MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addcompi Structured version   Visualization version   GIF version

Theorem addcompi 10359
Description: Addition of positive integers is commutative. (Contributed by NM, 27-Aug-1995.) (New usage is discouraged.)
Assertion
Ref Expression
addcompi (𝐴 +N 𝐵) = (𝐵 +N 𝐴)

Proof of Theorem addcompi
StepHypRef Expression
1 pinn 10343 . . . 4 (𝐴N𝐴 ∈ ω)
2 pinn 10343 . . . 4 (𝐵N𝐵 ∈ ω)
3 nnacom 8258 . . . 4 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 +o 𝐵) = (𝐵 +o 𝐴))
41, 2, 3syl2an 598 . . 3 ((𝐴N𝐵N) → (𝐴 +o 𝐵) = (𝐵 +o 𝐴))
5 addpiord 10349 . . 3 ((𝐴N𝐵N) → (𝐴 +N 𝐵) = (𝐴 +o 𝐵))
6 addpiord 10349 . . . 4 ((𝐵N𝐴N) → (𝐵 +N 𝐴) = (𝐵 +o 𝐴))
76ancoms 462 . . 3 ((𝐴N𝐵N) → (𝐵 +N 𝐴) = (𝐵 +o 𝐴))
84, 5, 73eqtr4d 2803 . 2 ((𝐴N𝐵N) → (𝐴 +N 𝐵) = (𝐵 +N 𝐴))
9 dmaddpi 10355 . . 3 dom +N = (N × N)
109ndmovcom 7336 . 2 (¬ (𝐴N𝐵N) → (𝐴 +N 𝐵) = (𝐵 +N 𝐴))
118, 10pm2.61i 185 1 (𝐴 +N 𝐵) = (𝐵 +N 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wa 399   = wceq 1538  wcel 2111  (class class class)co 7155  ωcom 7584   +o coa 8114  Ncnpi 10309   +N cpli 10310
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5172  ax-nul 5179  ax-pr 5301  ax-un 7464
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-ral 3075  df-rex 3076  df-reu 3077  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-pss 3879  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-iun 4888  df-br 5036  df-opab 5098  df-mpt 5116  df-tr 5142  df-id 5433  df-eprel 5438  df-po 5446  df-so 5447  df-fr 5486  df-we 5488  df-xp 5533  df-rel 5534  df-cnv 5535  df-co 5536  df-dm 5537  df-rn 5538  df-res 5539  df-ima 5540  df-pred 6130  df-ord 6176  df-on 6177  df-lim 6178  df-suc 6179  df-iota 6298  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-ov 7158  df-oprab 7159  df-mpo 7160  df-om 7585  df-1st 7698  df-2nd 7699  df-wrecs 7962  df-recs 8023  df-rdg 8061  df-oadd 8121  df-ni 10337  df-pli 10338
This theorem is referenced by:  addcompq  10415  adderpqlem  10419
  Copyright terms: Public domain W3C validator