MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  minvecolem2 Structured version   Visualization version   GIF version

Theorem minvecolem2 30903
Description: Lemma for minveco 30912. Any two points 𝐾 and 𝐿 in 𝑌 are close to each other if they are close to the infimum of distance to 𝐴. (Contributed by Mario Carneiro, 9-May-2014.) (Revised by AV, 4-Oct-2020.) (New usage is discouraged.)
Hypotheses
Ref Expression
minveco.x 𝑋 = (BaseSet‘𝑈)
minveco.m 𝑀 = ( −𝑣𝑈)
minveco.n 𝑁 = (normCV𝑈)
minveco.y 𝑌 = (BaseSet‘𝑊)
minveco.u (𝜑𝑈 ∈ CPreHilOLD)
minveco.w (𝜑𝑊 ∈ ((SubSp‘𝑈) ∩ CBan))
minveco.a (𝜑𝐴𝑋)
minveco.d 𝐷 = (IndMet‘𝑈)
minveco.j 𝐽 = (MetOpen‘𝐷)
minveco.r 𝑅 = ran (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦)))
minveco.s 𝑆 = inf(𝑅, ℝ, < )
minvecolem2.1 (𝜑𝐵 ∈ ℝ)
minvecolem2.2 (𝜑 → 0 ≤ 𝐵)
minvecolem2.3 (𝜑𝐾𝑌)
minvecolem2.4 (𝜑𝐿𝑌)
minvecolem2.5 (𝜑 → ((𝐴𝐷𝐾)↑2) ≤ ((𝑆↑2) + 𝐵))
minvecolem2.6 (𝜑 → ((𝐴𝐷𝐿)↑2) ≤ ((𝑆↑2) + 𝐵))
Assertion
Ref Expression
minvecolem2 (𝜑 → ((𝐾𝐷𝐿)↑2) ≤ (4 · 𝐵))
Distinct variable groups:   𝑦,𝐽   𝑦,𝐾   𝑦,𝐿   𝑦,𝑀   𝑦,𝑁   𝜑,𝑦   𝑦,𝑆   𝑦,𝐴   𝑦,𝐷   𝑦,𝑈   𝑦,𝑊   𝑦,𝑌
Allowed substitution hints:   𝐵(𝑦)   𝑅(𝑦)   𝑋(𝑦)

Proof of Theorem minvecolem2
Dummy variables 𝑥 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 4re 12347 . . . . . 6 4 ∈ ℝ
2 minveco.s . . . . . . . 8 𝑆 = inf(𝑅, ℝ, < )
3 minveco.x . . . . . . . . . . 11 𝑋 = (BaseSet‘𝑈)
4 minveco.m . . . . . . . . . . 11 𝑀 = ( −𝑣𝑈)
5 minveco.n . . . . . . . . . . 11 𝑁 = (normCV𝑈)
6 minveco.y . . . . . . . . . . 11 𝑌 = (BaseSet‘𝑊)
7 minveco.u . . . . . . . . . . 11 (𝜑𝑈 ∈ CPreHilOLD)
8 minveco.w . . . . . . . . . . 11 (𝜑𝑊 ∈ ((SubSp‘𝑈) ∩ CBan))
9 minveco.a . . . . . . . . . . 11 (𝜑𝐴𝑋)
10 minveco.d . . . . . . . . . . 11 𝐷 = (IndMet‘𝑈)
11 minveco.j . . . . . . . . . . 11 𝐽 = (MetOpen‘𝐷)
12 minveco.r . . . . . . . . . . 11 𝑅 = ran (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦)))
133, 4, 5, 6, 7, 8, 9, 10, 11, 12minvecolem1 30902 . . . . . . . . . 10 (𝜑 → (𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∀𝑤𝑅 0 ≤ 𝑤))
1413simp1d 1141 . . . . . . . . 9 (𝜑𝑅 ⊆ ℝ)
1513simp2d 1142 . . . . . . . . 9 (𝜑𝑅 ≠ ∅)
16 0re 11260 . . . . . . . . . 10 0 ∈ ℝ
1713simp3d 1143 . . . . . . . . . 10 (𝜑 → ∀𝑤𝑅 0 ≤ 𝑤)
18 breq1 5150 . . . . . . . . . . . 12 (𝑥 = 0 → (𝑥𝑤 ↔ 0 ≤ 𝑤))
1918ralbidv 3175 . . . . . . . . . . 11 (𝑥 = 0 → (∀𝑤𝑅 𝑥𝑤 ↔ ∀𝑤𝑅 0 ≤ 𝑤))
2019rspcev 3621 . . . . . . . . . 10 ((0 ∈ ℝ ∧ ∀𝑤𝑅 0 ≤ 𝑤) → ∃𝑥 ∈ ℝ ∀𝑤𝑅 𝑥𝑤)
2116, 17, 20sylancr 587 . . . . . . . . 9 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑤𝑅 𝑥𝑤)
22 infrecl 12247 . . . . . . . . 9 ((𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑤𝑅 𝑥𝑤) → inf(𝑅, ℝ, < ) ∈ ℝ)
2314, 15, 21, 22syl3anc 1370 . . . . . . . 8 (𝜑 → inf(𝑅, ℝ, < ) ∈ ℝ)
242, 23eqeltrid 2842 . . . . . . 7 (𝜑𝑆 ∈ ℝ)
2524resqcld 14161 . . . . . 6 (𝜑 → (𝑆↑2) ∈ ℝ)
26 remulcl 11237 . . . . . 6 ((4 ∈ ℝ ∧ (𝑆↑2) ∈ ℝ) → (4 · (𝑆↑2)) ∈ ℝ)
271, 25, 26sylancr 587 . . . . 5 (𝜑 → (4 · (𝑆↑2)) ∈ ℝ)
28 phnv 30842 . . . . . . . . 9 (𝑈 ∈ CPreHilOLD𝑈 ∈ NrmCVec)
