MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ajval Structured version   Visualization version   GIF version

Theorem ajval 30101
Description: Value of the adjoint function. (Contributed by NM, 25-Jan-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
ajval.1 𝑋 = (BaseSetβ€˜π‘ˆ)
ajval.2 π‘Œ = (BaseSetβ€˜π‘Š)
ajval.3 𝑃 = (·𝑖OLDβ€˜π‘ˆ)
ajval.4 𝑄 = (·𝑖OLDβ€˜π‘Š)
ajval.5 𝐴 = (π‘ˆadjπ‘Š)
Assertion
Ref Expression
ajval ((π‘ˆ ∈ CPreHilOLD ∧ π‘Š ∈ NrmCVec ∧ 𝑇:π‘‹βŸΆπ‘Œ) β†’ (π΄β€˜π‘‡) = (℩𝑠(𝑠:π‘ŒβŸΆπ‘‹ ∧ βˆ€π‘₯ ∈ 𝑋 βˆ€π‘¦ ∈ π‘Œ ((π‘‡β€˜π‘₯)𝑄𝑦) = (π‘₯𝑃(π‘ β€˜π‘¦)))))
Distinct variable groups:   π‘₯,𝑠,𝑦,𝑇   π‘ˆ,𝑠,π‘₯,𝑦   π‘Š,𝑠,π‘₯,𝑦   𝑋,𝑠,π‘₯,𝑦   π‘Œ,𝑠,𝑦
Allowed substitution hints:   𝐴(π‘₯,𝑦,𝑠)   𝑃(π‘₯,𝑦,𝑠)   𝑄(π‘₯,𝑦,𝑠)   π‘Œ(π‘₯)

Proof of Theorem ajval
Dummy variable 𝑑 is distinct from all other variables.
StepHypRef Expression
1 phnv 30054 . . . . 5 (π‘ˆ ∈ CPreHilOLD β†’ π‘ˆ ∈ NrmCVec)
2 ajval.1 . . . . . 6 𝑋 = (BaseSetβ€˜π‘ˆ)
3 ajval.2 . . . . . 6 π‘Œ = (BaseSetβ€˜π‘Š)
4 ajval.3 . . . . . 6 𝑃 = (·𝑖OLDβ€˜π‘ˆ)
5 ajval.4 . . . . . 6 𝑄 = (·𝑖OLDβ€˜π‘Š)
6 ajval.5 . . . . . 6 𝐴 = (π‘ˆadjπ‘Š)
72, 3, 4, 5, 6ajfval 30049 . . . . 5 ((π‘ˆ ∈ NrmCVec ∧ π‘Š ∈ NrmCVec) β†’ 𝐴 = {βŸ¨π‘‘, π‘ βŸ© ∣ (𝑑:π‘‹βŸΆπ‘Œ ∧ 𝑠:π‘ŒβŸΆπ‘‹ ∧ βˆ€π‘₯ ∈ 𝑋 βˆ€π‘¦ ∈ π‘Œ ((π‘‘β€˜π‘₯)𝑄𝑦) = (π‘₯𝑃(π‘ β€˜π‘¦)))})
