MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ajval Structured version   Visualization version   GIF version

Theorem ajval 30843
Description: Value of the adjoint function. (Contributed by NM, 25-Jan-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
ajval.1 𝑋 = (BaseSet‘𝑈)
ajval.2 𝑌 = (BaseSet‘𝑊)
ajval.3 𝑃 = (·𝑖OLD𝑈)
ajval.4 𝑄 = (·𝑖OLD𝑊)
ajval.5 𝐴 = (𝑈adj𝑊)
Assertion
Ref Expression
ajval ((𝑈 ∈ CPreHilOLD𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) → (𝐴𝑇) = (℩𝑠(𝑠:𝑌𝑋 ∧ ∀𝑥𝑋𝑦𝑌 ((𝑇𝑥)𝑄𝑦) = (𝑥𝑃(𝑠𝑦)))))
Distinct variable groups:   𝑥,𝑠,𝑦,𝑇   𝑈,𝑠,𝑥,𝑦   𝑊,𝑠,𝑥,𝑦   𝑋,𝑠,𝑥,𝑦   𝑌,𝑠,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑠)   𝑃(𝑥,𝑦,𝑠)   𝑄(𝑥,𝑦,𝑠)   𝑌(𝑥)

Proof of Theorem ajval
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 phnv 30796 . . . . 5 (𝑈 ∈ CPreHilOLD𝑈 ∈ NrmCVec)
2 ajval.1 . . . . . 6 𝑋 = (BaseSet‘𝑈)
3 ajval.2 . . . . . 6 𝑌 = (BaseSet‘𝑊)
4 ajval.3 . . . . . 6 𝑃 = (·𝑖OLD𝑈)
5 ajval.4 . . . . . 6 𝑄 = (·𝑖OLD𝑊)
6 ajval.5 . . . . . 6 𝐴 = (𝑈adj𝑊)
72, 3, 4, 5, 6ajfval 30791 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → 𝐴 = {⟨𝑡, 𝑠⟩ ∣ (𝑡:𝑋𝑌𝑠:𝑌𝑋 ∧ ∀𝑥𝑋𝑦𝑌 ((𝑡𝑥)𝑄𝑦) = (𝑥𝑃(𝑠𝑦)))})
81, 7sylan 580 . . . 4 ((𝑈 ∈ CPreHilOLD𝑊 ∈ NrmCVec) → 𝐴 = {⟨𝑡, 𝑠⟩ ∣ (𝑡:𝑋𝑌𝑠:𝑌𝑋 ∧ ∀𝑥𝑋𝑦𝑌 ((𝑡𝑥)𝑄𝑦) = (𝑥𝑃(𝑠𝑦)))})
98fveq1d 6830 . . 3 ((𝑈 ∈ CPreHilOLD𝑊 ∈ NrmCVec) → (𝐴𝑇) = ({⟨𝑡, 𝑠⟩ ∣ (𝑡:𝑋𝑌𝑠:𝑌𝑋 ∧ ∀𝑥𝑋𝑦𝑌 ((𝑡𝑥)𝑄𝑦) = (𝑥𝑃(𝑠𝑦)))}‘𝑇))
1093adant3 1132 . 2 ((𝑈 ∈ CPreHilOLD𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) → (𝐴𝑇) = ({⟨𝑡, 𝑠⟩ ∣ (𝑡:𝑋𝑌𝑠:𝑌𝑋 ∧ ∀𝑥𝑋𝑦𝑌 ((𝑡𝑥)𝑄𝑦) = (𝑥𝑃(𝑠𝑦)))}‘𝑇))
112fvexi 6842 . . . . . 6 𝑋 ∈ V
12 fex 7166 . . . . . 6 ((𝑇:𝑋𝑌𝑋 ∈ V) → 𝑇 ∈ V)
1311, 12mpan2 691 . . . . 5 (𝑇:𝑋𝑌𝑇 ∈ V)
14 eqid 2733 . . . . . 6 {⟨𝑡, 𝑠⟩ ∣ (𝑡:𝑋𝑌𝑠:𝑌𝑋 ∧ ∀𝑥𝑋𝑦𝑌 ((𝑡𝑥)𝑄𝑦) = (𝑥𝑃(𝑠𝑦)))} = {⟨𝑡, 𝑠⟩ ∣ (𝑡:𝑋𝑌𝑠:𝑌𝑋 ∧ ∀𝑥𝑋𝑦𝑌 ((𝑡𝑥)𝑄𝑦) = (𝑥𝑃(𝑠𝑦)))}
15 feq1 6634 . . . . . . 7 (𝑡 = 𝑇 → (𝑡:𝑋𝑌𝑇:𝑋𝑌))
16 fveq1 6827 . . . . . . . . . 10 (𝑡 = 𝑇 → (𝑡𝑥) = (𝑇𝑥))