297, 28syl 17 . . . . . . . 8 (𝜑𝑈 ∈ NrmCVec)
303, 10imsmet 30719 . . . . . . . 8 (𝑈 ∈ NrmCVec → 𝐷 ∈ (Met‘𝑋))
3129, 30syl 17 . . . . . . 7 (𝜑𝐷 ∈ (Met‘𝑋))
32 inss1 4244 . . . . . . . . . 10 ((SubSp‘𝑈) ∩ CBan) ⊆ (SubSp‘𝑈)
3332, 8sselid 3992 . . . . . . . . 9 (𝜑𝑊 ∈ (SubSp‘𝑈))
34 eqid 2734 . . . . . . . . . 10 (SubSp‘𝑈) = (SubSp‘𝑈)
353, 6, 34sspba 30755 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ (SubSp‘𝑈)) → 𝑌𝑋)
3629, 33, 35syl2anc 584 . . . . . . . 8 (𝜑𝑌𝑋)
37 minvecolem2.3 . . . . . . . 8 (𝜑𝐾𝑌)
3836, 37sseldd 3995 . . . . . . 7 (𝜑𝐾𝑋)
39 minvecolem2.4 . . . . . . . 8 (𝜑𝐿𝑌)
4036, 39sseldd 3995 . . . . . . 7 (𝜑𝐿𝑋)
41 metcl 24357 . . . . . . 7 ((𝐷 ∈ (Met‘𝑋) ∧ 𝐾𝑋𝐿𝑋) → (𝐾𝐷𝐿) ∈ ℝ)
4231, 38, 40, 41syl3anc 1370 . . . . . 6 (𝜑 → (𝐾𝐷𝐿) ∈ ℝ)
4342resqcld 14161 . . . . 5 (𝜑 → ((𝐾𝐷𝐿)↑2) ∈ ℝ)
4427, 43readdcld 11287 . . . 4 (𝜑 → ((4 · (𝑆↑2)) + ((𝐾𝐷𝐿)↑2)) ∈ ℝ)
45 ax-1cn 11210 . . . . . . . . . . . . 13 1 ∈ ℂ
46 halfcl 12488 . . . . . . . . . . . . 13 (1 ∈ ℂ → (1 / 2) ∈ ℂ)
4745, 46mp1i 13 . . . . . . . . . . . 12 (𝜑 → (1 / 2) ∈ ℂ)
48 eqid 2734 . . . . . . . . . . . . . . 15 ( +𝑣𝑈) = ( +𝑣𝑈)
49 eqid 2734 . . . . . . . . . . . . . . 15 ( +𝑣𝑊) = ( +𝑣𝑊)
506, 48, 49, 34sspgval 30757 . . . . . . . . . . . . . 14 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ (SubSp‘𝑈)) ∧ (𝐾𝑌𝐿𝑌)) → (𝐾( +𝑣𝑊)𝐿) = (𝐾( +𝑣𝑈)𝐿))
5129, 33, 37, 39, 50syl22anc 839 . . . . . . . . . . . . 13 (𝜑 → (𝐾( +𝑣𝑊)𝐿) = (𝐾( +𝑣𝑈)𝐿))
5234sspnv 30754 . . . . . . . . . . . . . . 15 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ (SubSp‘𝑈)) → 𝑊 ∈ NrmCVec)
5329, 33, 52syl2anc 584 . . . . . . . . . . . . . 14 (𝜑𝑊 ∈ NrmCVec)
546, 49nvgcl 30648 . . . . . . . . . . . . . 14 ((𝑊 ∈ NrmCVec ∧ 𝐾𝑌𝐿𝑌) → (𝐾( +𝑣𝑊)𝐿) ∈ 𝑌)
5553, 37, 39, 54syl3anc 1370 . . . . . . . . . . . . 13 (𝜑 → (𝐾( +𝑣𝑊)𝐿) ∈ 𝑌)
5651, 55eqeltrrd 2839 . . . . . . . . . . . 12 (𝜑 → (𝐾( +𝑣𝑈)𝐿) ∈ 𝑌)
57 eqid 2734 . . . . . . . . . . . . 13 ( ·𝑠OLD𝑈) = ( ·𝑠OLD𝑈)
58 eqid 2734 . . . . . . . . . . . . 13 ( ·𝑠OLD𝑊) = ( ·𝑠OLD𝑊)
596, 57, 58, 34sspsval 30759 . . . . . . . . . . . 12 (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ (SubSp‘𝑈)) ∧ ((1 / 2) ∈ ℂ ∧ (𝐾( +𝑣𝑈)𝐿) ∈ 𝑌)) → ((1 / 2)( ·𝑠OLD𝑊)(𝐾( +𝑣𝑈)𝐿)) = ((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿)))
6029, 33, 47, 56, 59syl22anc 839 . . . . . . . . . . 11 (𝜑 → ((1 / 2)( ·𝑠OLD𝑊)(𝐾( +𝑣𝑈)𝐿)) = ((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿)))
616, 58nvscl 30654 . . . . . . . . . . . 12 ((𝑊 ∈ NrmCVec ∧ (1 / 2) ∈ ℂ ∧ (𝐾( +𝑣𝑈)𝐿) ∈ 𝑌) → ((1 / 2)( ·𝑠OLD𝑊)(𝐾( +𝑣𝑈)𝐿)) ∈ 𝑌)
6253, 47, 56, 61syl3anc 1370 . . . . . . . . . . 11 (𝜑 → ((1 / 2)( ·𝑠OLD𝑊)(𝐾( +𝑣𝑈)𝐿)) ∈ 𝑌)
6360, 62eqeltrrd 2839 . . . . . . . . . 10 (𝜑 → ((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿)) ∈ 𝑌)
6436, 63sseldd 3995 . . . . . . . . 9 (𝜑 → ((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿)) ∈ 𝑋)
653, 4nvmcl 30674 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋 ∧ ((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿)) ∈ 𝑋) → (𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿))) ∈ 𝑋)
