Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > addcompi | Structured version Visualization version GIF version |
Description: Addition of positive integers is commutative. (Contributed by NM, 27-Aug-1995.) (New usage is discouraged.) |
Ref | Expression |
---|---|
addcompi | ⊢ (𝐴 +N 𝐵) = (𝐵 +N 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pinn 10343 | . . . 4 ⊢ (𝐴 ∈ N → 𝐴 ∈ ω) | |
2 | pinn 10343 | . . . 4 ⊢ (𝐵 ∈ N → 𝐵 ∈ ω) | |
3 | nnacom 8258 | . . . 4 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 +o 𝐵) = (𝐵 +o 𝐴)) | |
4 | 1, 2, 3 | syl2an 598 | . . 3 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 +o 𝐵) = (𝐵 +o 𝐴)) |
5 | addpiord 10349 | . . 3 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 +N 𝐵) = (𝐴 +o 𝐵)) | |
6 | addpiord 10349 | . . . 4 ⊢ ((𝐵 ∈ N ∧ 𝐴 ∈ N) → (𝐵 +N 𝐴) = (𝐵 +o 𝐴)) | |
7 | 6 | ancoms 462 | . . 3 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐵 +N 𝐴) = (𝐵 +o 𝐴)) |
8 | 4, 5, 7 | 3eqtr4d 2803 | . 2 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 +N 𝐵) = (𝐵 +N 𝐴)) |
9 | dmaddpi 10355 | . . 3 ⊢ dom +N = (N × N) | |
10 | 9 | ndmovcom 7336 | . 2 ⊢ (¬ (𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 +N 𝐵) = (𝐵 +N 𝐴)) |
11 | 8, 10 | pm2.61i 185 | 1 ⊢ (𝐴 +N 𝐵) = (𝐵 +N 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 399 = wceq 1538 ∈ wcel 2111 (class class class)co 7155 ωcom 7584 +o coa 8114 Ncnpi 10309 +N cpli 10310 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5172 ax-nul 5179 ax-pr 5301 ax-un 7464 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-reu 3077 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-pss 3879 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-tp 4530 df-op 4532 df-uni 4802 df-iun 4888 df-br 5036 df-opab 5098 df-mpt 5116 df-tr 5142 df-id 5433 df-eprel 5438 df-po 5446 df-so 5447 df-fr 5486 df-we 5488 df-xp 5533 df-rel 5534 df-cnv 5535 df-co 5536 df-dm 5537 df-rn 5538 df-res 5539 df-ima 5540 df-pred 6130 df-ord 6176 df-on 6177 df-lim 6178 df-suc 6179 df-iota 6298 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-ov 7158 df-oprab 7159 df-mpo 7160 df-om 7585 df-1st 7698 df-2nd 7699 df-wrecs 7962 df-recs 8023 df-rdg 8061 df-oadd 8121 df-ni 10337 df-pli 10338 |
This theorem is referenced by: addcompq 10415 adderpqlem 10419 |
Copyright terms: Public domain | W3C validator |