MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ajval Structured version   Visualization version   GIF version

Theorem ajval 28648
Description: Value of the adjoint function. (Contributed by NM, 25-Jan-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
ajval.1 𝑋 = (BaseSet‘𝑈)
ajval.2 𝑌 = (BaseSet‘𝑊)
ajval.3 𝑃 = (·𝑖OLD𝑈)
ajval.4 𝑄 = (·𝑖OLD𝑊)
ajval.5 𝐴 = (𝑈adj𝑊)
Assertion
Ref Expression
ajval ((𝑈 ∈ CPreHilOLD𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) → (𝐴𝑇) = (℩𝑠(𝑠:𝑌𝑋 ∧ ∀𝑥𝑋𝑦𝑌 ((𝑇𝑥)𝑄𝑦) = (𝑥𝑃(𝑠𝑦)))))
Distinct variable groups:   𝑥,𝑠,𝑦,𝑇   𝑈,𝑠,𝑥,𝑦   𝑊,𝑠,𝑥,𝑦   𝑋,𝑠,𝑥,𝑦   𝑌,𝑠,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑠)   𝑃(𝑥,𝑦,𝑠)   𝑄(𝑥,𝑦,𝑠)   𝑌(𝑥)

Proof of Theorem ajval
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 phnv 28601 . . . . 5 (𝑈 ∈ CPreHilOLD𝑈 ∈ NrmCVec)
2 ajval.1 . . . . . 6 𝑋 = (BaseSet‘𝑈)
3 ajval.2 . . . . . 6 𝑌 = (BaseSet‘𝑊)
4 ajval.3 . . . . . 6 𝑃 = (·𝑖OLD𝑈)
5 ajval.4 . . . . . 6 𝑄 = (·𝑖OLD𝑊)
6 ajval.5 . . . . . 6 𝐴 = (𝑈adj𝑊)
72, 3, 4, 5, 6ajfval 28596 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → 𝐴 = {⟨𝑡, 𝑠⟩ ∣ (𝑡:𝑋𝑌𝑠:𝑌𝑋 ∧ ∀𝑥𝑋𝑦𝑌 ((𝑡𝑥)𝑄𝑦) = (𝑥𝑃(𝑠𝑦)))})
81, 7sylan 583 . . . 4 ((𝑈 ∈ CPreHilOLD𝑊 ∈ NrmCVec) → 𝐴 = {⟨𝑡, 𝑠⟩ ∣ (𝑡:𝑋𝑌𝑠:𝑌𝑋 ∧ ∀𝑥𝑋𝑦𝑌 ((𝑡𝑥)𝑄𝑦) = (𝑥𝑃(𝑠𝑦)))})
98fveq1d 6651 . . 3 ((𝑈 ∈ CPreHilOLD𝑊 ∈ NrmCVec) → (𝐴𝑇) = ({⟨𝑡, 𝑠⟩ ∣ (𝑡:𝑋𝑌𝑠:𝑌𝑋 ∧ ∀𝑥𝑋𝑦𝑌 ((𝑡𝑥)𝑄𝑦) = (𝑥𝑃(𝑠𝑦)))}‘𝑇))
1093adant3 1129 . 2 ((𝑈 ∈ CPreHilOLD𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) → (𝐴𝑇) = ({⟨𝑡, 𝑠⟩ ∣ (𝑡:𝑋𝑌𝑠:𝑌𝑋 ∧ ∀𝑥𝑋𝑦𝑌 ((𝑡𝑥)𝑄𝑦) = (𝑥𝑃(𝑠𝑦)))}‘𝑇))
112fvexi 6663 . . . . . 6 𝑋 ∈ V
12 fex 6970 . . . . . 6 ((𝑇:𝑋𝑌𝑋 ∈ V) → 𝑇 ∈ V)
1311, 12mpan2 690 . . . . 5 (𝑇:𝑋𝑌𝑇 ∈ V)
14 eqid 2801 . . . . . 6 {⟨𝑡, 𝑠⟩ ∣ (𝑡:𝑋𝑌𝑠:𝑌𝑋 ∧ ∀𝑥𝑋𝑦𝑌 ((𝑡𝑥)𝑄𝑦) = (𝑥𝑃(𝑠𝑦)))} = {⟨𝑡, 𝑠⟩ ∣ (𝑡:𝑋𝑌𝑠:𝑌𝑋 ∧ ∀𝑥𝑋𝑦𝑌 ((𝑡𝑥)𝑄𝑦) = (𝑥𝑃(𝑠𝑦)))}
15 feq1 6472 . . . . . . 7 (𝑡 = 𝑇 → (𝑡:𝑋𝑌𝑇:𝑋𝑌))
16 fveq1 6648 . . . . . . . . . 10 (𝑡 = 𝑇 → (𝑡𝑥) = (𝑇𝑥))
1716oveq1d 7154 . . . . . . . . 9 (𝑡 = 𝑇 → ((𝑡𝑥)𝑄𝑦) = ((𝑇𝑥)𝑄𝑦))
