MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  minvecolem2 Structured version   Visualization version   GIF version

Theorem minvecolem2 30907
Description: Lemma for minveco 30916. Any two points 𝐾 and 𝐿 in 𝑌 are close to each other if they are close to the infimum of distance to 𝐴. (Contributed by Mario Carneiro, 9-May-2014.) (Revised by AV, 4-Oct-2020.) (New usage is discouraged.)
Hypotheses
Ref Expression
minveco.x 𝑋 = (BaseSet‘𝑈)
minveco.m 𝑀 = ( −𝑣𝑈)
minveco.n 𝑁 = (normCV𝑈)
minveco.y 𝑌 = (BaseSet‘𝑊)
minveco.u (𝜑𝑈 ∈ CPreHilOLD)
minveco.w (𝜑𝑊 ∈ ((SubSp‘𝑈) ∩ CBan))
minveco.a (𝜑𝐴𝑋)
minveco.d 𝐷 = (IndMet‘𝑈)
minveco.j 𝐽 = (MetOpen‘𝐷)
minveco.r 𝑅 = ran (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦)))
minveco.s 𝑆 = inf(𝑅, ℝ, < )
minvecolem2.1 (𝜑𝐵 ∈ ℝ)
minvecolem2.2 (𝜑 → 0 ≤ 𝐵)
minvecolem2.3 (𝜑𝐾𝑌)
minvecolem2.4 (𝜑𝐿𝑌)
minvecolem2.5 (𝜑 → ((𝐴𝐷𝐾)↑2) ≤ ((𝑆↑2) + 𝐵))
minvecolem2.6 (𝜑 → ((𝐴𝐷𝐿)↑2) ≤ ((𝑆↑2) + 𝐵))
Assertion
Ref Expression
minvecolem2 (𝜑 → ((𝐾𝐷𝐿)↑2) ≤ (4 · 𝐵))
Distinct variable groups:   𝑦,𝐽   𝑦,𝐾   𝑦,𝐿   𝑦,𝑀   𝑦,𝑁   𝜑,𝑦   𝑦,𝑆   𝑦,𝐴   𝑦,𝐷   𝑦,𝑈   𝑦,𝑊   𝑦,𝑌
Allowed substitution hints:   𝐵(𝑦)   𝑅(𝑦)   𝑋(𝑦)

Proof of Theorem minvecolem2
Dummy variables 𝑥 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 4re 12377 . . . . . 6 4 ∈ ℝ
2 minveco.s . . . . . . . 8 𝑆 = inf(𝑅, ℝ, < )
3 minveco.x . . . . . . . . . . 11 𝑋 = (BaseSet‘𝑈)
4 minveco.m . . . . . . . . . . 11 𝑀 = ( −𝑣𝑈)
5 minveco.n . . . . . . . . . . 11 𝑁 = (normCV𝑈)
6 minveco.y . . . . . . . . . . 11 𝑌 = (BaseSet‘𝑊)
7 minveco.u . . . . . . . . . . 11 (𝜑𝑈 ∈ CPreHilOLD)
8 minveco.w . . . . . . . . . . 11 (𝜑𝑊 ∈ ((SubSp‘𝑈) ∩ CBan))
9 minveco.a . . . . . . . . . . 11 (𝜑𝐴𝑋)
10 minveco.d . . . . . . . . . . 11 𝐷 = (IndMet‘𝑈)
11 minveco.j . . . . . . . . . . 11 𝐽 = (MetOpen‘𝐷)
12 minveco.r . . . . . . . . . . 11 𝑅 = ran (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦)))
133, 4, 5, 6, 7, 8, 9, 10, 11, 12minvecolem1 30906 . . . . . . . . . 10 (𝜑 → (𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∀𝑤𝑅 0 ≤ 𝑤))
1413simp1d 1142 . . . . . . . . 9 (𝜑𝑅 ⊆ ℝ)
1513simp2d 1143 . . . . . . . . 9 (𝜑𝑅 ≠ ∅)
16 0re 11292 . . . . . . . . . 10 0 ∈ ℝ
1713simp3d 1144 . . . . . . . . . 10 (𝜑 → ∀𝑤𝑅 0 ≤ 𝑤)
18 breq1 5169 . . . . . . . . . . . 12 (𝑥 = 0 → (𝑥𝑤 ↔ 0 ≤ 𝑤))
1918ralbidv 3184 . . . . . . . . . . 11 (𝑥 = 0 → (∀𝑤𝑅 𝑥𝑤 ↔ ∀𝑤𝑅 0 ≤ 𝑤))
2019rspcev 3635 . . . . . . . . . 10 ((0 ∈ ℝ ∧ ∀𝑤𝑅 0 ≤ 𝑤) → ∃𝑥 ∈ ℝ ∀𝑤𝑅 𝑥𝑤)
2116, 17, 20sylancr 586 . . . . . . . . 9 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑤𝑅 𝑥𝑤)
22 infrecl 12277 . . . . . . . . 9 ((𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑤𝑅 𝑥𝑤) → inf(𝑅, ℝ, < ) ∈ ℝ)
2314, 15, 21, 22syl3anc 1371 . . . . . . . 8 (𝜑 → inf(𝑅, ℝ, < ) ∈ ℝ)
242, 23eqeltrid 2848 . . . . . . 7 (𝜑𝑆 ∈ ℝ)
2524resqcld 14175 . . . . . 6 (𝜑 → (𝑆↑2) ∈ ℝ)
26 remulcl 11269 . . . . . 6 ((4 ∈ ℝ ∧ (𝑆↑2) ∈ ℝ) → (4 · (𝑆↑2)) ∈ ℝ)
271, 25, 26sylancr 586 . . . . 5 (𝜑 → (4 · (𝑆↑2)) ∈ ℝ)
28 phnv 30846 . . . . . . . . 9 (𝑈 ∈ CPreHilOLD𝑈 ∈ NrmCVec)