1716oveq1d 7367 . . . . . . . . 9 (𝑡 = 𝑇 → ((𝑡𝑥)𝑄𝑦) = ((𝑇𝑥)𝑄𝑦))
1817eqeq1d 2735 . . . . . . . 8 (𝑡 = 𝑇 → (((𝑡𝑥)𝑄𝑦) = (𝑥𝑃(𝑠𝑦)) ↔ ((𝑇𝑥)𝑄𝑦) = (𝑥𝑃(𝑠𝑦))))
19182ralbidv 3197 . . . . . . 7 (𝑡 = 𝑇 → (∀𝑥𝑋𝑦𝑌 ((𝑡𝑥)𝑄𝑦) = (𝑥𝑃(𝑠𝑦)) ↔ ∀𝑥𝑋𝑦𝑌 ((𝑇𝑥)𝑄𝑦) = (𝑥𝑃(𝑠𝑦))))
2015, 193anbi13d 1440 . . . . . 6 (𝑡 = 𝑇 → ((𝑡:𝑋𝑌𝑠:𝑌𝑋 ∧ ∀𝑥𝑋𝑦𝑌 ((𝑡𝑥)𝑄𝑦) = (𝑥𝑃(𝑠𝑦))) ↔ (𝑇:𝑋𝑌𝑠:𝑌𝑋 ∧ ∀𝑥𝑋𝑦𝑌 ((𝑇𝑥)𝑄𝑦) = (𝑥𝑃(𝑠𝑦)))))
2114, 20fvopab5 6968 . . . . 5 (𝑇 ∈ V → ({⟨𝑡, 𝑠⟩ ∣ (𝑡:𝑋𝑌𝑠:𝑌𝑋 ∧ ∀𝑥𝑋𝑦𝑌 ((𝑡𝑥)𝑄𝑦) = (𝑥𝑃(𝑠𝑦)))}‘𝑇) = (℩𝑠(𝑇:𝑋𝑌𝑠:𝑌𝑋 ∧ ∀𝑥𝑋𝑦𝑌 ((𝑇𝑥)𝑄𝑦) = (𝑥𝑃(𝑠𝑦)))))
2213, 21syl 17 . . . 4 (𝑇:𝑋𝑌 → ({⟨𝑡, 𝑠⟩ ∣ (𝑡:𝑋𝑌𝑠:𝑌𝑋 ∧ ∀𝑥𝑋𝑦𝑌 ((𝑡𝑥)𝑄𝑦) = (𝑥𝑃(𝑠𝑦)))}‘𝑇) = (℩𝑠(𝑇:𝑋𝑌𝑠:𝑌𝑋 ∧ ∀𝑥𝑋𝑦𝑌 ((𝑇𝑥)𝑄𝑦) = (𝑥𝑃(𝑠𝑦)))))
23 3anass 1094 . . . . . 6 ((𝑇:𝑋𝑌𝑠:𝑌𝑋 ∧ ∀𝑥𝑋𝑦𝑌 ((𝑇𝑥)𝑄𝑦) = (𝑥𝑃(𝑠𝑦))) ↔ (𝑇:𝑋𝑌 ∧ (𝑠:𝑌𝑋 ∧ ∀𝑥𝑋𝑦𝑌 ((𝑇𝑥)𝑄𝑦) = (𝑥𝑃(𝑠𝑦)))))
2423baib 535 . . . . 5 (𝑇:𝑋𝑌 → ((𝑇:𝑋𝑌𝑠:𝑌𝑋 ∧ ∀𝑥𝑋𝑦𝑌 ((𝑇𝑥)𝑄𝑦) = (𝑥𝑃(𝑠𝑦))) ↔ (𝑠:𝑌𝑋 ∧ ∀𝑥𝑋𝑦𝑌 ((𝑇𝑥)𝑄𝑦) = (𝑥𝑃(𝑠𝑦)))))
2524iotabidv 6470 . . . 4 (𝑇:𝑋𝑌 → (℩𝑠(𝑇:𝑋𝑌𝑠:𝑌𝑋 ∧ ∀𝑥𝑋𝑦𝑌 ((𝑇𝑥)𝑄𝑦) = (𝑥𝑃(𝑠𝑦)))) = (℩𝑠(𝑠:𝑌𝑋 ∧ ∀𝑥𝑋𝑦𝑌 ((𝑇𝑥)𝑄𝑦) = (𝑥𝑃(𝑠𝑦)))))
2622, 25eqtrd 2768 . . 3 (𝑇:𝑋𝑌 → ({⟨𝑡, 𝑠⟩ ∣ (𝑡:𝑋𝑌𝑠:𝑌𝑋 ∧ ∀𝑥𝑋𝑦𝑌 ((𝑡𝑥)𝑄𝑦) = (𝑥𝑃(𝑠𝑦)))}‘𝑇) = (℩𝑠(𝑠:𝑌𝑋 ∧ ∀𝑥𝑋𝑦𝑌 ((𝑇𝑥)𝑄𝑦) = (𝑥𝑃(𝑠𝑦)))))
27263ad2ant3 1135 . 2 ((𝑈 ∈ CPreHilOLD𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) → ({⟨𝑡, 𝑠⟩ ∣ (𝑡:𝑋𝑌𝑠:𝑌𝑋 ∧ ∀𝑥𝑋𝑦𝑌 ((𝑡𝑥)𝑄𝑦) = (𝑥𝑃(𝑠𝑦)))}‘𝑇) = (℩𝑠(𝑠:𝑌𝑋 ∧ ∀𝑥𝑋𝑦𝑌 ((𝑇𝑥)𝑄𝑦) = (𝑥𝑃(𝑠𝑦)))))
2810, 27eqtrd 2768 1 ((𝑈 ∈ CPreHilOLD𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) → (𝐴𝑇) = (℩𝑠(𝑠:𝑌𝑋 ∧ ∀𝑥𝑋𝑦𝑌 ((𝑇𝑥)𝑄𝑦) = (𝑥𝑃(𝑠𝑦)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2113  wral 3048  Vcvv 3437  {copab 5155  cio 6440  wf 6482  cfv 6486  (class class class)co 7352  NrmCVeccnv 30566  BaseSetcba 30568  ·𝑖OLDcdip 30682  adjcaj 30730  CPreHilOLDccphlo 30794
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7355  df-oprab 7356  df-mpo 7357  df-map 8758  df-aj 30732  df-ph 30795
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator