| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > addcompi | Structured version Visualization version GIF version | ||
| Description: Addition of positive integers is commutative. (Contributed by NM, 27-Aug-1995.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| addcompi | ⊢ (𝐴 +N 𝐵) = (𝐵 +N 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pinn 10919 | . . . 4 ⊢ (𝐴 ∈ N → 𝐴 ∈ ω) | |
| 2 | pinn 10919 | . . . 4 ⊢ (𝐵 ∈ N → 𝐵 ∈ ω) | |
| 3 | nnacom 8656 | . . . 4 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 +o 𝐵) = (𝐵 +o 𝐴)) | |
| 4 | 1, 2, 3 | syl2an 596 | . . 3 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 +o 𝐵) = (𝐵 +o 𝐴)) |
| 5 | addpiord 10925 | . . 3 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 +N 𝐵) = (𝐴 +o 𝐵)) | |
| 6 | addpiord 10925 | . . . 4 ⊢ ((𝐵 ∈ N ∧ 𝐴 ∈ N) → (𝐵 +N 𝐴) = (𝐵 +o 𝐴)) | |
| 7 | 6 | ancoms 458 | . . 3 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐵 +N 𝐴) = (𝐵 +o 𝐴)) |
| 8 | 4, 5, 7 | 3eqtr4d 2786 | . 2 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 +N 𝐵) = (𝐵 +N 𝐴)) |
| 9 | dmaddpi 10931 | . . 3 ⊢ dom +N = (N × N) | |
| 10 | 9 | ndmovcom 7621 | . 2 ⊢ (¬ (𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 +N 𝐵) = (𝐵 +N 𝐴)) |
| 11 | 8, 10 | pm2.61i 182 | 1 ⊢ (𝐴 +N 𝐵) = (𝐵 +N 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1539 ∈ wcel 2107 (class class class)co 7432 ωcom 7888 +o coa 8504 Ncnpi 10885 +N cpli 10886 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pr 5431 ax-un 7756 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6320 df-ord 6386 df-on 6387 df-lim 6388 df-suc 6389 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-ov 7435 df-oprab 7436 df-mpo 7437 df-om 7889 df-1st 8015 df-2nd 8016 df-frecs 8307 df-wrecs 8338 df-recs 8412 df-rdg 8451 df-oadd 8511 df-ni 10913 df-pli 10914 |
| This theorem is referenced by: addcompq 10991 adderpqlem 10995 |
| Copyright terms: Public domain | W3C validator |