297, 28syl 17 . . . . . . . 8 (𝜑𝑈 ∈ NrmCVec)
303, 10imsmet 30723 . . . . . . . 8 (𝑈 ∈ NrmCVec → 𝐷 ∈ (Met‘𝑋))
3129, 30syl 17 . . . . . . 7 (𝜑𝐷 ∈ (Met‘𝑋))
32 inss1 4258 . . . . . . . . . 10 ((SubSp‘𝑈) ∩ CBan) ⊆ (SubSp‘𝑈)
3332, 8sselid 4006 . . . . . . . . 9 (𝜑𝑊 ∈ (SubSp‘𝑈))
34 eqid 2740 . . . . . . . . . 10 (SubSp‘𝑈) = (SubSp‘𝑈)
353, 6, 34sspba 30759 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ (SubSp‘𝑈)) → 𝑌𝑋)
3629, 33, 35syl2anc 583 . . . . . . . 8 (𝜑𝑌𝑋)
37 minvecolem2.3 . . . . . . . 8 (𝜑𝐾𝑌)
3836, 37sseldd 4009 . . . . . . 7 (𝜑𝐾𝑋)
39 minvecolem2.4 . . . . . . . 8 (𝜑𝐿𝑌)
4036, 39sseldd 4009 . . . . . . 7 (𝜑𝐿𝑋)
41 metcl 24363 . . . . . . 7 ((𝐷 ∈ (Met‘𝑋) ∧ 𝐾𝑋𝐿𝑋) → (𝐾𝐷𝐿) ∈ ℝ)
4231, 38, 40, 41syl3anc 1371 . . . . . 6 (𝜑 → (𝐾𝐷𝐿) ∈ ℝ)
4342resqcld 14175 . . . . 5 (𝜑 → ((𝐾𝐷𝐿)↑2) ∈ ℝ)
4427, 43readdcld 11319 . . . 4 (𝜑 → ((4 · (𝑆↑2)) + ((𝐾𝐷𝐿)↑2)) ∈ ℝ)
45 ax-1cn 11242 . . . . . . . . . . . . 13 1 ∈ ℂ
46 halfcl 12518 . . . . . . . . . . . . 13 (1 ∈ ℂ → (1 / 2) ∈ ℂ)
4745, 46mp1i 13 . . . . . . . . . . . 12 (𝜑 → (1 / 2) ∈ ℂ)
48 eqid 2740 . . . . . . . . . . . . . . 15 ( +𝑣𝑈) = ( +𝑣𝑈)
49 eqid 2740 . . . . . . . . . . . . . . 15 ( +𝑣𝑊) = ( +𝑣𝑊)
506, 48, 49, 34sspgval 30761 . . . . . . . . . . . . . 14 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ (SubSp‘𝑈)) ∧ (𝐾𝑌𝐿𝑌)) → (𝐾( +𝑣𝑊)𝐿) = (𝐾( +𝑣𝑈)𝐿))
5129, 33, 37, 39, 50syl22anc 838 . . . . . . . . . . . . 13 (𝜑 → (𝐾( +𝑣𝑊)𝐿) = (𝐾( +𝑣𝑈)𝐿))
5234sspnv 30758 . . . . . . . . . . . . . . 15 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ (SubSp‘𝑈)) → 𝑊 ∈ NrmCVec)
5329, 33, 52syl2anc 583 . . . . . . . . . . . . . 14 (𝜑𝑊 ∈ NrmCVec)
546, 49nvgcl 30652 . . . . . . . . . . . . . 14 ((𝑊 ∈ NrmCVec ∧ 𝐾𝑌𝐿𝑌) → (𝐾( +𝑣𝑊)𝐿) ∈ 𝑌)
5553, 37, 39, 54syl3anc 1371 . . . . . . . . . . . . 13 (𝜑 → (𝐾( +𝑣𝑊)𝐿) ∈ 𝑌)
5651, 55eqeltrrd 2845 . . . . . . . . . . . 12 (𝜑 → (𝐾( +𝑣𝑈)𝐿) ∈ 𝑌)
57 eqid 2740 . . . . . . . . . . . . 13 ( ·𝑠OLD𝑈) = ( ·𝑠OLD𝑈)
58 eqid 2740 . . . . . . . . . . . . 13 ( ·𝑠OLD𝑊) = ( ·𝑠OLD𝑊)
596, 57, 58, 34sspsval 30763 . . . . . . . . . . . 12 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ (SubSp‘𝑈)) ∧ ((1 / 2) ∈ ℂ ∧ (𝐾( +𝑣𝑈)𝐿) ∈ 𝑌)) → ((1 / 2)( ·𝑠OLD𝑊)(𝐾( +𝑣𝑈)𝐿)) = ((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿)))
6029, 33, 47, 56, 59syl22anc 838 . . . . . . . . . . 11 (𝜑 → ((1 / 2)( ·𝑠OLD𝑊)(𝐾( +𝑣𝑈)𝐿)) = ((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿)))
616, 58nvscl 30658 . . . . . . . . . . . 12 ((𝑊 ∈ NrmCVec ∧ (1 / 2) ∈ ℂ ∧ (𝐾( +𝑣𝑈)𝐿) ∈ 𝑌) → ((1 / 2)( ·𝑠OLD𝑊)(𝐾( +𝑣𝑈)𝐿)) ∈ 𝑌)
6253, 47, 56, 61syl3anc 1371 . . . . . . . . . . 11 (𝜑 → ((1 / 2)( ·𝑠OLD𝑊)(𝐾( +𝑣𝑈)𝐿)) ∈ 𝑌)
6360, 62eqeltrrd 2845 . . . . . . . . . 10 (𝜑 → ((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿)) ∈ 𝑌)
6436, 63sseldd 4009 . . . . . . . . 9 (𝜑 → ((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿)) ∈ 𝑋)
653, 4nvmcl 30678 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋 ∧ ((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿)) ∈ 𝑋) → (𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿))) ∈ 𝑋)