1817eqeq1d 2803 . . . . . . . 8 (𝑡 = 𝑇 → (((𝑡𝑥)𝑄𝑦) = (𝑥𝑃(𝑠𝑦)) ↔ ((𝑇𝑥)𝑄𝑦) = (𝑥𝑃(𝑠𝑦))))
19182ralbidv 3167 . . . . . . 7 (𝑡 = 𝑇 → (∀𝑥𝑋𝑦𝑌 ((𝑡𝑥)𝑄𝑦) = (𝑥𝑃(𝑠𝑦)) ↔ ∀𝑥𝑋𝑦𝑌 ((𝑇𝑥)𝑄𝑦) = (𝑥𝑃(𝑠𝑦))))
2015, 193anbi13d 1435 . . . . . 6 (𝑡 = 𝑇 → ((𝑡:𝑋𝑌𝑠:𝑌𝑋 ∧ ∀𝑥𝑋𝑦𝑌 ((𝑡𝑥)𝑄𝑦) = (𝑥𝑃(𝑠𝑦))) ↔ (𝑇:𝑋𝑌𝑠:𝑌𝑋 ∧ ∀𝑥𝑋𝑦𝑌 ((𝑇𝑥)𝑄𝑦) = (𝑥𝑃(𝑠𝑦)))))
2114, 20fvopab5 6781 . . . . 5 (𝑇 ∈ V → ({⟨𝑡, 𝑠⟩ ∣ (𝑡:𝑋𝑌𝑠:𝑌𝑋 ∧ ∀𝑥𝑋𝑦𝑌 ((𝑡𝑥)𝑄𝑦) = (𝑥𝑃(𝑠𝑦)))}‘𝑇) = (℩𝑠(𝑇:𝑋𝑌𝑠:𝑌𝑋 ∧ ∀𝑥𝑋𝑦𝑌 ((𝑇𝑥)𝑄𝑦) = (𝑥𝑃(𝑠𝑦)))))
2213, 21syl 17 . . . 4 (𝑇:𝑋𝑌 → ({⟨𝑡, 𝑠⟩ ∣ (𝑡:𝑋𝑌𝑠:𝑌𝑋 ∧ ∀𝑥𝑋𝑦𝑌 ((𝑡𝑥)𝑄𝑦) = (𝑥𝑃(𝑠𝑦)))}‘𝑇) = (℩𝑠(𝑇:𝑋𝑌𝑠:𝑌𝑋 ∧ ∀𝑥𝑋𝑦𝑌 ((𝑇𝑥)𝑄𝑦) = (𝑥𝑃(𝑠𝑦)))))
23 3anass 1092 . . . . . 6 ((𝑇:𝑋𝑌𝑠:𝑌𝑋 ∧ ∀𝑥𝑋𝑦𝑌 ((𝑇𝑥)𝑄𝑦) = (𝑥𝑃(𝑠𝑦))) ↔ (𝑇:𝑋𝑌 ∧ (𝑠:𝑌𝑋 ∧ ∀𝑥𝑋𝑦𝑌 ((𝑇𝑥)𝑄𝑦) = (𝑥𝑃(𝑠𝑦)))))
2423baib 539 . . . . 5 (𝑇:𝑋𝑌 → ((𝑇:𝑋𝑌𝑠:𝑌𝑋 ∧ ∀𝑥𝑋𝑦𝑌 ((𝑇𝑥)𝑄𝑦) = (𝑥𝑃(𝑠𝑦))) ↔ (𝑠:𝑌𝑋 ∧ ∀𝑥𝑋𝑦𝑌 ((𝑇𝑥)𝑄𝑦) = (𝑥𝑃(𝑠𝑦)))))
2524iotabidv 6312 . . . 4 (𝑇:𝑋𝑌 → (℩𝑠(𝑇:𝑋𝑌𝑠:𝑌𝑋 ∧ ∀𝑥𝑋𝑦𝑌 ((𝑇𝑥)𝑄𝑦) = (𝑥𝑃(𝑠𝑦)))) = (℩𝑠(𝑠:𝑌𝑋 ∧ ∀𝑥𝑋𝑦𝑌 ((𝑇𝑥)𝑄𝑦) = (𝑥𝑃(𝑠𝑦)))))
2622, 25eqtrd 2836 . . 3 (𝑇:𝑋𝑌 → ({⟨𝑡, 𝑠⟩ ∣ (𝑡:𝑋𝑌𝑠:𝑌𝑋 ∧ ∀𝑥𝑋𝑦𝑌 ((𝑡𝑥)𝑄𝑦) = (𝑥𝑃(𝑠𝑦)))}‘𝑇) = (℩𝑠(𝑠:𝑌𝑋 ∧ ∀𝑥𝑋𝑦𝑌 ((𝑇𝑥)𝑄𝑦) = (𝑥𝑃(𝑠𝑦)))))
27263ad2ant3 1132 . 2 ((𝑈 ∈ CPreHilOLD𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) → ({⟨𝑡, 𝑠⟩ ∣ (𝑡:𝑋𝑌𝑠:𝑌𝑋 ∧ ∀𝑥𝑋𝑦𝑌 ((𝑡𝑥)𝑄𝑦) = (𝑥𝑃(𝑠𝑦)))}‘𝑇) = (℩𝑠(𝑠:𝑌𝑋 ∧ ∀𝑥𝑋𝑦𝑌 ((𝑇𝑥)𝑄𝑦) = (𝑥𝑃(𝑠𝑦)))))
2810, 27eqtrd 2836 1 ((𝑈 ∈ CPreHilOLD𝑊 ∈ NrmCVec ∧ 𝑇:𝑋𝑌) → (𝐴𝑇) = (℩𝑠(𝑠:𝑌𝑋 ∧ ∀𝑥𝑋𝑦𝑌 ((𝑇𝑥)𝑄𝑦) = (𝑥𝑃(𝑠𝑦)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2112  wral 3109  Vcvv 3444  {copab 5095  cio 6285  wf 6324  cfv 6328  (class class class)co 7139  NrmCVeccnv 28371  BaseSetcba 28373  ·𝑖OLDcdip 28487  adjcaj 28535  CPreHilOLDccphlo 28599
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-ral 3114  df-rex 3115  df-reu 3116  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-op 4535  df-uni 4804  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-id 5428  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-ov 7142  df-oprab 7143  df-mpo 7144  df-map 8395  df-aj 28537  df-ph 28600
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator