MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulcompi Structured version   Visualization version   GIF version

Theorem mulcompi 10779
Description: Multiplication of positive integers is commutative. (Contributed by NM, 21-Sep-1995.) (New usage is discouraged.)
Assertion
Ref Expression
mulcompi (𝐴 ·N 𝐵) = (𝐵 ·N 𝐴)

Proof of Theorem mulcompi
StepHypRef Expression
1 pinn 10761 . . . 4 (𝐴N𝐴 ∈ ω)
2 pinn 10761 . . . 4 (𝐵N𝐵 ∈ ω)
3 nnmcom 8536 . . . 4 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ·o 𝐵) = (𝐵 ·o 𝐴))
41, 2, 3syl2an 596 . . 3 ((𝐴N𝐵N) → (𝐴 ·o 𝐵) = (𝐵 ·o 𝐴))
5 mulpiord 10768 . . 3 ((𝐴N𝐵N) → (𝐴 ·N 𝐵) = (𝐴 ·o 𝐵))
6 mulpiord 10768 . . . 4 ((𝐵N𝐴N) → (𝐵 ·N 𝐴) = (𝐵 ·o 𝐴))
76ancoms 458 . . 3 ((𝐴N𝐵N) → (𝐵 ·N 𝐴) = (𝐵 ·o 𝐴))
84, 5, 73eqtr4d 2775 . 2 ((𝐴N𝐵N) → (𝐴 ·N 𝐵) = (𝐵 ·N 𝐴))
9 dmmulpi 10774 . . 3 dom ·N = (N × N)
109ndmovcom 7528 . 2 (¬ (𝐴N𝐵N) → (𝐴 ·N 𝐵) = (𝐵 ·N 𝐴))
118, 10pm2.61i 182 1 (𝐴 ·N 𝐵) = (𝐵 ·N 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1541  wcel 2110  (class class class)co 7341  ωcom 7791   ·o comu 8378  Ncnpi 10727   ·N cmi 10729
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-sep 5232  ax-nul 5242  ax-pr 5368  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-oadd 8384  df-omul 8385  df-ni 10755  df-mi 10757
This theorem is referenced by:  enqbreq2  10803  enqer  10804  nqereu  10812  addcompq  10833  mulcompq  10835  adderpqlem  10837  mulerpqlem  10838  addassnq  10841  mulcanenq  10843  distrnq  10844  recmulnq  10847  ltsonq  10852  lterpq  10853  ltanq  10854  ltmnq  10855  ltexnq  10858
  Copyright terms: Public domain W3C validator