6629, 9, 64, 65syl3anc 1371 . . . . . . . 8 (𝜑 → (𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿))) ∈ 𝑋)
673, 5nvcl 30693 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ (𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿))) ∈ 𝑋) → (𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿)))) ∈ ℝ)
6829, 66, 67syl2anc 583 . . . . . . 7 (𝜑 → (𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿)))) ∈ ℝ)
6968resqcld 14175 . . . . . 6 (𝜑 → ((𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿))))↑2) ∈ ℝ)
70 remulcl 11269 . . . . . 6 ((4 ∈ ℝ ∧ ((𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿))))↑2) ∈ ℝ) → (4 · ((𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿))))↑2)) ∈ ℝ)
711, 69, 70sylancr 586 . . . . 5 (𝜑 → (4 · ((𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿))))↑2)) ∈ ℝ)
7271, 43readdcld 11319 . . . 4 (𝜑 → ((4 · ((𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿))))↑2)) + ((𝐾𝐷𝐿)↑2)) ∈ ℝ)
73 minvecolem2.1 . . . . . 6 (𝜑𝐵 ∈ ℝ)
7425, 73readdcld 11319 . . . . 5 (𝜑 → ((𝑆↑2) + 𝐵) ∈ ℝ)
75 remulcl 11269 . . . . 5 ((4 ∈ ℝ ∧ ((𝑆↑2) + 𝐵) ∈ ℝ) → (4 · ((𝑆↑2) + 𝐵)) ∈ ℝ)
761, 74, 75sylancr 586 . . . 4 (𝜑 → (4 · ((𝑆↑2) + 𝐵)) ∈ ℝ)
7716a1i 11 . . . . . . . . . 10 (𝜑 → 0 ∈ ℝ)
78 infregelb 12279 . . . . . . . . . 10 (((𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑤𝑅 𝑥𝑤) ∧ 0 ∈ ℝ) → (0 ≤ inf(𝑅, ℝ, < ) ↔ ∀𝑤𝑅 0 ≤ 𝑤))
7914, 15, 21, 77, 78syl31anc 1373 . . . . . . . . 9 (𝜑 → (0 ≤ inf(𝑅, ℝ, < ) ↔ ∀𝑤𝑅 0 ≤ 𝑤))
8017, 79mpbird 257 . . . . . . . 8 (𝜑 → 0 ≤ inf(𝑅, ℝ, < ))
8180, 2breqtrrdi 5208 . . . . . . 7 (𝜑 → 0 ≤ 𝑆)
82 eqid 2740 . . . . . . . . . . . 12 (𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿)))) = (𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿))))
83 oveq2 7456 . . . . . . . . . . . . . 14 (𝑦 = ((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿)) → (𝐴𝑀𝑦) = (𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿))))
8483fveq2d 6924 . . . . . . . . . . . . 13 (𝑦 = ((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿)) → (𝑁‘(𝐴𝑀𝑦)) = (𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿)))))
8584rspceeqv 3658 . . . . . . . . . . . 12 ((((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿)) ∈ 𝑌 ∧ (𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿)))) = (𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿))))) → ∃𝑦𝑌 (𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿)))) = (𝑁‘(𝐴𝑀𝑦)))
8663, 82, 85sylancl 585 . . . . . . . . . . 11 (𝜑 → ∃𝑦𝑌 (𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿)))) = (𝑁‘(𝐴𝑀𝑦)))
87 eqid 2740 . . . . . . . . . . . 12 (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦))) = (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦)))
88 fvex 6933 . . . . . . . . . . . 12 (𝑁‘(𝐴𝑀𝑦)) ∈ V
