Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mulcompi | Structured version Visualization version GIF version |
Description: Multiplication of positive integers is commutative. (Contributed by NM, 21-Sep-1995.) (New usage is discouraged.) |
Ref | Expression |
---|---|
mulcompi | ⊢ (𝐴 ·N 𝐵) = (𝐵 ·N 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pinn 10634 | . . . 4 ⊢ (𝐴 ∈ N → 𝐴 ∈ ω) | |
2 | pinn 10634 | . . . 4 ⊢ (𝐵 ∈ N → 𝐵 ∈ ω) | |
3 | nnmcom 8457 | . . . 4 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ·o 𝐵) = (𝐵 ·o 𝐴)) | |
4 | 1, 2, 3 | syl2an 596 | . . 3 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 ·o 𝐵) = (𝐵 ·o 𝐴)) |
5 | mulpiord 10641 | . . 3 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 ·N 𝐵) = (𝐴 ·o 𝐵)) | |
6 | mulpiord 10641 | . . . 4 ⊢ ((𝐵 ∈ N ∧ 𝐴 ∈ N) → (𝐵 ·N 𝐴) = (𝐵 ·o 𝐴)) | |
7 | 6 | ancoms 459 | . . 3 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐵 ·N 𝐴) = (𝐵 ·o 𝐴)) |
8 | 4, 5, 7 | 3eqtr4d 2788 | . 2 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 ·N 𝐵) = (𝐵 ·N 𝐴)) |
9 | dmmulpi 10647 | . . 3 ⊢ dom ·N = (N × N) | |
10 | 9 | ndmovcom 7459 | . 2 ⊢ (¬ (𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 ·N 𝐵) = (𝐵 ·N 𝐴)) |
11 | 8, 10 | pm2.61i 182 | 1 ⊢ (𝐴 ·N 𝐵) = (𝐵 ·N 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 396 = wceq 1539 ∈ wcel 2106 (class class class)co 7275 ωcom 7712 ·o comu 8295 Ncnpi 10600 ·N cmi 10602 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-oadd 8301 df-omul 8302 df-ni 10628 df-mi 10630 |
This theorem is referenced by: enqbreq2 10676 enqer 10677 nqereu 10685 addcompq 10706 mulcompq 10708 adderpqlem 10710 mulerpqlem 10711 addassnq 10714 mulcanenq 10716 distrnq 10717 recmulnq 10720 ltsonq 10725 lterpq 10726 ltanq 10727 ltmnq 10728 ltexnq 10731 |
Copyright terms: Public domain | W3C validator |