Step | Hyp | Ref
| Expression |
1 | | phnv 29077 |
. . . . 5
⊢ (𝑈 ∈ CPreHilOLD
→ 𝑈 ∈
NrmCVec) |
2 | | ajval.1 |
. . . . . 6
⊢ 𝑋 = (BaseSet‘𝑈) |
3 | | ajval.2 |
. . . . . 6
⊢ 𝑌 = (BaseSet‘𝑊) |
4 | | ajval.3 |
. . . . . 6
⊢ 𝑃 =
(·𝑖OLD‘𝑈) |
5 | | ajval.4 |
. . . . . 6
⊢ 𝑄 =
(·𝑖OLD‘𝑊) |
6 | | ajval.5 |
. . . . . 6
⊢ 𝐴 = (𝑈adj𝑊) |
7 | 2, 3, 4, 5, 6 | ajfval 29072 |
. . . . 5
⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → 𝐴 = {〈𝑡, 𝑠〉 ∣ (𝑡:𝑋⟶𝑌 ∧ 𝑠:𝑌⟶𝑋 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 ((𝑡‘𝑥)𝑄𝑦) = (𝑥𝑃(𝑠‘𝑦)))}) |
8 | 1, 7 | sylan 579 |
. . . 4
⊢ ((𝑈 ∈ CPreHilOLD
∧ 𝑊 ∈ NrmCVec)
→ 𝐴 = {〈𝑡, 𝑠〉 ∣ (𝑡:𝑋⟶𝑌 ∧ 𝑠:𝑌⟶𝑋 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 ((𝑡‘𝑥)𝑄𝑦) = (𝑥𝑃(𝑠‘𝑦)))}) |
9 | 8 | fveq1d 6758 |
. . 3
⊢ ((𝑈 ∈ CPreHilOLD
∧ 𝑊 ∈ NrmCVec)
→ (𝐴‘𝑇) = ({〈𝑡, 𝑠〉 ∣ (𝑡:𝑋⟶𝑌 ∧ 𝑠:𝑌⟶𝑋 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 ((𝑡‘𝑥)𝑄𝑦) = (𝑥𝑃(𝑠‘𝑦)))}‘𝑇)) |
10 | 9 | 3adant3 1130 |
. 2
⊢ ((𝑈 ∈ CPreHilOLD
∧ 𝑊 ∈ NrmCVec
∧ 𝑇:𝑋⟶𝑌) → (𝐴‘𝑇) = ({〈𝑡, 𝑠〉 ∣ (𝑡:𝑋⟶𝑌 ∧ 𝑠:𝑌⟶𝑋 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 ((𝑡‘𝑥)𝑄𝑦) = (𝑥𝑃(𝑠‘𝑦)))}‘𝑇)) |
11 | 2 | fvexi 6770 |
. . . . . 6
⊢ 𝑋 ∈ V |
12 | | fex 7084 |
. . . . . 6
⊢ ((𝑇:𝑋⟶𝑌 ∧ 𝑋 ∈ V) → 𝑇 ∈ V) |
13 | 11, 12 | mpan2 687 |
. . . . 5
⊢ (𝑇:𝑋⟶𝑌 → 𝑇 ∈ V) |
14 | | eqid 2738 |
. . . . . 6
⊢
{〈𝑡, 𝑠〉 ∣ (𝑡:𝑋⟶𝑌 ∧ 𝑠:𝑌⟶𝑋 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 ((𝑡‘𝑥)𝑄𝑦) = (𝑥𝑃(𝑠‘𝑦)))} = {〈𝑡, 𝑠〉 ∣ (𝑡:𝑋⟶𝑌 ∧ 𝑠:𝑌⟶𝑋 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 ((𝑡‘𝑥)𝑄𝑦) = (𝑥𝑃(𝑠‘𝑦)))} |
15 | | feq1 6565 |
. . . . . . 7
⊢ (𝑡 = 𝑇 → (𝑡:𝑋⟶𝑌 ↔ 𝑇:𝑋⟶𝑌)) |
16 | | fveq1 6755 |
. . . . . . . . . 10
⊢ (𝑡 = 𝑇 → (𝑡‘𝑥) = (𝑇‘𝑥)) |
17 | 16 | oveq1d 7270 |
. . . . . . . . 9
⊢ (𝑡 = 𝑇 → ((𝑡‘𝑥)𝑄𝑦) = ((𝑇‘𝑥)𝑄𝑦)) |
18 | 17 | eqeq1d 2740 |
. . . . . . . 8
⊢ (𝑡 = 𝑇 → (((𝑡‘𝑥)𝑄𝑦) = (𝑥𝑃(𝑠‘𝑦)) ↔ ((𝑇‘𝑥)𝑄𝑦) = (𝑥𝑃(𝑠‘𝑦)))) |
19 | 18 | 2ralbidv 3122 |
. . . . . . 7
⊢ (𝑡 = 𝑇 → (∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 ((𝑡‘𝑥)𝑄𝑦) = (𝑥𝑃(𝑠‘𝑦)) ↔ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 ((𝑇‘𝑥)𝑄𝑦) = (𝑥𝑃(𝑠‘𝑦)))) |
20 | 15, 19 | 3anbi13d 1436 |
. . . . . 6