8987, 88elrnmpti 5985 . . . . . . . . . . 11 ((𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿)))) ∈ ran (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦))) ↔ ∃𝑦𝑌 (𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿)))) = (𝑁‘(𝐴𝑀𝑦)))
9086, 89sylibr 234 . . . . . . . . . 10 (𝜑 → (𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿)))) ∈ ran (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦))))
9190, 12eleqtrrdi 2855 . . . . . . . . 9 (𝜑 → (𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿)))) ∈ 𝑅)
92 infrelb 12280 . . . . . . . . 9 ((𝑅 ⊆ ℝ ∧ ∃𝑥 ∈ ℝ ∀𝑤𝑅 𝑥𝑤 ∧ (𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿)))) ∈ 𝑅) → inf(𝑅, ℝ, < ) ≤ (𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿)))))
9314, 21, 91, 92syl3anc 1371 . . . . . . . 8 (𝜑 → inf(𝑅, ℝ, < ) ≤ (𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿)))))
942, 93eqbrtrid 5201 . . . . . . 7 (𝜑𝑆 ≤ (𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿)))))
95 le2sq2 14185 . . . . . . 7 (((𝑆 ∈ ℝ ∧ 0 ≤ 𝑆) ∧ ((𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿)))) ∈ ℝ ∧ 𝑆 ≤ (𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿)))))) → (𝑆↑2) ≤ ((𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿))))↑2))
9624, 81, 68, 94, 95syl22anc 838 . . . . . 6 (𝜑 → (𝑆↑2) ≤ ((𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿))))↑2))
97 4pos 12400 . . . . . . . . 9 0 < 4
981, 97pm3.2i 470 . . . . . . . 8 (4 ∈ ℝ ∧ 0 < 4)
99 lemul2 12147 . . . . . . . 8 (((𝑆↑2) ∈ ℝ ∧ ((𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿))))↑2) ∈ ℝ ∧ (4 ∈ ℝ ∧ 0 < 4)) → ((𝑆↑2) ≤ ((𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿))))↑2) ↔ (4 · (𝑆↑2)) ≤ (4 · ((𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿))))↑2))))
10098, 99mp3an3 1450 . . . . . . 7 (((𝑆↑2) ∈ ℝ ∧ ((𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿))))↑2) ∈ ℝ) → ((𝑆↑2) ≤ ((𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿))))↑2) ↔ (4 · (𝑆↑2)) ≤ (4 · ((𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿))))↑2))))
10125, 69, 100syl2anc 583 . . . . . 6 (𝜑 → ((𝑆↑2) ≤ ((𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿))))↑2) ↔ (4 · (𝑆↑2)) ≤ (4 · ((𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿))))↑2))))
10296, 101mpbid 232 . . . . 5 (𝜑 → (4 · (𝑆↑2)) ≤ (4 · ((𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿))))↑2)))
10327, 71, 43, 102leadd1dd 11904 . . . 4 (𝜑 → ((4 · (𝑆↑2)) + ((𝐾𝐷𝐿)↑2)) ≤ ((4 · ((𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿))))↑2)) + ((𝐾𝐷𝐿)↑2)))
104 metcl 24363 . . . . . . . . . 10 ((𝐷 ∈ (Met‘𝑋) ∧ 𝐴𝑋𝐾𝑋) → (𝐴𝐷𝐾) ∈ ℝ)
10531, 9, 38, 104syl3anc 1371 . . . . . . . . 9 (𝜑 → (𝐴𝐷𝐾) ∈ ℝ)
106105resqcld 14175 . . . . . . . 8 (𝜑 → ((𝐴𝐷𝐾)↑2) ∈ ℝ)
107 metcl 24363 . . . . . . . . . 10 ((𝐷 ∈ (Met‘𝑋) ∧ 𝐴𝑋𝐿𝑋) → (𝐴𝐷𝐿) ∈ ℝ)
10831, 9, 40, 107syl3anc 1371 . . . . . . . . 9 (𝜑 → (𝐴𝐷𝐿) ∈ ℝ)
109108resqcld 14175 . . . . . . . 8 (𝜑 → ((𝐴𝐷𝐿)↑2) ∈ ℝ)
110 minvecolem2.5 . . . . . . . 8 (𝜑 → ((𝐴𝐷𝐾)↑2) ≤ ((𝑆↑2) + 𝐵))
111 minvecolem2.6 . . . . . . . 8 (𝜑 → ((𝐴𝐷𝐿)↑2) ≤ ((𝑆↑2) + 𝐵))