6629, 9, 64, 65syl3anc 1370 . . . . . . . 8 (𝜑 → (𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿))) ∈ 𝑋)
673, 5nvcl 30689 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ (𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿))) ∈ 𝑋) → (𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿)))) ∈ ℝ)
6829, 66, 67syl2anc 584 . . . . . . 7 (𝜑 → (𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿)))) ∈ ℝ)
6968resqcld 14161 . . . . . 6 (𝜑 → ((𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿))))↑2) ∈ ℝ)
70 remulcl 11237 . . . . . 6 ((4 ∈ ℝ ∧ ((𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿))))↑2) ∈ ℝ) → (4 · ((𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿))))↑2)) ∈ ℝ)
711, 69, 70sylancr 587 . . . . 5 (𝜑 → (4 · ((𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿))))↑2)) ∈ ℝ)
7271, 43readdcld 11287 . . . 4 (𝜑 → ((4 · ((𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿))))↑2)) + ((𝐾𝐷𝐿)↑2)) ∈ ℝ)
73 minvecolem2.1 . . . . . 6 (𝜑𝐵 ∈ ℝ)
7425, 73readdcld 11287 . . . . 5 (𝜑 → ((𝑆↑2) + 𝐵) ∈ ℝ)
75 remulcl 11237 . . . . 5 ((4 ∈ ℝ ∧ ((𝑆↑2) + 𝐵) ∈ ℝ) → (4 · ((𝑆↑2) + 𝐵)) ∈ ℝ)
761, 74, 75sylancr 587 . . . 4 (𝜑 → (4 · ((𝑆↑2) + 𝐵)) ∈ ℝ)
7716a1i 11 . . . . . . . . . 10 (𝜑 → 0 ∈ ℝ)
78 infregelb 12249 . . . . . . . . . 10 (((𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑤𝑅 𝑥𝑤) ∧ 0 ∈ ℝ) → (0 ≤ inf(𝑅, ℝ, < ) ↔ ∀𝑤𝑅 0 ≤ 𝑤))
7914, 15, 21, 77, 78syl31anc 1372 . . . . . . . . 9 (𝜑 → (0 ≤ inf(𝑅, ℝ, < ) ↔ ∀𝑤𝑅 0 ≤ 𝑤))
8017, 79mpbird 257 . . . . . . . 8 (𝜑 → 0 ≤ inf(𝑅, ℝ, < ))
8180, 2breqtrrdi 5189 . . . . . . 7 (𝜑 → 0 ≤ 𝑆)
82 eqid 2734 . . . . . . . . . . . 12 (𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿)))) = (𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿))))
83 oveq2 7438 . . . . . . . . . . . . . 14 (𝑦 = ((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿)) → (𝐴𝑀𝑦) = (𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿))))
8483fveq2d 6910 . . . . . . . . . . . . 13 (𝑦 = ((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿)) → (𝑁‘(𝐴𝑀𝑦)) = (𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿)))))
8584rspceeqv 3644 . . . . . . . . . . . 12 ((((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿)) ∈ 𝑌 ∧ (𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿)))) = (𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿))))) → ∃𝑦𝑌 (𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿)))) = (𝑁‘(𝐴𝑀𝑦)))
8663, 82, 85sylancl 586 . . . . . . . . . . 11 (𝜑 → ∃𝑦𝑌 (𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿)))) = (𝑁‘(𝐴𝑀𝑦)))
87 eqid 2734 . . . . . . . . . . . 12 (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦))) = (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦)))
88 fvex 6919 . . . . . . . . . . . 12 (𝑁‘(𝐴𝑀𝑦)) ∈ V
8987, 88elrnmpti 5975 . . . . . . . . . . 11 ((𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿)))) ∈ ran (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦))) ↔ ∃𝑦𝑌 (𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿)))) = (𝑁‘(𝐴𝑀𝑦)))