⊢ (𝑡 = 𝑇 → ((𝑡:𝑋⟶𝑌 ∧ 𝑠:𝑌⟶𝑋 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 ((𝑡‘𝑥)𝑄𝑦) = (𝑥𝑃(𝑠‘𝑦))) ↔ (𝑇:𝑋⟶𝑌 ∧ 𝑠:𝑌⟶𝑋 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 ((𝑇‘𝑥)𝑄𝑦) = (𝑥𝑃(𝑠‘𝑦))))) |
21 | 14, 20 | fvopab5 6889 |
. . . . 5
⊢ (𝑇 ∈ V → ({〈𝑡, 𝑠〉 ∣ (𝑡:𝑋⟶𝑌 ∧ 𝑠:𝑌⟶𝑋 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 ((𝑡‘𝑥)𝑄𝑦) = (𝑥𝑃(𝑠‘𝑦)))}‘𝑇) = (℩𝑠(𝑇:𝑋⟶𝑌 ∧ 𝑠:𝑌⟶𝑋 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 ((𝑇‘𝑥)𝑄𝑦) = (𝑥𝑃(𝑠‘𝑦))))) |
22 | 13, 21 | syl 17 |
. . . 4
⊢ (𝑇:𝑋⟶𝑌 → ({〈𝑡, 𝑠〉 ∣ (𝑡:𝑋⟶𝑌 ∧ 𝑠:𝑌⟶𝑋 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 ((𝑡‘𝑥)𝑄𝑦) = (𝑥𝑃(𝑠‘𝑦)))}‘𝑇) = (℩𝑠(𝑇:𝑋⟶𝑌 ∧ 𝑠:𝑌⟶𝑋 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 ((𝑇‘𝑥)𝑄𝑦) = (𝑥𝑃(𝑠‘𝑦))))) |
23 | | 3anass 1093 |
. . . . . 6
⊢ ((𝑇:𝑋⟶𝑌 ∧ 𝑠:𝑌⟶𝑋 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 ((𝑇‘𝑥)𝑄𝑦) = (𝑥𝑃(𝑠‘𝑦))) ↔ (𝑇:𝑋⟶𝑌 ∧ (𝑠:𝑌⟶𝑋 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 ((𝑇‘𝑥)𝑄𝑦) = (𝑥𝑃(𝑠‘𝑦))))) |
24 | 23 | baib 535 |
. . . . 5
⊢ (𝑇:𝑋⟶𝑌 → ((𝑇:𝑋⟶𝑌 ∧ 𝑠:𝑌⟶𝑋 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 ((𝑇‘𝑥)𝑄𝑦) = (𝑥𝑃(𝑠‘𝑦))) ↔ (𝑠:𝑌⟶𝑋 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 ((𝑇‘𝑥)𝑄𝑦) = (𝑥𝑃(𝑠‘𝑦))))) |
25 | 24 | iotabidv 6402 |
. . . 4
⊢ (𝑇:𝑋⟶𝑌 → (℩𝑠(𝑇:𝑋⟶𝑌 ∧ 𝑠:𝑌⟶𝑋 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 ((𝑇‘𝑥)𝑄𝑦) = (𝑥𝑃(𝑠‘𝑦)))) = (℩𝑠(𝑠:𝑌⟶𝑋 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 ((𝑇‘𝑥)𝑄𝑦) = (𝑥𝑃(𝑠‘𝑦))))) |
26 | 22, 25 | eqtrd 2778 |
. . 3
⊢ (𝑇:𝑋⟶𝑌 → ({〈𝑡, 𝑠〉 ∣ (𝑡:𝑋⟶𝑌 ∧ 𝑠:𝑌⟶𝑋 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 ((𝑡‘𝑥)𝑄𝑦) = (𝑥𝑃(𝑠‘𝑦)))}‘𝑇) = (℩𝑠(𝑠:𝑌⟶𝑋 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 ((𝑇‘𝑥)𝑄𝑦) = (𝑥𝑃(𝑠‘𝑦))))) |
27 | 26 | 3ad2ant3 1133 |
. 2
⊢ ((𝑈 ∈ CPreHilOLD
∧ 𝑊 ∈ NrmCVec
∧ 𝑇:𝑋⟶𝑌) → ({〈𝑡, 𝑠〉 ∣ (𝑡:𝑋⟶𝑌 ∧ 𝑠:𝑌⟶𝑋 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 ((𝑡‘𝑥)𝑄𝑦) = (𝑥𝑃(𝑠‘𝑦)))}‘𝑇) = (℩𝑠(𝑠:𝑌⟶𝑋 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 ((𝑇‘𝑥)𝑄𝑦) = (𝑥𝑃(𝑠‘𝑦))))) |
28 | 10, 27 | eqtrd 2778 |
1
⊢ ((𝑈 ∈ CPreHilOLD
∧ 𝑊 ∈ NrmCVec
∧ 𝑇:𝑋⟶𝑌) → (𝐴‘𝑇) = (℩𝑠(𝑠:𝑌⟶𝑋 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 ((𝑇‘𝑥)𝑄𝑦) = (𝑥𝑃(𝑠‘𝑦))))) |