112106, 109, 74, 74, 110, 111le2addd 11909 . . . . . . 7 (𝜑 → (((𝐴𝐷𝐾)↑2) + ((𝐴𝐷𝐿)↑2)) ≤ (((𝑆↑2) + 𝐵) + ((𝑆↑2) + 𝐵)))
11374recnd 11318 . . . . . . . 8 (𝜑 → ((𝑆↑2) + 𝐵) ∈ ℂ)
1141132timesd 12536 . . . . . . 7 (𝜑 → (2 · ((𝑆↑2) + 𝐵)) = (((𝑆↑2) + 𝐵) + ((𝑆↑2) + 𝐵)))
115112, 114breqtrrd 5194 . . . . . 6 (𝜑 → (((𝐴𝐷𝐾)↑2) + ((𝐴𝐷𝐿)↑2)) ≤ (2 · ((𝑆↑2) + 𝐵)))
116106, 109readdcld 11319 . . . . . . 7 (𝜑 → (((𝐴𝐷𝐾)↑2) + ((𝐴𝐷𝐿)↑2)) ∈ ℝ)
117 2re 12367 . . . . . . . 8 2 ∈ ℝ
118 remulcl 11269 . . . . . . . 8 ((2 ∈ ℝ ∧ ((𝑆↑2) + 𝐵) ∈ ℝ) → (2 · ((𝑆↑2) + 𝐵)) ∈ ℝ)
119117, 74, 118sylancr 586 . . . . . . 7 (𝜑 → (2 · ((𝑆↑2) + 𝐵)) ∈ ℝ)
120 2pos 12396 . . . . . . . . 9 0 < 2
121117, 120pm3.2i 470 . . . . . . . 8 (2 ∈ ℝ ∧ 0 < 2)
122 lemul2 12147 . . . . . . . 8 (((((𝐴𝐷𝐾)↑2) + ((𝐴𝐷𝐿)↑2)) ∈ ℝ ∧ (2 · ((𝑆↑2) + 𝐵)) ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((((𝐴𝐷𝐾)↑2) + ((𝐴𝐷𝐿)↑2)) ≤ (2 · ((𝑆↑2) + 𝐵)) ↔ (2 · (((𝐴𝐷𝐾)↑2) + ((𝐴𝐷𝐿)↑2))) ≤ (2 · (2 · ((𝑆↑2) + 𝐵)))))
123121, 122mp3an3 1450 . . . . . . 7 (((((𝐴𝐷𝐾)↑2) + ((𝐴𝐷𝐿)↑2)) ∈ ℝ ∧ (2 · ((𝑆↑2) + 𝐵)) ∈ ℝ) → ((((𝐴𝐷𝐾)↑2) + ((𝐴𝐷𝐿)↑2)) ≤ (2 · ((𝑆↑2) + 𝐵)) ↔ (2 · (((𝐴𝐷𝐾)↑2) + ((𝐴𝐷𝐿)↑2))) ≤ (2 · (2 · ((𝑆↑2) + 𝐵)))))
124116, 119, 123syl2anc 583 . . . . . 6 (𝜑 → ((((𝐴𝐷𝐾)↑2) + ((𝐴𝐷𝐿)↑2)) ≤ (2 · ((𝑆↑2) + 𝐵)) ↔ (2 · (((𝐴𝐷𝐾)↑2) + ((𝐴𝐷𝐿)↑2))) ≤ (2 · (2 · ((𝑆↑2) + 𝐵)))))
125115, 124mpbid 232 . . . . 5 (𝜑 → (2 · (((𝐴𝐷𝐾)↑2) + ((𝐴𝐷𝐿)↑2))) ≤ (2 · (2 · ((𝑆↑2) + 𝐵))))
1263, 4nvmcl 30678 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐾𝑋) → (𝐴𝑀𝐾) ∈ 𝑋)
12729, 9, 38, 126syl3anc 1371 . . . . . . 7 (𝜑 → (𝐴𝑀𝐾) ∈ 𝑋)
1283, 4nvmcl 30678 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐿𝑋) → (𝐴𝑀𝐿) ∈ 𝑋)
12929, 9, 40, 128syl3anc 1371 . . . . . . 7 (𝜑 → (𝐴𝑀𝐿) ∈ 𝑋)
1303, 48, 4, 5phpar2 30855 . . . . . . 7 ((𝑈 ∈ CPreHilOLD ∧ (𝐴𝑀𝐾) ∈ 𝑋 ∧ (𝐴𝑀𝐿) ∈ 𝑋) → (((𝑁‘((𝐴𝑀𝐾)( +𝑣𝑈)(𝐴𝑀𝐿)))↑2) + ((𝑁‘((𝐴𝑀𝐾)𝑀(𝐴𝑀𝐿)))↑2)) = (2 · (((𝑁‘(𝐴𝑀𝐾))↑2) + ((𝑁‘(𝐴𝑀𝐿))↑2))))
1317, 127, 129, 130syl3anc 1371 . . . . . 6 (𝜑 → (((𝑁‘((𝐴𝑀𝐾)( +𝑣𝑈)(𝐴𝑀𝐿)))↑2) + ((𝑁‘((𝐴𝑀𝐾)𝑀(𝐴𝑀𝐿)))↑2)) = (2 · (((𝑁‘(𝐴𝑀𝐾))↑2) + ((𝑁‘(𝐴𝑀𝐿))↑2))))
132 2cn 12368 . . . . . . . . . 10 2 ∈ ℂ
13368recnd 11318 . . . . . . . . . 10 (𝜑 → (𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿)))) ∈ ℂ)
134 sqmul 14169 . . . . . . . . . 10 ((2 ∈ ℂ ∧ (𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿)))) ∈ ℂ) → ((2 · (𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿)))))↑2) = ((2↑2) · ((𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿))))↑2)))
135132, 133, 134sylancr 586 . . . . . . . . 9 (𝜑 → ((2 · (𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿)))))↑2) = ((2↑2) · ((𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿))))↑2)))
136 sq2 14246 . . . . . . . . . 10 (2↑2) = 4
137136oveq1i 7458 . . . . . . . . 9 ((2↑2) · ((𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿))))↑2)) = (4 · ((𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿))))↑2))
138135, 137eqtrdi 2796 . . . . . . . 8 (𝜑 → ((2 · (𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿)))))↑2) = (4 · ((𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿))))↑2)))