9086, 89sylibr 234 . . . . . . . . . 10 (𝜑 → (𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿)))) ∈ ran (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦))))
9190, 12eleqtrrdi 2849 . . . . . . . . 9 (𝜑 → (𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿)))) ∈ 𝑅)
92 infrelb 12250 . . . . . . . . 9 ((𝑅 ⊆ ℝ ∧ ∃𝑥 ∈ ℝ ∀𝑤𝑅 𝑥𝑤 ∧ (𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿)))) ∈ 𝑅) → inf(𝑅, ℝ, < ) ≤ (𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿)))))
9314, 21, 91, 92syl3anc 1370 . . . . . . . 8 (𝜑 → inf(𝑅, ℝ, < ) ≤ (𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿)))))
942, 93eqbrtrid 5182 . . . . . . 7 (𝜑𝑆 ≤ (𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿)))))
95 le2sq2 14171 . . . . . . 7 (((𝑆 ∈ ℝ ∧ 0 ≤ 𝑆) ∧ ((𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿)))) ∈ ℝ ∧ 𝑆 ≤ (𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿)))))) → (𝑆↑2) ≤ ((𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿))))↑2))
9624, 81, 68, 94, 95syl22anc 839 . . . . . 6 (𝜑 → (𝑆↑2) ≤ ((𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿))))↑2))
97 4pos 12370 . . . . . . . . 9 0 < 4
981, 97pm3.2i 470 . . . . . . . 8 (4 ∈ ℝ ∧ 0 < 4)
99 lemul2 12117 . . . . . . . 8 (((𝑆↑2) ∈ ℝ ∧ ((𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿))))↑2) ∈ ℝ ∧ (4 ∈ ℝ ∧ 0 < 4)) → ((𝑆↑2) ≤ ((𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿))))↑2) ↔ (4 · (𝑆↑2)) ≤ (4 · ((𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿))))↑2))))
10098, 99mp3an3 1449 . . . . . . 7 (((𝑆↑2) ∈ ℝ ∧ ((𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿))))↑2) ∈ ℝ) → ((𝑆↑2) ≤ ((𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿))))↑2) ↔ (4 · (𝑆↑2)) ≤ (4 · ((𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿))))↑2))))
10125, 69, 100syl2anc 584 . . . . . 6 (𝜑 → ((𝑆↑2) ≤ ((𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿))))↑2) ↔ (4 · (𝑆↑2)) ≤ (4 · ((𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿))))↑2))))
10296, 101mpbid 232 . . . . 5 (𝜑 → (4 · (𝑆↑2)) ≤ (4 · ((𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿))))↑2)))
10327, 71, 43, 102leadd1dd 11874 . . . 4 (𝜑 → ((4 · (𝑆↑2)) + ((𝐾𝐷𝐿)↑2)) ≤ ((4 · ((𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿))))↑2)) + ((𝐾𝐷𝐿)↑2)))
104 metcl 24357 . . . . . . . . . 10 ((𝐷 ∈ (Met‘𝑋) ∧ 𝐴𝑋𝐾𝑋) → (𝐴𝐷𝐾) ∈ ℝ)
10531, 9, 38, 104syl3anc 1370 . . . . . . . . 9 (𝜑 → (𝐴𝐷𝐾) ∈ ℝ)
106105resqcld 14161 . . . . . . . 8 (𝜑 → ((𝐴𝐷𝐾)↑2) ∈ ℝ)
107 metcl 24357 . . . . . . . . . 10 ((𝐷 ∈ (Met‘𝑋) ∧ 𝐴𝑋𝐿𝑋) → (𝐴𝐷𝐿) ∈ ℝ)
10831, 9, 40, 107syl3anc 1370 . . . . . . . . 9 (𝜑 → (𝐴𝐷𝐿) ∈ ℝ)
109108resqcld 14161 . . . . . . . 8 (𝜑 → ((𝐴𝐷𝐿)↑2) ∈ ℝ)
110 minvecolem2.5 . . . . . . . 8 (𝜑 → ((𝐴𝐷𝐾)↑2) ≤ ((𝑆↑2) + 𝐵))
111 minvecolem2.6 . . . . . . . 8 (𝜑 → ((𝐴𝐷𝐿)↑2) ≤ ((𝑆↑2) + 𝐵))
112106, 109, 74, 74, 110, 111le2addd 11879 . . . . . . 7 (𝜑 → (((𝐴𝐷𝐾)↑2) + ((𝐴𝐷𝐿)↑2)) ≤ (((𝑆↑2) + 𝐵) + ((𝑆↑2) + 𝐵)))
11374recnd 11286 . . . . . . . 8 (𝜑 → ((𝑆↑2) + 𝐵) ∈ ℂ)
