-cco 17183 df-rest 17323 df-topn 17324 df-0g 17342 df-gsum 17343 df-topgen 17344 df-pt 17345 df-prds 17348 df-xrs 17403 df-qtop 17408 df-imas 17409 df-xps 17411 df-mre 17485 df-mrc 17486 df-acs 17488 df-mgm 18545 df-sgrp 18624 df-mnd 18640 df-submnd 18689 df-mulg 18978 df-cntz 19227 df-cmn 19692 df-psmet 21281 df-xmet 21282 df-met 21283 df-bl 21284 df-mopn 21285 df-cnfld 21290 df-top 22807 df-topon 22824 df-topsp 22846 df-bases 22859 df-cld 22932 df-ntr 22933 df-cls 22934 df-cn 23140 df-cnp 23141 df-t1 23227 df-haus 23228 df-tx 23475 df-hmeo 23668 df-xms 24233 df-ms 24234 df-tms 24235 df-grpo 30468 df-gid 30469 df-ginv 30470 df-gdiv 30471 df-ablo 30520 df-vc 30534 df-nv 30567 df-va 30570 df-ba 30571 df-sm 30572 df-0v 30573 df-vs 30574 df-nmcv 30575 df-ims 30576 df-dip 30676 df-ph 30788 |
| This theorem is referenced by: siilem1 30826 ip2eqi 30831 |
| Copyright terms: Public domain | W3C validator |