139132a1i 11 . . . . . . . . . . . 12 (𝜑 → 2 ∈ ℂ)
1403, 57, 5nvs 30695 . . . . . . . . . . . 12 ((𝑈 ∈ NrmCVec ∧ 2 ∈ ℂ ∧ (𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿))) ∈ 𝑋) → (𝑁‘(2( ·𝑠OLD𝑈)(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿))))) = ((abs‘2) · (𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿))))))
14129, 139, 66, 140syl3anc 1371 . . . . . . . . . . 11 (𝜑 → (𝑁‘(2( ·𝑠OLD𝑈)(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿))))) = ((abs‘2) · (𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿))))))
142 0le2 12395 . . . . . . . . . . . . 13 0 ≤ 2
143 absid 15345 . . . . . . . . . . . . 13 ((2 ∈ ℝ ∧ 0 ≤ 2) → (abs‘2) = 2)
144117, 142, 143mp2an 691 . . . . . . . . . . . 12 (abs‘2) = 2
145144oveq1i 7458 . . . . . . . . . . 11 ((abs‘2) · (𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿))))) = (2 · (𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿)))))
146141, 145eqtrdi 2796 . . . . . . . . . 10 (𝜑 → (𝑁‘(2( ·𝑠OLD𝑈)(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿))))) = (2 · (𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿))))))
1473, 4, 57nvmdi 30680 . . . . . . . . . . . . 13 ((𝑈 ∈ NrmCVec ∧ (2 ∈ ℂ ∧ 𝐴𝑋 ∧ ((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿)) ∈ 𝑋)) → (2( ·𝑠OLD𝑈)(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿)))) = ((2( ·𝑠OLD𝑈)𝐴)𝑀(2( ·𝑠OLD𝑈)((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿)))))
14829, 139, 9, 64, 147syl13anc 1372 . . . . . . . . . . . 12 (𝜑 → (2( ·𝑠OLD𝑈)(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿)))) = ((2( ·𝑠OLD𝑈)𝐴)𝑀(2( ·𝑠OLD𝑈)((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿)))))
1493, 48, 57nv2 30664 . . . . . . . . . . . . . 14 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝐴( +𝑣𝑈)𝐴) = (2( ·𝑠OLD𝑈)𝐴))
15029, 9, 149syl2anc 583 . . . . . . . . . . . . 13 (𝜑 → (𝐴( +𝑣𝑈)𝐴) = (2( ·𝑠OLD𝑈)𝐴))
151 2ne0 12397 . . . . . . . . . . . . . . . . 17 2 ≠ 0
152132, 151recidi 12025 . . . . . . . . . . . . . . . 16 (2 · (1 / 2)) = 1
153152oveq1i 7458 . . . . . . . . . . . . . . 15 ((2 · (1 / 2))( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿)) = (1( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿))
1543, 48nvgcl 30652 . . . . . . . . . . . . . . . . 17 ((𝑈 ∈ NrmCVec ∧ 𝐾𝑋𝐿𝑋) → (𝐾( +𝑣𝑈)𝐿) ∈ 𝑋)
15529, 38, 40, 154syl3anc 1371 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐾( +𝑣𝑈)𝐿) ∈ 𝑋)
1563, 57nvsid 30659 . . . . . . . . . . . . . . . 16 ((𝑈 ∈ NrmCVec ∧ (𝐾( +𝑣𝑈)𝐿) ∈ 𝑋) → (1( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿)) = (𝐾( +𝑣𝑈)𝐿))
15729, 155, 156syl2anc 583 . . . . . . . . . . . . . . 15 (𝜑 → (1( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿)) = (𝐾( +𝑣𝑈)𝐿))
158153, 157eqtrid 2792 . . . . . . . . . . . . . 14 (𝜑 → ((2 · (1 / 2))( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿)) = (𝐾( +𝑣𝑈)𝐿))