81, 7sylan 580 . . . 4 ((π‘ˆ ∈ CPreHilOLD ∧ π‘Š ∈ NrmCVec) β†’ 𝐴 = {βŸ¨π‘‘, π‘ βŸ© ∣ (𝑑:π‘‹βŸΆπ‘Œ ∧ 𝑠:π‘ŒβŸΆπ‘‹ ∧ βˆ€π‘₯ ∈ 𝑋 βˆ€π‘¦ ∈ π‘Œ ((π‘‘β€˜π‘₯)𝑄𝑦) = (π‘₯𝑃(π‘ β€˜π‘¦)))})
98fveq1d 6890 . . 3 ((π‘ˆ ∈ CPreHilOLD ∧ π‘Š ∈ NrmCVec) β†’ (π΄β€˜π‘‡) = ({βŸ¨π‘‘, π‘ βŸ© ∣ (𝑑:π‘‹βŸΆπ‘Œ ∧ 𝑠:π‘ŒβŸΆπ‘‹ ∧ βˆ€π‘₯ ∈ 𝑋 βˆ€π‘¦ ∈ π‘Œ ((π‘‘β€˜π‘₯)𝑄𝑦) = (π‘₯𝑃(π‘ β€˜π‘¦)))}β€˜π‘‡))
1093adant3 1132 . 2 ((π‘ˆ ∈ CPreHilOLD ∧ π‘Š ∈ NrmCVec ∧ 𝑇:π‘‹βŸΆπ‘Œ) β†’ (π΄β€˜π‘‡) = ({βŸ¨π‘‘, π‘ βŸ© ∣ (𝑑:π‘‹βŸΆπ‘Œ ∧ 𝑠:π‘ŒβŸΆπ‘‹ ∧ βˆ€π‘₯ ∈ 𝑋 βˆ€π‘¦ ∈ π‘Œ ((π‘‘β€˜π‘₯)𝑄𝑦) = (π‘₯𝑃(π‘ β€˜π‘¦)))}β€˜π‘‡))
112fvexi 6902 . . . . . 6 𝑋 ∈ V
12 fex 7224 . . . . . 6 ((𝑇:π‘‹βŸΆπ‘Œ ∧ 𝑋 ∈ V) β†’ 𝑇 ∈ V)
1311, 12mpan2 689 . . . . 5 (𝑇:π‘‹βŸΆπ‘Œ β†’ 𝑇 ∈ V)
14 eqid 2732 . . . . . 6 {βŸ¨π‘‘, π‘ βŸ© ∣ (𝑑:π‘‹βŸΆπ‘Œ ∧ 𝑠:π‘ŒβŸΆπ‘‹ ∧ βˆ€π‘₯ ∈ 𝑋 βˆ€π‘¦ ∈ π‘Œ ((π‘‘β€˜π‘₯)𝑄𝑦) = (π‘₯𝑃(π‘ β€˜π‘¦)))} = {βŸ¨π‘‘, π‘ βŸ© ∣ (𝑑:π‘‹βŸΆπ‘Œ ∧ 𝑠:π‘ŒβŸΆπ‘‹ ∧ βˆ€π‘₯ ∈ 𝑋 βˆ€π‘¦ ∈ π‘Œ ((π‘‘β€˜π‘₯)𝑄𝑦) = (π‘₯𝑃(π‘ β€˜π‘¦)))}
15 feq1 6695 . . . . . . 7 (𝑑 = 𝑇 β†’ (𝑑:π‘‹βŸΆπ‘Œ ↔ 𝑇:π‘‹βŸΆπ‘Œ))
16 fveq1 6887 . . . . . . . . . 10 (𝑑 = 𝑇 β†’ (π‘‘β€˜π‘₯) = (π‘‡β€˜π‘₯))
1716oveq1d 7420 . . . . . . . . 9 (𝑑 = 𝑇 β†’ ((π‘‘β€˜π‘₯)𝑄𝑦) = ((π‘‡β€˜π‘₯)𝑄𝑦))
1817eqeq1d 2734 . . . . . . . 8 (𝑑 = 𝑇 β†’ (((π‘‘β€˜π‘₯)𝑄𝑦) = (π‘₯𝑃(π‘ β€˜π‘¦)) ↔ ((π‘‡β€˜π‘₯)𝑄𝑦) = (π‘₯𝑃(π‘ β€˜π‘¦))))
