Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ltexpi | Structured version Visualization version GIF version |
Description: Ordering on positive integers in terms of existence of sum. (Contributed by NM, 15-Mar-1996.) (Revised by Mario Carneiro, 14-Jun-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ltexpi | ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 <N 𝐵 ↔ ∃𝑥 ∈ N (𝐴 +N 𝑥) = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pinn 10351 | . . 3 ⊢ (𝐴 ∈ N → 𝐴 ∈ ω) | |
2 | pinn 10351 | . . 3 ⊢ (𝐵 ∈ N → 𝐵 ∈ ω) | |
3 | nnaordex 8280 | . . 3 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ∈ 𝐵 ↔ ∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +o 𝑥) = 𝐵))) | |
4 | 1, 2, 3 | syl2an 598 | . 2 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 ∈ 𝐵 ↔ ∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +o 𝑥) = 𝐵))) |
5 | ltpiord 10360 | . 2 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 <N 𝐵 ↔ 𝐴 ∈ 𝐵)) | |
6 | addpiord 10357 | . . . . . . 7 ⊢ ((𝐴 ∈ N ∧ 𝑥 ∈ N) → (𝐴 +N 𝑥) = (𝐴 +o 𝑥)) | |
7 | 6 | eqeq1d 2760 | . . . . . 6 ⊢ ((𝐴 ∈ N ∧ 𝑥 ∈ N) → ((𝐴 +N 𝑥) = 𝐵 ↔ (𝐴 +o 𝑥) = 𝐵)) |
8 | 7 | pm5.32da 582 | . . . . 5 ⊢ (𝐴 ∈ N → ((𝑥 ∈ N ∧ (𝐴 +N 𝑥) = 𝐵) ↔ (𝑥 ∈ N ∧ (𝐴 +o 𝑥) = 𝐵))) |
9 | elni2 10350 | . . . . . . 7 ⊢ (𝑥 ∈ N ↔ (𝑥 ∈ ω ∧ ∅ ∈ 𝑥)) | |
10 | 9 | anbi1i 626 | . . . . . 6 ⊢ ((𝑥 ∈ N ∧ (𝐴 +o 𝑥) = 𝐵) ↔ ((𝑥 ∈ ω ∧ ∅ ∈ 𝑥) ∧ (𝐴 +o 𝑥) = 𝐵)) |
11 | anass 472 | . . . . . 6 ⊢ (((𝑥 ∈ ω ∧ ∅ ∈ 𝑥) ∧ (𝐴 +o 𝑥) = 𝐵) ↔ (𝑥 ∈ ω ∧ (∅ ∈ 𝑥 ∧ (𝐴 +o 𝑥) = 𝐵))) | |
12 | 10, 11 | bitri 278 | . . . . 5 ⊢ ((𝑥 ∈ N ∧ (𝐴 +o 𝑥) = 𝐵) ↔ (𝑥 ∈ ω ∧ (∅ ∈ 𝑥 ∧ (𝐴 +o 𝑥) = 𝐵))) |
13 | 8, 12 | bitrdi 290 | . . . 4 ⊢ (𝐴 ∈ N → ((𝑥 ∈ N ∧ (𝐴 +N 𝑥) = 𝐵) ↔ (𝑥 ∈ ω ∧ (∅ ∈ 𝑥 ∧ (𝐴 +o 𝑥) = 𝐵)))) |
14 | 13 | rexbidv2 3219 | . . 3 ⊢ (𝐴 ∈ N → (∃𝑥 ∈ N (𝐴 +N 𝑥) = 𝐵 ↔ ∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +o 𝑥) = 𝐵))) |
15 | 14 | adantr 484 | . 2 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (∃𝑥 ∈ N (𝐴 +N 𝑥) = 𝐵 ↔ ∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +o 𝑥) = 𝐵))) |
16 | 4, 5, 15 | 3bitr4d 314 | 1 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 <N 𝐵 ↔ ∃𝑥 ∈ N (𝐴 +N 𝑥) = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1538 ∈ wcel 2111 ∃wrex 3071 ∅c0 4227 class class class wbr 5036 (class class class)co 7156 ωcom 7585 +o coa 8115 Ncnpi 10317 +N cpli 10318 <N clti 10320 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5173 ax-nul 5180 ax-pr 5302 ax-un 7465 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-reu 3077 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-pss 3879 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-tp 4530 df-op 4532 df-uni 4802 df-int 4842 df-iun 4888 df-br 5037 df-opab 5099 df-mpt 5117 df-tr 5143 df-id 5434 df-eprel 5439 df-po 5447 df-so 5448 df-fr 5487 df-we 5489 df-xp 5534 df-rel 5535 df-cnv 5536 df-co 5537 df-dm 5538 df-rn 5539 df-res 5540 df-ima 5541 df-pred 6131 df-ord 6177 df-on 6178 df-lim 6179 df-suc 6180 df-iota 6299 df-fun 6342 df-fn 6343 df-f 6344 df-f1 6345 df-fo 6346 df-f1o 6347 df-fv 6348 df-ov 7159 df-oprab 7160 df-mpo 7161 df-om 7586 df-wrecs 7963 df-recs 8024 df-rdg 8062 df-oadd 8122 df-ni 10345 df-pli 10346 df-lti 10348 |
This theorem is referenced by: ltexnq 10448 archnq 10453 |
Copyright terms: Public domain | W3C validator |