MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ajval Structured version   Visualization version   GIF version

Theorem ajval 30842
Description: Value of the adjoint function. (Contributed by NM, 25-Jan-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
ajval.1 𝑋 = (BaseSet‘𝑈)
ajval.2 𝑌 = (BaseSet‘𝑊)
ajval.3 𝑃 = (·𝑖OLD𝑈)
ajval.4 𝑄 = (·𝑖OLD𝑊)
ajval.5 𝐴 = (𝑈adj𝑊)
Assertion
Ref Expression
ajval ((𝑈 ∈ CPreHilOLD𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) → (𝐴𝑇) = (℩𝑠(𝑠:𝑌𝑋 ∧ ∀𝑥𝑋𝑦𝑌 ((𝑇𝑥)𝑄𝑦) = (𝑥𝑃(𝑠𝑦)))))
Distinct variable groups:   𝑥,𝑠,𝑦,𝑇   𝑈,𝑠,𝑥,𝑦   𝑊,𝑠,𝑥,𝑦   𝑋,𝑠,𝑥,𝑦   𝑌,𝑠,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑠)   𝑃(𝑥,𝑦,𝑠)   𝑄(𝑥,𝑦,𝑠)   𝑌(𝑥)

Proof of Theorem ajval
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 phnv 30795 . . . . 5 (𝑈 ∈ CPreHilOLD𝑈 ∈ NrmCVec)
2 ajval.1 . . . . . 6 𝑋 = (BaseSet‘𝑈)
3 ajval.2 . . . . . 6 𝑌 = (BaseSet‘𝑊)
4 ajval.3 . . . . . 6 𝑃 = (·𝑖OLD𝑈)
5 ajval.4 . . . . . 6 𝑄 = (·𝑖OLD𝑊)
6 ajval.5 . . . . . 6 𝐴 = (𝑈adj𝑊)
72, 3, 4, 5, 6ajfval 30790 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → 𝐴 = {⟨𝑡, 𝑠⟩ ∣ (𝑡:𝑋𝑌𝑠:𝑌𝑋 ∧ ∀𝑥𝑋𝑦𝑌 ((𝑡𝑥)𝑄𝑦) = (𝑥𝑃(𝑠𝑦)))})
81, 7sylan 580 . . . 4 ((𝑈 ∈ CPreHilOLD𝑊 ∈ NrmCVec) → 𝐴 = {⟨𝑡, 𝑠⟩ ∣ (𝑡:𝑋𝑌𝑠:𝑌𝑋 ∧ ∀𝑥𝑋𝑦𝑌 ((𝑡𝑥)𝑄𝑦) = (𝑥𝑃(𝑠𝑦)))})
98fveq1d 6878 . . 3 ((𝑈 ∈ CPreHilOLD𝑊 ∈ NrmCVec) → (𝐴𝑇) = ({⟨𝑡, 𝑠⟩ ∣ (𝑡:𝑋𝑌𝑠:𝑌𝑋 ∧ ∀𝑥𝑋𝑦𝑌 ((𝑡𝑥)𝑄𝑦) = (𝑥𝑃(𝑠𝑦)))}‘𝑇))
1093adant3 1132 . 2 ((𝑈 ∈ CPreHilOLD𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) → (𝐴𝑇) = ({⟨𝑡, 𝑠⟩ ∣ (𝑡:𝑋𝑌𝑠:𝑌𝑋 ∧ ∀𝑥𝑋𝑦𝑌 ((𝑡𝑥)𝑄𝑦) = (𝑥𝑃(𝑠𝑦)))}‘𝑇))
112fvexi 6890 . . . . . 6 𝑋 ∈ V
12 fex 7218 . . . . . 6 ((𝑇:𝑋𝑌𝑋 ∈ V) → 𝑇 ∈ V)
1311, 12mpan2 691 . . . . 5 (𝑇:𝑋𝑌𝑇 ∈ V)
14 eqid 2735 . . . . . 6 {⟨𝑡, 𝑠⟩ ∣ (𝑡:𝑋𝑌𝑠:𝑌𝑋 ∧ ∀𝑥𝑋𝑦𝑌 ((𝑡𝑥)𝑄𝑦) = (𝑥𝑃(𝑠𝑦)))} = {⟨𝑡, 𝑠⟩ ∣ (𝑡:𝑋𝑌𝑠:𝑌𝑋 ∧ ∀𝑥𝑋𝑦𝑌 ((𝑡𝑥)𝑄𝑦) = (𝑥𝑃(𝑠𝑦)))}
15 feq1 6686 . . . . . . 7 (𝑡 = 𝑇 → (𝑡:𝑋𝑌𝑇:𝑋𝑌))
16 fveq1 6875 . . . . . . . . . 10 (𝑡 = 𝑇 → (𝑡𝑥) = (𝑇𝑥))
1716oveq1d 7420 . . . . . . . . 9 (𝑡 = 𝑇 → ((𝑡𝑥)𝑄𝑦) = ((𝑇𝑥)𝑄𝑦))
1817eqeq1d 2737 . . . . . . . 8 (𝑡 = 𝑇 → (((𝑡𝑥)𝑄𝑦) = (𝑥𝑃(𝑠𝑦)) ↔ ((𝑇𝑥)𝑄𝑦) = (𝑥𝑃(𝑠𝑦))))
19182ralbidv 3205 . . . . . . 7 (𝑡 = 𝑇 → (∀𝑥𝑋𝑦𝑌 ((𝑡𝑥)𝑄𝑦) = (𝑥𝑃(𝑠𝑦)) ↔ ∀𝑥𝑋𝑦𝑌 ((𝑇𝑥)𝑄𝑦) = (𝑥𝑃(𝑠𝑦))))
2015, 193anbi13d 1440 . . . . . 6 (𝑡 = 𝑇 → ((𝑡:𝑋𝑌𝑠:𝑌𝑋 ∧ ∀𝑥𝑋𝑦𝑌 ((𝑡𝑥)𝑄𝑦) = (𝑥𝑃(𝑠𝑦))) ↔ (𝑇:𝑋𝑌𝑠:𝑌𝑋 ∧ ∀𝑥𝑋𝑦𝑌 ((𝑇𝑥)𝑄𝑦) = (𝑥𝑃(𝑠𝑦)))))
2114, 20fvopab5 7019 . . . . 5 (𝑇 ∈ V → ({⟨𝑡, 𝑠⟩ ∣ (𝑡:𝑋𝑌𝑠:𝑌𝑋 ∧ ∀𝑥𝑋𝑦𝑌 ((𝑡𝑥)𝑄𝑦) = (𝑥𝑃(𝑠𝑦)))}‘𝑇) = (℩𝑠(𝑇:𝑋𝑌𝑠:𝑌𝑋 ∧ ∀𝑥𝑋𝑦𝑌 ((𝑇𝑥)𝑄𝑦) = (𝑥𝑃(𝑠𝑦)))))
2213, 21syl 17 . . . 4 (𝑇:𝑋𝑌 → ({⟨𝑡, 𝑠⟩ ∣ (𝑡:𝑋𝑌𝑠:𝑌𝑋 ∧ ∀𝑥𝑋𝑦𝑌 ((𝑡𝑥)𝑄𝑦) = (𝑥𝑃(𝑠𝑦)))}‘𝑇) = (℩𝑠(𝑇:𝑋𝑌𝑠:𝑌𝑋 ∧ ∀𝑥𝑋𝑦𝑌 ((𝑇𝑥)𝑄𝑦) = (𝑥𝑃(𝑠𝑦)))))
23 3anass 1094 . . . . . 6 ((𝑇:𝑋𝑌𝑠:𝑌𝑋 ∧ ∀𝑥𝑋𝑦𝑌 ((𝑇𝑥)𝑄𝑦) = (𝑥𝑃(𝑠𝑦))) ↔ (𝑇:𝑋𝑌 ∧ (𝑠:𝑌𝑋 ∧ ∀𝑥𝑋𝑦𝑌 ((𝑇𝑥)𝑄𝑦) = (𝑥𝑃(𝑠𝑦)))))
2423baib 535 . . . . 5 (𝑇:𝑋𝑌 → ((𝑇:𝑋𝑌𝑠:𝑌𝑋 ∧ ∀𝑥𝑋𝑦𝑌 ((𝑇𝑥)𝑄𝑦) = (𝑥𝑃(𝑠𝑦))) ↔ (𝑠:𝑌𝑋 ∧ ∀𝑥𝑋𝑦𝑌 ((𝑇𝑥)𝑄𝑦) = (𝑥𝑃(𝑠𝑦)))))
2524iotabidv 6515 . . . 4 (𝑇:𝑋𝑌 → (℩𝑠(𝑇:𝑋𝑌𝑠:𝑌𝑋 ∧ ∀𝑥𝑋𝑦𝑌 ((𝑇𝑥)𝑄𝑦) = (𝑥𝑃(𝑠𝑦)))) = (℩𝑠(𝑠:𝑌𝑋 ∧ ∀𝑥𝑋𝑦𝑌 ((𝑇𝑥)𝑄𝑦) = (𝑥𝑃(𝑠𝑦)))))
2622, 25eqtrd 2770 . . 3 (𝑇:𝑋𝑌 → ({⟨𝑡, 𝑠⟩ ∣ (𝑡:𝑋𝑌𝑠:𝑌𝑋 ∧ ∀𝑥𝑋𝑦𝑌 ((𝑡𝑥)𝑄𝑦) = (𝑥𝑃(𝑠𝑦)))}‘𝑇) = (℩𝑠(𝑠:𝑌𝑋 ∧ ∀𝑥𝑋𝑦𝑌 ((𝑇𝑥)𝑄𝑦) = (𝑥𝑃(𝑠𝑦)))))
27263ad2ant3 1135 . 2 ((𝑈 ∈ CPreHilOLD𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) → ({⟨𝑡, 𝑠⟩ ∣ (𝑡:𝑋𝑌𝑠:𝑌𝑋 ∧ ∀𝑥𝑋𝑦𝑌 ((𝑡𝑥)𝑄𝑦) = (𝑥𝑃(𝑠𝑦)))}‘𝑇) = (℩𝑠(𝑠:𝑌𝑋 ∧ ∀𝑥𝑋𝑦𝑌 ((𝑇𝑥)𝑄𝑦) = (𝑥𝑃(𝑠𝑦)))))
2810, 27eqtrd 2770 1 ((𝑈 ∈ CPreHilOLD𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) → (𝐴𝑇) = (℩𝑠(𝑠:𝑌𝑋 ∧ ∀𝑥𝑋𝑦𝑌 ((𝑇𝑥)𝑄𝑦) = (𝑥𝑃(𝑠𝑦)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2108  wral 3051  Vcvv 3459  {copab 5181  cio 6482  wf 6527  cfv 6531  (class class class)co 7405  NrmCVeccnv 30565  BaseSetcba 30567  ·𝑖OLDcdip 30681  adjcaj 30729  CPreHilOLDccphlo 30793
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-map 8842  df-aj 30731  df-ph 30794
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator