| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ltexpi | Structured version Visualization version GIF version | ||
| Description: Ordering on positive integers in terms of existence of sum. (Contributed by NM, 15-Mar-1996.) (Revised by Mario Carneiro, 14-Jun-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ltexpi | ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 <N 𝐵 ↔ ∃𝑥 ∈ N (𝐴 +N 𝑥) = 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pinn 10900 | . . 3 ⊢ (𝐴 ∈ N → 𝐴 ∈ ω) | |
| 2 | pinn 10900 | . . 3 ⊢ (𝐵 ∈ N → 𝐵 ∈ ω) | |
| 3 | nnaordex 8658 | . . 3 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ∈ 𝐵 ↔ ∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +o 𝑥) = 𝐵))) | |
| 4 | 1, 2, 3 | syl2an 596 | . 2 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 ∈ 𝐵 ↔ ∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +o 𝑥) = 𝐵))) |
| 5 | ltpiord 10909 | . 2 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 <N 𝐵 ↔ 𝐴 ∈ 𝐵)) | |
| 6 | addpiord 10906 | . . . . . . 7 ⊢ ((𝐴 ∈ N ∧ 𝑥 ∈ N) → (𝐴 +N 𝑥) = (𝐴 +o 𝑥)) | |
| 7 | 6 | eqeq1d 2736 | . . . . . 6 ⊢ ((𝐴 ∈ N ∧ 𝑥 ∈ N) → ((𝐴 +N 𝑥) = 𝐵 ↔ (𝐴 +o 𝑥) = 𝐵)) |
| 8 | 7 | pm5.32da 579 | . . . . 5 ⊢ (𝐴 ∈ N → ((𝑥 ∈ N ∧ (𝐴 +N 𝑥) = 𝐵) ↔ (𝑥 ∈ N ∧ (𝐴 +o 𝑥) = 𝐵))) |
| 9 | elni2 10899 | . . . . . . 7 ⊢ (𝑥 ∈ N ↔ (𝑥 ∈ ω ∧ ∅ ∈ 𝑥)) | |
| 10 | 9 | anbi1i 624 | . . . . . 6 ⊢ ((𝑥 ∈ N ∧ (𝐴 +o 𝑥) = 𝐵) ↔ ((𝑥 ∈ ω ∧ ∅ ∈ 𝑥) ∧ (𝐴 +o 𝑥) = 𝐵)) |
| 11 | anass 468 | . . . . . 6 ⊢ (((𝑥 ∈ ω ∧ ∅ ∈ 𝑥) ∧ (𝐴 +o 𝑥) = 𝐵) ↔ (𝑥 ∈ ω ∧ (∅ ∈ 𝑥 ∧ (𝐴 +o 𝑥) = 𝐵))) | |
| 12 | 10, 11 | bitri 275 | . . . . 5 ⊢ ((𝑥 ∈ N ∧ (𝐴 +o 𝑥) = 𝐵) ↔ (𝑥 ∈ ω ∧ (∅ ∈ 𝑥 ∧ (𝐴 +o 𝑥) = 𝐵))) |
| 13 | 8, 12 | bitrdi 287 | . . . 4 ⊢ (𝐴 ∈ N → ((𝑥 ∈ N ∧ (𝐴 +N 𝑥) = 𝐵) ↔ (𝑥 ∈ ω ∧ (∅ ∈ 𝑥 ∧ (𝐴 +o 𝑥) = 𝐵)))) |
| 14 | 13 | rexbidv2 3162 | . . 3 ⊢ (𝐴 ∈ N → (∃𝑥 ∈ N (𝐴 +N 𝑥) = 𝐵 ↔ ∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +o 𝑥) = 𝐵))) |
| 15 | 14 | adantr 480 | . 2 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (∃𝑥 ∈ N (𝐴 +N 𝑥) = 𝐵 ↔ ∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +o 𝑥) = 𝐵))) |
| 16 | 4, 5, 15 | 3bitr4d 311 | 1 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 <N 𝐵 ↔ ∃𝑥 ∈ N (𝐴 +N 𝑥) = 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∃wrex 3059 ∅c0 4313 class class class wbr 5123 (class class class)co 7413 ωcom 7869 +o coa 8485 Ncnpi 10866 +N cpli 10867 <N clti 10869 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 ax-un 7737 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-int 4927 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7870 df-2nd 7997 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-oadd 8492 df-ni 10894 df-pli 10895 df-lti 10897 |
| This theorem is referenced by: ltexnq 10997 archnq 11002 |
| Copyright terms: Public domain | W3C validator |