MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltexpi Structured version   Visualization version   GIF version

Theorem ltexpi 10318
Description: Ordering on positive integers in terms of existence of sum. (Contributed by NM, 15-Mar-1996.) (Revised by Mario Carneiro, 14-Jun-2013.) (New usage is discouraged.)
Assertion
Ref Expression
ltexpi ((𝐴N𝐵N) → (𝐴 <N 𝐵 ↔ ∃𝑥N (𝐴 +N 𝑥) = 𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem ltexpi
StepHypRef Expression
1 pinn 10294 . . 3 (𝐴N𝐴 ∈ ω)
2 pinn 10294 . . 3 (𝐵N𝐵 ∈ ω)
3 nnaordex 8259 . . 3 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵 ↔ ∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +o 𝑥) = 𝐵)))
41, 2, 3syl2an 595 . 2 ((𝐴N𝐵N) → (𝐴𝐵 ↔ ∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +o 𝑥) = 𝐵)))
5 ltpiord 10303 . 2 ((𝐴N𝐵N) → (𝐴 <N 𝐵𝐴𝐵))
6 addpiord 10300 . . . . . . 7 ((𝐴N𝑥N) → (𝐴 +N 𝑥) = (𝐴 +o 𝑥))
76eqeq1d 2828 . . . . . 6 ((𝐴N𝑥N) → ((𝐴 +N 𝑥) = 𝐵 ↔ (𝐴 +o 𝑥) = 𝐵))
87pm5.32da 579 . . . . 5 (𝐴N → ((𝑥N ∧ (𝐴 +N 𝑥) = 𝐵) ↔ (𝑥N ∧ (𝐴 +o 𝑥) = 𝐵)))
9 elni2 10293 . . . . . . 7 (𝑥N ↔ (𝑥 ∈ ω ∧ ∅ ∈ 𝑥))
109anbi1i 623 . . . . . 6 ((𝑥N ∧ (𝐴 +o 𝑥) = 𝐵) ↔ ((𝑥 ∈ ω ∧ ∅ ∈ 𝑥) ∧ (𝐴 +o 𝑥) = 𝐵))
11 anass 469 . . . . . 6 (((𝑥 ∈ ω ∧ ∅ ∈ 𝑥) ∧ (𝐴 +o 𝑥) = 𝐵) ↔ (𝑥 ∈ ω ∧ (∅ ∈ 𝑥 ∧ (𝐴 +o 𝑥) = 𝐵)))
1210, 11bitri 276 . . . . 5 ((𝑥N ∧ (𝐴 +o 𝑥) = 𝐵) ↔ (𝑥 ∈ ω ∧ (∅ ∈ 𝑥 ∧ (𝐴 +o 𝑥) = 𝐵)))
138, 12syl6bb 288 . . . 4 (𝐴N → ((𝑥N ∧ (𝐴 +N 𝑥) = 𝐵) ↔ (𝑥 ∈ ω ∧ (∅ ∈ 𝑥 ∧ (𝐴 +o 𝑥) = 𝐵))))
1413rexbidv2 3300 . . 3 (𝐴N → (∃𝑥N (𝐴 +N 𝑥) = 𝐵 ↔ ∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +o 𝑥) = 𝐵)))
1514adantr 481 . 2 ((𝐴N𝐵N) → (∃𝑥N (𝐴 +N 𝑥) = 𝐵 ↔ ∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +o 𝑥) = 𝐵)))
164, 5, 153bitr4d 312 1 ((𝐴N𝐵N) → (𝐴 <N 𝐵 ↔ ∃𝑥N (𝐴 +N 𝑥) = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396   = wceq 1530  wcel 2107  wrex 3144  c0 4295   class class class wbr 5063  (class class class)co 7150  ωcom 7573   +o coa 8095  Ncnpi 10260   +N cpli 10261   <N clti 10263
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7455
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-ral 3148  df-rex 3149  df-reu 3150  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-pss 3958  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-uni 4838  df-int 4875  df-iun 4919  df-br 5064  df-opab 5126  df-mpt 5144  df-tr 5170  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7574  df-wrecs 7943  df-recs 8004  df-rdg 8042  df-oadd 8102  df-ni 10288  df-pli 10289  df-lti 10291
This theorem is referenced by:  ltexnq  10391  archnq  10396
  Copyright terms: Public domain W3C validator