1141132timesd 12506 . . . . . . 7 (𝜑 → (2 · ((𝑆↑2) + 𝐵)) = (((𝑆↑2) + 𝐵) + ((𝑆↑2) + 𝐵)))
115112, 114breqtrrd 5175 . . . . . 6 (𝜑 → (((𝐴𝐷𝐾)↑2) + ((𝐴𝐷𝐿)↑2)) ≤ (2 · ((𝑆↑2) + 𝐵)))
116106, 109readdcld 11287 . . . . . . 7 (𝜑 → (((𝐴𝐷𝐾)↑2) + ((𝐴𝐷𝐿)↑2)) ∈ ℝ)
117 2re 12337 . . . . . . . 8 2 ∈ ℝ
118 remulcl 11237 . . . . . . . 8 ((2 ∈ ℝ ∧ ((𝑆↑2) + 𝐵) ∈ ℝ) → (2 · ((𝑆↑2) + 𝐵)) ∈ ℝ)
119117, 74, 118sylancr 587 . . . . . . 7 (𝜑 → (2 · ((𝑆↑2) + 𝐵)) ∈ ℝ)
120 2pos 12366 . . . . . . . . 9 0 < 2
121117, 120pm3.2i 470 . . . . . . . 8 (2 ∈ ℝ ∧ 0 < 2)
122 lemul2 12117 . . . . . . . 8 (((((𝐴𝐷𝐾)↑2) + ((𝐴𝐷𝐿)↑2)) ∈ ℝ ∧ (2 · ((𝑆↑2) + 𝐵)) ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((((𝐴𝐷𝐾)↑2) + ((𝐴𝐷𝐿)↑2)) ≤ (2 · ((𝑆↑2) + 𝐵)) ↔ (2 · (((𝐴𝐷𝐾)↑2) + ((𝐴𝐷𝐿)↑2))) ≤ (2 · (2 · ((𝑆↑2) + 𝐵)))))
123121, 122mp3an3 1449 . . . . . . 7 (((((𝐴𝐷𝐾)↑2) + ((𝐴𝐷𝐿)↑2)) ∈ ℝ ∧ (2 · ((𝑆↑2) + 𝐵)) ∈ ℝ) → ((((𝐴𝐷𝐾)↑2) + ((𝐴𝐷𝐿)↑2)) ≤ (2 · ((𝑆↑2) + 𝐵)) ↔ (2 · (((𝐴𝐷𝐾)↑2) + ((𝐴𝐷𝐿)↑2))) ≤ (2 · (2 · ((𝑆↑2) + 𝐵)))))
124116, 119, 123syl2anc 584 . . . . . 6 (𝜑 → ((((𝐴𝐷𝐾)↑2) + ((𝐴𝐷𝐿)↑2)) ≤ (2 · ((𝑆↑2) + 𝐵)) ↔ (2 · (((𝐴𝐷𝐾)↑2) + ((𝐴𝐷𝐿)↑2))) ≤ (2 · (2 · ((𝑆↑2) + 𝐵)))))
125115, 124mpbid 232 . . . . 5 (𝜑 → (2 · (((𝐴𝐷𝐾)↑2) + ((𝐴𝐷𝐿)↑2))) ≤ (2 · (2 · ((𝑆↑2) + 𝐵))))
1263, 4nvmcl 30674 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐾𝑋) → (𝐴𝑀𝐾) ∈ 𝑋)
12729, 9, 38, 126syl3anc 1370 . . . . . . 7 (𝜑 → (𝐴𝑀𝐾) ∈ 𝑋)
1283, 4nvmcl 30674 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐿𝑋) → (𝐴𝑀𝐿) ∈ 𝑋)
12929, 9, 40, 128syl3anc 1370 . . . . . . 7 (𝜑 → (𝐴𝑀𝐿) ∈ 𝑋)
1303, 48, 4, 5phpar2 30851 . . . . . . 7 ((𝑈 ∈ CPreHilOLD ∧ (𝐴𝑀𝐾) ∈ 𝑋 ∧ (𝐴𝑀𝐿) ∈ 𝑋) → (((𝑁‘((𝐴𝑀𝐾)( +𝑣𝑈)(𝐴𝑀𝐿)))↑2) + ((𝑁‘((𝐴𝑀𝐾)𝑀(𝐴𝑀𝐿)))↑2)) = (2 · (((𝑁‘(𝐴𝑀𝐾))↑2) + ((𝑁‘(𝐴𝑀𝐿))↑2))))
1317, 127, 129, 130syl3anc 1370 . . . . . 6 (𝜑 → (((𝑁‘((𝐴𝑀𝐾)( +𝑣𝑈)(𝐴𝑀𝐿)))↑2) + ((𝑁‘((𝐴𝑀𝐾)𝑀(𝐴𝑀𝐿)))↑2)) = (2 · (((𝑁‘(𝐴𝑀𝐾))↑2) + ((𝑁‘(𝐴𝑀𝐿))↑2))))
132 2cn 12338 . . . . . . . . . 10 2 ∈ ℂ
13368recnd 11286 . . . . . . . . . 10 (𝜑 → (𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿)))) ∈ ℂ)
134 sqmul 14155 . . . . . . . . . 10 ((2 ∈ ℂ ∧ (𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿)))) ∈ ℂ) → ((2 · (𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿)))))↑2) = ((2↑2) · ((𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿))))↑2)))
135132, 133, 134sylancr 587 . . . . . . . . 9 (𝜑 → ((2 · (𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿)))))↑2) = ((2↑2) · ((𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿))))↑2)))
136 sq2 14232 . . . . . . . . . 10 (2↑2) = 4
137136oveq1i 7440 . . . . . . . . 9 ((2↑2) · ((𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿))))↑2)) = (4 · ((𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿))))↑2))
138135, 137eqtrdi 2790 . . . . . . . 8 (𝜑 → ((2 · (𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿)))))↑2) = (4 · ((𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿))))↑2)))
139132a1i 11 . . . . . . . . . . . 12 (𝜑 → 2 ∈ ℂ)