1593, 57nvsass 30660 . . . . . . . . . . . . . . 15 ((𝑈 ∈ NrmCVec ∧ (2 ∈ ℂ ∧ (1 / 2) ∈ ℂ ∧ (𝐾( +𝑣𝑈)𝐿) ∈ 𝑋)) → ((2 · (1 / 2))( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿)) = (2( ·𝑠OLD𝑈)((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿))))
16029, 139, 47, 155, 159syl13anc 1372 . . . . . . . . . . . . . 14 (𝜑 → ((2 · (1 / 2))( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿)) = (2( ·𝑠OLD𝑈)((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿))))
161158, 160eqtr3d 2782 . . . . . . . . . . . . 13 (𝜑 → (𝐾( +𝑣𝑈)𝐿) = (2( ·𝑠OLD𝑈)((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿))))
162150, 161oveq12d 7466 . . . . . . . . . . . 12 (𝜑 → ((𝐴( +𝑣𝑈)𝐴)𝑀(𝐾( +𝑣𝑈)𝐿)) = ((2( ·𝑠OLD𝑈)𝐴)𝑀(2( ·𝑠OLD𝑈)((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿)))))
1633, 48, 4nvaddsub4 30689 . . . . . . . . . . . . 13 ((𝑈 ∈ NrmCVec ∧ (𝐴𝑋𝐴𝑋) ∧ (𝐾𝑋𝐿𝑋)) → ((𝐴( +𝑣𝑈)𝐴)𝑀(𝐾( +𝑣𝑈)𝐿)) = ((𝐴𝑀𝐾)( +𝑣𝑈)(𝐴𝑀𝐿)))
16429, 9, 9, 38, 40, 163syl122anc 1379 . . . . . . . . . . . 12 (𝜑 → ((𝐴( +𝑣𝑈)𝐴)𝑀(𝐾( +𝑣𝑈)𝐿)) = ((𝐴𝑀𝐾)( +𝑣𝑈)(𝐴𝑀𝐿)))
165148, 162, 1643eqtr2d 2786 . . . . . . . . . . 11 (𝜑 → (2( ·𝑠OLD𝑈)(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿)))) = ((𝐴𝑀𝐾)( +𝑣𝑈)(𝐴𝑀𝐿)))
166165fveq2d 6924 . . . . . . . . . 10 (𝜑 → (𝑁‘(2( ·𝑠OLD𝑈)(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿))))) = (𝑁‘((𝐴𝑀𝐾)( +𝑣𝑈)(𝐴𝑀𝐿))))
167146, 166eqtr3d 2782 . . . . . . . . 9 (𝜑 → (2 · (𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿))))) = (𝑁‘((𝐴𝑀𝐾)( +𝑣𝑈)(𝐴𝑀𝐿))))
168167oveq1d 7463 . . . . . . . 8 (𝜑 → ((2 · (𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿)))))↑2) = ((𝑁‘((𝐴𝑀𝐾)( +𝑣𝑈)(𝐴𝑀𝐿)))↑2))
169138, 168eqtr3d 2782 . . . . . . 7 (𝜑 → (4 · ((𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿))))↑2)) = ((𝑁‘((𝐴𝑀𝐾)( +𝑣𝑈)(𝐴𝑀𝐿)))↑2))
1703, 4, 5, 10imsdval 30718 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ 𝐿𝑋𝐾𝑋) → (𝐿𝐷𝐾) = (𝑁‘(𝐿𝑀𝐾)))
17129, 40, 38, 170syl3anc 1371 . . . . . . . . 9 (𝜑 → (𝐿𝐷𝐾) = (𝑁‘(𝐿𝑀𝐾)))
172 metsym 24381 . . . . . . . . . 10 ((𝐷 ∈ (Met‘𝑋) ∧ 𝐾𝑋𝐿𝑋) → (𝐾𝐷𝐿) = (𝐿𝐷𝐾))
17331, 38, 40, 172syl3anc 1371 . . . . . . . . 9 (𝜑 → (𝐾𝐷𝐿) = (𝐿𝐷𝐾))
1743, 4nvnnncan1 30679 . . . . . . . . . . 11 ((𝑈 ∈ NrmCVec ∧ (𝐴𝑋𝐾𝑋𝐿𝑋)) → ((𝐴𝑀𝐾)𝑀(𝐴𝑀𝐿)) = (𝐿𝑀𝐾))
17529, 9, 38, 40, 174syl13anc 1372 . . . . . . . . . 10 (𝜑 → ((𝐴𝑀𝐾)𝑀(𝐴𝑀𝐿)) = (𝐿𝑀𝐾))
176175fveq2d 6924 . . . . . . . . 9 (𝜑 → (𝑁‘((𝐴𝑀𝐾)𝑀(𝐴𝑀𝐿))) = (𝑁‘(𝐿𝑀𝐾)))
177171, 173, 1763eqtr4d 2790 . . . . . . . 8 (𝜑 → (𝐾𝐷𝐿) = (𝑁‘((𝐴𝑀𝐾)𝑀(𝐴𝑀𝐿))))
178177oveq1d 7463 . . . . . . 7 (𝜑 → ((𝐾𝐷𝐿)↑2) = ((𝑁‘((𝐴𝑀𝐾)𝑀(𝐴𝑀𝐿)))↑2))
179169, 178oveq12d 7466 . . . . . 6 (𝜑 → ((4 · ((𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿))))↑2)) + ((𝐾𝐷𝐿)↑2)) = (((𝑁‘((𝐴𝑀𝐾)( +𝑣𝑈)(𝐴𝑀𝐿)))↑2) + ((𝑁‘((𝐴𝑀𝐾)𝑀(𝐴𝑀𝐿)))↑2)))
1803, 4, 5, 10imsdval 30718 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐾𝑋) → (𝐴𝐷𝐾) = (𝑁‘(𝐴𝑀𝐾)))
18129, 9, 38, 180syl3anc 1371 . . . . . . . . 9 (𝜑 → (𝐴𝐷𝐾) = (𝑁‘(𝐴𝑀𝐾)))
182181oveq1d 7463 . . . . . . . 8 (𝜑 → ((𝐴𝐷𝐾)↑2) = ((𝑁‘(𝐴𝑀𝐾))↑2))
1833, 4, 5, 10imsdval 30718 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐿𝑋) → (𝐴𝐷𝐿) = (𝑁‘(𝐴𝑀𝐿)))