19182ralbidv 3218 . . . . . . 7 (𝑑 = 𝑇 β†’ (βˆ€π‘₯ ∈ 𝑋 βˆ€π‘¦ ∈ π‘Œ ((π‘‘β€˜π‘₯)𝑄𝑦) = (π‘₯𝑃(π‘ β€˜π‘¦)) ↔ βˆ€π‘₯ ∈ 𝑋 βˆ€π‘¦ ∈ π‘Œ ((π‘‡β€˜π‘₯)𝑄𝑦) = (π‘₯𝑃(π‘ β€˜π‘¦))))
2015, 193anbi13d 1438 . . . . . 6 (𝑑 = 𝑇 β†’ ((𝑑:π‘‹βŸΆπ‘Œ ∧ 𝑠:π‘ŒβŸΆπ‘‹ ∧ βˆ€π‘₯ ∈ 𝑋 βˆ€π‘¦ ∈ π‘Œ ((π‘‘β€˜π‘₯)𝑄𝑦) = (π‘₯𝑃(π‘ β€˜π‘¦))) ↔ (𝑇:π‘‹βŸΆπ‘Œ ∧ 𝑠:π‘ŒβŸΆπ‘‹ ∧ βˆ€π‘₯ ∈ 𝑋 βˆ€π‘¦ ∈ π‘Œ ((π‘‡β€˜π‘₯)𝑄𝑦) = (π‘₯𝑃(π‘ β€˜π‘¦)))))
2114, 20fvopab5 7027 . . . . 5 (𝑇 ∈ V β†’ ({βŸ¨π‘‘, π‘ βŸ© ∣ (𝑑:π‘‹βŸΆπ‘Œ ∧ 𝑠:π‘ŒβŸΆπ‘‹ ∧ βˆ€π‘₯ ∈ 𝑋 βˆ€π‘¦ ∈ π‘Œ ((π‘‘β€˜π‘₯)𝑄𝑦) = (π‘₯𝑃(π‘ β€˜π‘¦)))}β€˜π‘‡) = (℩𝑠(𝑇:π‘‹βŸΆπ‘Œ ∧ 𝑠:π‘ŒβŸΆπ‘‹ ∧ βˆ€π‘₯ ∈ 𝑋 βˆ€π‘¦ ∈ π‘Œ ((π‘‡β€˜π‘₯)𝑄𝑦) = (π‘₯𝑃(π‘ β€˜π‘¦)))))
2213, 21syl 17 . . . 4 (𝑇:π‘‹βŸΆπ‘Œ β†’ ({βŸ¨π‘‘, π‘ βŸ© ∣ (𝑑:π‘‹βŸΆπ‘Œ ∧ 𝑠:π‘ŒβŸΆπ‘‹ ∧ βˆ€π‘₯ ∈ 𝑋 βˆ€π‘¦ ∈ π‘Œ ((π‘‘β€˜π‘₯)𝑄𝑦) = (π‘₯𝑃(π‘ β€˜π‘¦)))}β€˜π‘‡) = (℩𝑠(𝑇:π‘‹βŸΆπ‘Œ ∧ 𝑠:π‘ŒβŸΆπ‘‹ ∧ βˆ€π‘₯ ∈ 𝑋 βˆ€π‘¦ ∈ π‘Œ ((π‘‡β€˜π‘₯)𝑄𝑦) = (π‘₯𝑃(π‘ β€˜π‘¦)))))
23 3anass 1095 . . . . . 6 ((𝑇:π‘‹βŸΆπ‘Œ ∧ 𝑠:π‘ŒβŸΆπ‘‹ ∧ βˆ€π‘₯ ∈ 𝑋 βˆ€π‘¦ ∈ π‘Œ ((π‘‡β€˜π‘₯)𝑄𝑦) = (π‘₯𝑃(π‘ β€˜π‘¦))) ↔ (𝑇:π‘‹βŸΆπ‘Œ ∧ (𝑠:π‘ŒβŸΆπ‘‹ ∧ βˆ€π‘₯ ∈ 𝑋 βˆ€π‘¦ ∈ π‘Œ ((π‘‡β€˜π‘₯)𝑄𝑦) = (π‘₯𝑃(π‘ β€˜π‘¦)))))
2423baib 536 . . . . 5 (𝑇:π‘‹βŸΆπ‘Œ β†’ ((𝑇:π‘‹βŸΆπ‘Œ ∧ 𝑠:π‘ŒβŸΆπ‘‹ ∧ βˆ€π‘₯ ∈ 𝑋 βˆ€π‘¦ ∈ π‘Œ ((π‘‡β€˜π‘₯)𝑄𝑦) = (π‘₯𝑃(π‘ β€˜π‘¦))) ↔ (𝑠:π‘ŒβŸΆπ‘‹ ∧ βˆ€π‘₯ ∈ 𝑋 βˆ€π‘¦ ∈ π‘Œ ((π‘‡β€˜π‘₯)𝑄𝑦) = (π‘₯𝑃(π‘ β€˜π‘¦)))))