1403, 57, 5nvs 30691 . . . . . . . . . . . 12 ((𝑈 ∈ NrmCVec ∧ 2 ∈ ℂ ∧ (𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿))) ∈ 𝑋) → (𝑁‘(2( ·𝑠OLD𝑈)(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿))))) = ((abs‘2) · (𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿))))))
14129, 139, 66, 140syl3anc 1370 . . . . . . . . . . 11 (𝜑 → (𝑁‘(2( ·𝑠OLD𝑈)(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿))))) = ((abs‘2) · (𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿))))))
142 0le2 12365 . . . . . . . . . . . . 13 0 ≤ 2
143 absid 15331 . . . . . . . . . . . . 13 ((2 ∈ ℝ ∧ 0 ≤ 2) → (abs‘2) = 2)
144117, 142, 143mp2an 692 . . . . . . . . . . . 12 (abs‘2) = 2
145144oveq1i 7440 . . . . . . . . . . 11 ((abs‘2) · (𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿))))) = (2 · (𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿)))))
146141, 145eqtrdi 2790 . . . . . . . . . 10 (𝜑 → (𝑁‘(2( ·𝑠OLD𝑈)(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿))))) = (2 · (𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿))))))
1473, 4, 57nvmdi 30676 . . . . . . . . . . . . 13 ((𝑈 ∈ NrmCVec ∧ (2 ∈ ℂ ∧ 𝐴𝑋 ∧ ((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿)) ∈ 𝑋)) → (2( ·𝑠OLD𝑈)(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿)))) = ((2( ·𝑠OLD𝑈)𝐴)𝑀(2( ·𝑠OLD𝑈)((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿)))))
14829, 139, 9, 64, 147syl13anc 1371 . . . . . . . . . . . 12 (𝜑 → (2( ·𝑠OLD𝑈)(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿)))) = ((2( ·𝑠OLD𝑈)𝐴)𝑀(2( ·𝑠OLD𝑈)((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿)))))
1493, 48, 57nv2 30660 . . . . . . . . . . . . . 14 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝐴( +𝑣𝑈)𝐴) = (2( ·𝑠OLD𝑈)𝐴))
15029, 9, 149syl2anc 584 . . . . . . . . . . . . 13 (𝜑 → (𝐴( +𝑣𝑈)𝐴) = (2( ·𝑠OLD𝑈)𝐴))
151 2ne0 12367 . . . . . . . . . . . . . . . . 17 2 ≠ 0
152132, 151recidi 11995 . . . . . . . . . . . . . . . 16 (2 · (1 / 2)) = 1
153152oveq1i 7440 . . . . . . . . . . . . . . 15 ((2 · (1 / 2))( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿)) = (1( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿))
1543, 48nvgcl 30648 . . . . . . . . . . . . . . . . 17 ((𝑈 ∈ NrmCVec ∧ 𝐾𝑋𝐿𝑋) → (𝐾( +𝑣𝑈)𝐿) ∈ 𝑋)
15529, 38, 40, 154syl3anc 1370 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐾( +𝑣𝑈)𝐿) ∈ 𝑋)
1563, 57nvsid 30655 . . . . . . . . . . . . . . . 16 ((𝑈 ∈ NrmCVec ∧ (𝐾( +𝑣𝑈)𝐿) ∈ 𝑋) → (1( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿)) = (𝐾( +𝑣𝑈)𝐿))
15729, 155, 156syl2anc 584 . . . . . . . . . . . . . . 15 (𝜑 → (1( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿)) = (𝐾( +𝑣𝑈)𝐿))
158153, 157eqtrid 2786 . . . . . . . . . . . . . 14 (𝜑 → ((2 · (1 / 2))( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿)) = (𝐾( +𝑣𝑈)𝐿))
1593, 57nvsass 30656 . . . . . . . . . . . . . . 15 ((𝑈 ∈ NrmCVec ∧ (2 ∈ ℂ ∧ (1 / 2) ∈ ℂ ∧ (𝐾( +𝑣𝑈)𝐿) ∈ 𝑋)) → ((2 · (1 / 2))( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿)) = (2( ·𝑠OLD𝑈)((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿))))
16029, 139, 47, 155, 159syl13anc 1371 . . . . . . . . . . . . . 14 (𝜑 → ((2 · (1 / 2))( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿)) = (2( ·𝑠OLD𝑈)((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿))))
161158, 160eqtr3d 2776 . . . . . . . . . . . . 13 (𝜑 → (𝐾( +𝑣𝑈)𝐿) = (2( ·𝑠OLD𝑈)((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿))))
162150, 161oveq12d 7448 . . . . . . . . . . . 12 (𝜑 → ((𝐴( +𝑣𝑈)𝐴)𝑀(𝐾( +𝑣𝑈)𝐿)) = ((2( ·𝑠OLD𝑈)𝐴)𝑀(2( ·𝑠OLD𝑈)((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿)))))
1633, 48, 4nvaddsub4 30685 . . . . . . . . . . . . 13 ((𝑈 ∈ NrmCVec ∧ (𝐴𝑋𝐴𝑋) ∧ (𝐾𝑋𝐿𝑋)) → ((𝐴( +𝑣𝑈)𝐴)𝑀(𝐾( +𝑣𝑈)𝐿)) = ((𝐴𝑀𝐾)( +𝑣𝑈)(𝐴𝑀𝐿)))
16429, 9, 9, 38, 40, 163syl122anc 1378 . . . . . . . . . . . 12 (𝜑 → ((𝐴( +𝑣𝑈)𝐴)𝑀(𝐾( +𝑣𝑈)𝐿)) = ((𝐴𝑀𝐾)( +𝑣𝑈)(𝐴𝑀𝐿)))
165148, 162, 1643eqtr2d 2780 . . . . . . . . . . 11 (𝜑 → (2( ·𝑠OLD𝑈)(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿)))) = ((𝐴𝑀𝐾)( +𝑣𝑈)(𝐴𝑀𝐿)))
166165fveq2d 6910 . . . . . . . . . 10 (𝜑 → (𝑁‘(2( ·𝑠OLD𝑈)(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿))))) = (𝑁‘((𝐴𝑀𝐾)( +𝑣𝑈)(𝐴𝑀𝐿))))
167146, 166eqtr3d 2776 . . . . . . . . 9 (𝜑 → (2 · (𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿))))) = (𝑁‘((𝐴𝑀𝐾)( +𝑣𝑈)(𝐴𝑀𝐿))))
168167oveq1d 7445 . . . . . . . 8 (𝜑 → ((2 · (𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿)))))↑2) = ((𝑁‘((𝐴𝑀𝐾)( +𝑣𝑈)(𝐴𝑀𝐿)))↑2))
169138, 168eqtr3d 2776 . . . . . . 7 (𝜑 → (4 · ((𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿))))↑2)) = ((𝑁‘((𝐴𝑀𝐾)( +𝑣𝑈)(𝐴𝑀𝐿)))↑2))
1703, 4, 5, 10imsdval 30714 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ 𝐿𝑋𝐾𝑋) → (𝐿𝐷𝐾) = (𝑁‘(𝐿𝑀𝐾)))
17129, 40, 38, 170syl3anc 1370 . . . . . . . . 9 (𝜑 → (𝐿𝐷𝐾) = (𝑁‘(𝐿𝑀𝐾)))
172 metsym 24375 . . . . . . . . . 10 ((𝐷 ∈ (Met‘𝑋) ∧ 𝐾𝑋𝐿𝑋) → (𝐾𝐷𝐿) = (𝐿𝐷𝐾))
17331, 38, 40, 172syl3anc 1370 . . . . . . . . 9 (𝜑 → (𝐾𝐷𝐿) = (𝐿𝐷𝐾))
1743, 4nvnnncan1 30675 . . . . . . . . . . 11 ((𝑈 ∈ NrmCVec ∧ (𝐴𝑋𝐾𝑋𝐿𝑋)) → ((𝐴𝑀𝐾)𝑀(𝐴𝑀𝐿)) = (𝐿𝑀𝐾))
17529, 9, 38, 40, 174syl13anc 1371 . . . . . . . . . 10 (𝜑 → ((𝐴𝑀𝐾)𝑀(𝐴𝑀𝐿)) = (𝐿𝑀𝐾))
176175fveq2d 6910 . . . . . . . . 9 (𝜑 → (𝑁‘((𝐴𝑀𝐾)𝑀(𝐴𝑀𝐿))) = (𝑁‘(𝐿𝑀𝐾)))
177171, 173, 1763eqtr4d 2784 . . . . . . . 8 (𝜑 → (𝐾𝐷𝐿) = (𝑁‘((𝐴𝑀𝐾)𝑀(𝐴𝑀𝐿))))
178177oveq1d 7445 . . . . . . 7 (𝜑 → ((𝐾𝐷𝐿)↑2) = ((𝑁‘((𝐴𝑀𝐾)𝑀(𝐴𝑀𝐿)))↑2))
179169, 178oveq12d 7448 . . . . . 6 (𝜑 → ((4 · ((𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿))))↑2)) + ((𝐾𝐷𝐿)↑2)) = (((𝑁‘((𝐴𝑀𝐾)( +𝑣𝑈)(𝐴𝑀𝐿)))↑2) + ((𝑁‘((𝐴𝑀𝐾)𝑀(𝐴𝑀𝐿)))↑2)))
1803, 4, 5, 10imsdval 30714 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐾𝑋) → (𝐴𝐷𝐾) = (𝑁‘(𝐴𝑀𝐾)))
18129, 9, 38, 180syl3anc 1370 . . . . . . . . 9 (𝜑 → (𝐴𝐷𝐾) = (𝑁‘(𝐴𝑀𝐾)))
182181oveq1d 7445 . . . . . . . 8 (𝜑 → ((𝐴𝐷𝐾)↑2) = ((𝑁‘(𝐴𝑀𝐾))↑2))
1833, 4, 5, 10imsdval 30714 . . . . . . . . . 10 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐿𝑋) → (𝐴𝐷𝐿) = (𝑁‘(𝐴𝑀𝐿)))
18429, 9, 40, 183syl3anc 1370 . . . . . . . . 9 (𝜑 → (𝐴𝐷𝐿) = (𝑁‘(𝐴𝑀𝐿)))
185184oveq1d 7445 . . . . . . . 8 (𝜑 → ((𝐴𝐷𝐿)↑2) = ((𝑁‘(𝐴𝑀𝐿))↑2))
186182, 185oveq12d 7448 . . . . . . 7 (𝜑 → (((𝐴𝐷𝐾)↑2) + ((𝐴𝐷𝐿)↑2)) = (((𝑁‘(𝐴𝑀𝐾))↑2) + ((𝑁‘(𝐴𝑀𝐿))↑2)))
187186oveq2d 7446 . . . . . 6 (𝜑 → (2 · (((𝐴𝐷𝐾)↑2) + ((𝐴𝐷𝐿)↑2))) = (2 · (((𝑁‘(𝐴𝑀𝐾))↑2) + ((𝑁‘(𝐴𝑀𝐿))↑2))))
188131, 179, 1873eqtr4d 2784 . . . . 5 (𝜑 → ((4 · ((𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿))))↑2)) + ((𝐾𝐷𝐿)↑2)) = (2 · (((𝐴𝐷𝐾)↑2) + ((𝐴𝐷𝐿)↑2))))
189 2t2e4 12427 . . . . . . 7 (2 · 2) = 4
190189oveq1i 7440 . . . . . 6 ((2 · 2) · ((𝑆↑2) + 𝐵)) = (4 · ((𝑆↑2) + 𝐵))
191139, 139, 113mulassd 11281 . . . . . 6 (𝜑 → ((2 · 2) · ((𝑆↑2) + 𝐵)) = (2 · (2 · ((𝑆↑2) + 𝐵))))
192190, 191eqtr3id 2788 . . . . 5 (𝜑 → (4 · ((𝑆↑2) + 𝐵)) = (2 · (2 · ((𝑆↑2) + 𝐵))))
193125, 188, 1923brtr4d 5179 . . . 4 (𝜑 → ((4 · ((𝑁‘(𝐴𝑀((1 / 2)( ·𝑠OLD𝑈)(𝐾( +𝑣𝑈)𝐿))))↑2)) + ((𝐾𝐷𝐿)↑2)) ≤ (4 · ((𝑆↑2) + 𝐵)))
19444, 72, 76, 103, 193letrd 11415 . . 3 (𝜑 → ((4 · (𝑆↑2)) + ((𝐾𝐷𝐿)↑2)) ≤ (4 · ((𝑆↑2) + 𝐵)))
195 4cn 12348 . . . . 5 4 ∈ ℂ
196195a1i 11 . . . 4 (𝜑 → 4 ∈ ℂ)
19725recnd 11286 . . . 4 (𝜑 → (𝑆↑2) ∈ ℂ)
19873recnd 11286 . . . 4 (𝜑𝐵 ∈ ℂ)
199196, 197, 198adddid 11282 . . 3 (𝜑 → (4 · ((𝑆↑2) + 𝐵)) = ((4 · (𝑆↑2)) + (4 · 𝐵)))
200194, 199breqtrd 5173 . 2 (𝜑 → ((4 · (𝑆↑2)) + ((𝐾𝐷𝐿)↑2)) ≤ ((4 · (𝑆↑2)) + (4 · 𝐵)))
201 remulcl 11237 . . . 4 ((4 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (4 · 𝐵) ∈ ℝ)
2021, 73, 201sylancr 587 . . 3 (𝜑 → (4 · 𝐵) ∈ ℝ)
20343, 202, 27leadd2d 11855 . 2 (𝜑 → (((𝐾𝐷𝐿)↑2) ≤ (4 · 𝐵) ↔ ((4 · (𝑆↑2)) + ((𝐾𝐷𝐿)↑2)) ≤ ((4 · (𝑆↑2)) + (4 · 𝐵))))
204200, 203mpbird 257 1 (𝜑 → ((𝐾𝐷𝐿)↑2) ≤ (4 · 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1536  wcel 2105  wne 2937  wral 3058  wrex 3067  cin 3961  wss 3962  c0 4338   class class class wbr 5147  cmpt 5230  ran crn 5689  cfv 6562  (class class class)co 7430  infcinf 9478  cc 11150  cr 11151  0cc0 11152  1c1 11153   + caddc 11155   · cmul 11157   < clt 11292  cle 11293   / cdiv 11917  2c2 12318  4c4 12320  cexp 14098  abscabs 15269  Metcmet 21367  MetOpencmopn 21371  NrmCVeccnv 30612   +𝑣 cpv 30613  BaseSetcba 30614   ·𝑠OLD cns 30615  𝑣 cnsb 30617  normCVcnmcv 30618  IndMetcims 30619  SubSpcss 30749  CPreHilOLDccphlo 30840  CBanccbn 30890
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-pre-sup 11230  ax-addf 11231  ax-mulf 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-1st 8012  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-er 8743  df-map 8866  df-en 8984  df-dom 8985  df-sdom 8986  df-sup 9479  df-inf 9480  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-2 12326  df-3 12327  df-4 12328  df-n0 12524  df-z 12611  df-uz 12876  df-rp 13032  df-xadd 13152  df-seq 14039  df-exp 14099  df-cj 15134  df-re 15135  df-im 15136  df-sqrt 15270  df-abs 15271  df-xmet 21374  df-met 21375  df-grpo 30521  df-gid 30522  df-ginv 30523  df-gdiv 30524  df-ablo 30573  df-vc 30587  df-nv 30620  df-va 30623  df-ba 30624  df-sm 30625  df-0v 30626  df-vs 30627  df-nmcv 30628  df-ims 30629  df-ssp 30750  df-ph 30841  df-cbn 30891
This theorem is referenced by:  minvecolem3  30904  minvecolem7  30911
  Copyright terms: Public domain W3C validator