18429, 9, 40, 183syl3anc 1371 . . . . . . . . 9 (𝜑 → (𝐴𝐷𝐿) = (𝑁‘(𝐴𝑀𝐿)))
185184oveq1d 7463 . . . . . . . 8 (𝜑 → ((𝐴𝐷𝐿)↑2) = ((𝑁‘(𝐴𝑀𝐿))↑2))
186182, 185oveq12d 7466 . . . . . . 7 (𝜑 → (((𝐴𝐷𝐾)↑2) + ((𝐴𝐷𝐿)↑2)) = (((𝑁‘(𝐴𝑀𝐾))↑2) + ((𝑁‘(𝐴𝑀𝐿))↑2)))
187186oveq2d 7464 . . . . . 6 (𝜑 → (2 · (((𝐴𝐷𝐾)↑2) + ((𝐴𝐷𝐿)↑2))) = (2 · (((𝑁‘(𝐴𝑀𝐾))↑2) + ((𝑁‘(𝐴𝑀𝐿))↑2))))
188131, 179, 1873eqtr4d 2790 . . . . 5 (𝜑 → ((4 · ((𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿))))↑2)) + ((𝐾𝐷𝐿)↑2)) = (2 · (((𝐴𝐷𝐾)↑2) + ((𝐴𝐷𝐿)↑2))))
189 2t2e4 12457 . . . . . . 7 (2 · 2) = 4
190189oveq1i 7458 . . . . . 6 ((2 · 2) · ((𝑆↑2) + 𝐵)) = (4 · ((𝑆↑2) + 𝐵))
191139, 139, 113mulassd 11313 . . . . . 6 (𝜑 → ((2 · 2) · ((𝑆↑2) + 𝐵)) = (2 · (2 · ((𝑆↑2) + 𝐵))))
192190, 191eqtr3id 2794 . . . . 5 (𝜑 → (4 · ((𝑆↑2) + 𝐵)) = (2 · (2 · ((𝑆↑2) + 𝐵))))
193125, 188, 1923brtr4d 5198 . . . 4 (𝜑 → ((4 · ((𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿))))↑2)) + ((𝐾𝐷𝐿)↑2)) ≤ (4 · ((𝑆↑2) + 𝐵)))
19444, 72, 76, 103, 193letrd 11447 . . 3 (𝜑 → ((4 · (𝑆↑2)) + ((𝐾𝐷𝐿)↑2)) ≤ (4 · ((𝑆↑2) + 𝐵)))
195 4cn 12378 . . . . 5 4 ∈ ℂ
196195a1i 11 . . . 4 (𝜑 → 4 ∈ ℂ)
19725recnd 11318 . . . 4 (𝜑 → (𝑆↑2) ∈ ℂ)
19873recnd 11318 . . . 4 (𝜑𝐵 ∈ ℂ)
199196, 197, 198adddid 11314 . . 3 (𝜑 → (4 · ((𝑆↑2) + 𝐵)) = ((4 · (𝑆↑2)) + (4 · 𝐵)))
200194, 199breqtrd 5192 . 2 (𝜑 → ((4 · (𝑆↑2)) + ((𝐾𝐷𝐿)↑2)) ≤ ((4 · (𝑆↑2)) + (4 · 𝐵)))
201 remulcl 11269 . . . 4 ((4 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (4 · 𝐵) ∈ ℝ)
2021, 73, 201sylancr 586 . . 3 (𝜑 → (4 · 𝐵) ∈ ℝ)
20343, 202, 27leadd2d 11885 . 2 (𝜑 → (((𝐾𝐷𝐿)↑2) ≤ (4 · 𝐵) ↔ ((4 · (𝑆↑2)) + ((𝐾𝐷𝐿)↑2)) ≤ ((4 · (𝑆↑2)) + (4 · 𝐵))))
204200, 203mpbird 257 1 (𝜑 → ((𝐾𝐷𝐿)↑2) ≤ (4 · 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wne 2946  wral 3067  wrex 3076  cin 3975  wss 3976  c0 4352   class class class wbr 5166  cmpt 5249  ran crn 5701  cfv 6573  (class class class)co 7448  infcinf 9510  cc 11182  cr 11183  0cc0 11184  1c1 11185   + caddc 11187   · cmul 11189   < clt 11324  cle 11325   / cdiv 11947  2c2 12348  4c4 12350  cexp 14112  abscabs 15283  Metcmet 21373  MetOpencmopn 21377  NrmCVeccnv 30616   +𝑣 cpv 30617  BaseSetcba 30618   ·𝑠OLD cns 30619  𝑣 cnsb 30621  normCVcnmcv 30622  IndMetcims 30623  SubSpcss 30753  CPreHilOLDccphlo 30844  CBanccbn 30894
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262  ax-addf 11263  ax-mulf 11264
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-sup 9511  df-inf 9512  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-xadd 13176  df-seq 14053  df-exp 14113  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-xmet 21380  df-met 21381  df-grpo 30525  df-gid 30526  df-ginv 30527  df-gdiv 30528  df-ablo 30577  df-vc 30591  df-nv 30624  df-va 30627  df-ba 30628  df-sm 30629  df-0v 30630  df-vs 30631  df-nmcv 30632  df-ims 30633  df-ssp 30754  df-ph 30845  df-cbn 30895
This theorem is referenced by:  minvecolem3  30908  minvecolem7  30915
  Copyright terms: Public domain W3C validator