![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > addcompi | Structured version Visualization version GIF version |
Description: Addition of positive integers is commutative. (Contributed by NM, 27-Aug-1995.) (New usage is discouraged.) |
Ref | Expression |
---|---|
addcompi | ⊢ (𝐴 +N 𝐵) = (𝐵 +N 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pinn 10879 | . . . 4 ⊢ (𝐴 ∈ N → 𝐴 ∈ ω) | |
2 | pinn 10879 | . . . 4 ⊢ (𝐵 ∈ N → 𝐵 ∈ ω) | |
3 | nnacom 8623 | . . . 4 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 +o 𝐵) = (𝐵 +o 𝐴)) | |
4 | 1, 2, 3 | syl2an 595 | . . 3 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 +o 𝐵) = (𝐵 +o 𝐴)) |
5 | addpiord 10885 | . . 3 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 +N 𝐵) = (𝐴 +o 𝐵)) | |
6 | addpiord 10885 | . . . 4 ⊢ ((𝐵 ∈ N ∧ 𝐴 ∈ N) → (𝐵 +N 𝐴) = (𝐵 +o 𝐴)) | |
7 | 6 | ancoms 458 | . . 3 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐵 +N 𝐴) = (𝐵 +o 𝐴)) |
8 | 4, 5, 7 | 3eqtr4d 2781 | . 2 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 +N 𝐵) = (𝐵 +N 𝐴)) |
9 | dmaddpi 10891 | . . 3 ⊢ dom +N = (N × N) | |
10 | 9 | ndmovcom 7598 | . 2 ⊢ (¬ (𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 +N 𝐵) = (𝐵 +N 𝐴)) |
11 | 8, 10 | pm2.61i 182 | 1 ⊢ (𝐴 +N 𝐵) = (𝐵 +N 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2105 (class class class)co 7412 ωcom 7859 +o coa 8469 Ncnpi 10845 +N cpli 10846 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pr 5427 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7860 df-1st 7979 df-2nd 7980 df-frecs 8272 df-wrecs 8303 df-recs 8377 df-rdg 8416 df-oadd 8476 df-ni 10873 df-pli 10874 |
This theorem is referenced by: addcompq 10951 adderpqlem 10955 |
Copyright terms: Public domain | W3C validator |