2524iotabidv 6524 . . . 4 (𝑇:π‘‹βŸΆπ‘Œ β†’ (℩𝑠(𝑇:π‘‹βŸΆπ‘Œ ∧ 𝑠:π‘ŒβŸΆπ‘‹ ∧ βˆ€π‘₯ ∈ 𝑋 βˆ€π‘¦ ∈ π‘Œ ((π‘‡β€˜π‘₯)𝑄𝑦) = (π‘₯𝑃(π‘ β€˜π‘¦)))) = (℩𝑠(𝑠:π‘ŒβŸΆπ‘‹ ∧ βˆ€π‘₯ ∈ 𝑋 βˆ€π‘¦ ∈ π‘Œ ((π‘‡β€˜π‘₯)𝑄𝑦) = (π‘₯𝑃(π‘ β€˜π‘¦)))))
2622, 25eqtrd 2772 . . 3 (𝑇:π‘‹βŸΆπ‘Œ β†’ ({βŸ¨π‘‘, π‘ βŸ© ∣ (𝑑:π‘‹βŸΆπ‘Œ ∧ 𝑠:π‘ŒβŸΆπ‘‹ ∧ βˆ€π‘₯ ∈ 𝑋 βˆ€π‘¦ ∈ π‘Œ ((π‘‘β€˜π‘₯)𝑄𝑦) = (π‘₯𝑃(π‘ β€˜π‘¦)))}β€˜π‘‡) = (℩𝑠(𝑠:π‘ŒβŸΆπ‘‹ ∧ βˆ€π‘₯ ∈ 𝑋 βˆ€π‘¦ ∈ π‘Œ ((π‘‡β€˜π‘₯)𝑄𝑦) = (π‘₯𝑃(π‘ β€˜π‘¦)))))
27263ad2ant3 1135 . 2 ((π‘ˆ ∈ CPreHilOLD ∧ π‘Š ∈ NrmCVec ∧ 𝑇:π‘‹βŸΆπ‘Œ) β†’ ({βŸ¨π‘‘, π‘ βŸ© ∣ (𝑑:π‘‹βŸΆπ‘Œ ∧ 𝑠:π‘ŒβŸΆπ‘‹ ∧ βˆ€π‘₯ ∈ 𝑋 βˆ€π‘¦ ∈ π‘Œ ((π‘‘β€˜π‘₯)𝑄𝑦) = (π‘₯𝑃(π‘ β€˜π‘¦)))}β€˜π‘‡) = (℩𝑠(𝑠:π‘ŒβŸΆπ‘‹ ∧ βˆ€π‘₯ ∈ 𝑋 βˆ€π‘¦ ∈ π‘Œ ((π‘‡β€˜π‘₯)𝑄𝑦) = (π‘₯𝑃(π‘ β€˜π‘¦)))))
2810, 27eqtrd 2772 1 ((π‘ˆ ∈ CPreHilOLD ∧ π‘Š ∈ NrmCVec ∧ 𝑇:π‘‹βŸΆπ‘Œ) β†’ (π΄β€˜π‘‡) = (℩𝑠(𝑠:π‘ŒβŸΆπ‘‹ ∧ βˆ€π‘₯ ∈ 𝑋 βˆ€π‘¦ ∈ π‘Œ ((π‘‡β€˜π‘₯)𝑄𝑦) = (π‘₯𝑃(π‘ β€˜π‘¦)))))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106  βˆ€wral 3061  Vcvv 3474  {copab 5209  β„©cio 6490  βŸΆwf 6536  β€˜cfv 6540  (class class class)co 7405  NrmCVeccnv 29824  BaseSetcba 29826  Β·π‘–OLDcdip 29940  adjcaj 29988  CPreHilOLDccphlo 30052
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-ov 7408  df-oprab 7409  df-mpo 7410  df-map 8818  df-aj 29990  df-ph 30053
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator