MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltexpi Structured version   Visualization version   GIF version

Theorem ltexpi 10861
Description: Ordering on positive integers in terms of existence of sum. (Contributed by NM, 15-Mar-1996.) (Revised by Mario Carneiro, 14-Jun-2013.) (New usage is discouraged.)
Assertion
Ref Expression
ltexpi ((𝐴N𝐵N) → (𝐴 <N 𝐵 ↔ ∃𝑥N (𝐴 +N 𝑥) = 𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem ltexpi
StepHypRef Expression
1 pinn 10837 . . 3 (𝐴N𝐴 ∈ ω)
2 pinn 10837 . . 3 (𝐵N𝐵 ∈ ω)
3 nnaordex 8604 . . 3 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵 ↔ ∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +o 𝑥) = 𝐵)))
41, 2, 3syl2an 596 . 2 ((𝐴N𝐵N) → (𝐴𝐵 ↔ ∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +o 𝑥) = 𝐵)))
5 ltpiord 10846 . 2 ((𝐴N𝐵N) → (𝐴 <N 𝐵𝐴𝐵))
6 addpiord 10843 . . . . . . 7 ((𝐴N𝑥N) → (𝐴 +N 𝑥) = (𝐴 +o 𝑥))
76eqeq1d 2732 . . . . . 6 ((𝐴N𝑥N) → ((𝐴 +N 𝑥) = 𝐵 ↔ (𝐴 +o 𝑥) = 𝐵))
87pm5.32da 579 . . . . 5 (𝐴N → ((𝑥N ∧ (𝐴 +N 𝑥) = 𝐵) ↔ (𝑥N ∧ (𝐴 +o 𝑥) = 𝐵)))
9 elni2 10836 . . . . . . 7 (𝑥N ↔ (𝑥 ∈ ω ∧ ∅ ∈ 𝑥))
109anbi1i 624 . . . . . 6 ((𝑥N ∧ (𝐴 +o 𝑥) = 𝐵) ↔ ((𝑥 ∈ ω ∧ ∅ ∈ 𝑥) ∧ (𝐴 +o 𝑥) = 𝐵))
11 anass 468 . . . . . 6 (((𝑥 ∈ ω ∧ ∅ ∈ 𝑥) ∧ (𝐴 +o 𝑥) = 𝐵) ↔ (𝑥 ∈ ω ∧ (∅ ∈ 𝑥 ∧ (𝐴 +o 𝑥) = 𝐵)))
1210, 11bitri 275 . . . . 5 ((𝑥N ∧ (𝐴 +o 𝑥) = 𝐵) ↔ (𝑥 ∈ ω ∧ (∅ ∈ 𝑥 ∧ (𝐴 +o 𝑥) = 𝐵)))
138, 12bitrdi 287 . . . 4 (𝐴N → ((𝑥N ∧ (𝐴 +N 𝑥) = 𝐵) ↔ (𝑥 ∈ ω ∧ (∅ ∈ 𝑥 ∧ (𝐴 +o 𝑥) = 𝐵))))
1413rexbidv2 3154 . . 3 (𝐴N → (∃𝑥N (𝐴 +N 𝑥) = 𝐵 ↔ ∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +o 𝑥) = 𝐵)))
1514adantr 480 . 2 ((𝐴N𝐵N) → (∃𝑥N (𝐴 +N 𝑥) = 𝐵 ↔ ∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +o 𝑥) = 𝐵)))
164, 5, 153bitr4d 311 1 ((𝐴N𝐵N) → (𝐴 <N 𝐵 ↔ ∃𝑥N (𝐴 +N 𝑥) = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wrex 3054  c0 4298   class class class wbr 5109  (class class class)co 7389  ωcom 7844   +o coa 8433  Ncnpi 10803   +N cpli 10804   <N clti 10806
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5253  ax-nul 5263  ax-pr 5389  ax-un 7713
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-pss 3936  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-int 4913  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-tr 5217  df-id 5535  df-eprel 5540  df-po 5548  df-so 5549  df-fr 5593  df-we 5595  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-pred 6276  df-ord 6337  df-on 6338  df-lim 6339  df-suc 6340  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-ov 7392  df-oprab 7393  df-mpo 7394  df-om 7845  df-2nd 7971  df-frecs 8262  df-wrecs 8293  df-recs 8342  df-rdg 8380  df-oadd 8440  df-ni 10831  df-pli 10832  df-lti 10834
This theorem is referenced by:  ltexnq  10934  archnq  10939
  Copyright terms: Public domain W3C validator