MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulcompi Structured version   Visualization version   GIF version

Theorem mulcompi 10918
Description: Multiplication of positive integers is commutative. (Contributed by NM, 21-Sep-1995.) (New usage is discouraged.)
Assertion
Ref Expression
mulcompi (𝐴 ·N 𝐵) = (𝐵 ·N 𝐴)

Proof of Theorem mulcompi
StepHypRef Expression
1 pinn 10900 . . . 4 (𝐴N𝐴 ∈ ω)
2 pinn 10900 . . . 4 (𝐵N𝐵 ∈ ω)
3 nnmcom 8646 . . . 4 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ·o 𝐵) = (𝐵 ·o 𝐴))
41, 2, 3syl2an 596 . . 3 ((𝐴N𝐵N) → (𝐴 ·o 𝐵) = (𝐵 ·o 𝐴))
5 mulpiord 10907 . . 3 ((𝐴N𝐵N) → (𝐴 ·N 𝐵) = (𝐴 ·o 𝐵))
6 mulpiord 10907 . . . 4 ((𝐵N𝐴N) → (𝐵 ·N 𝐴) = (𝐵 ·o 𝐴))
76ancoms 458 . . 3 ((𝐴N𝐵N) → (𝐵 ·N 𝐴) = (𝐵 ·o 𝐴))
84, 5, 73eqtr4d 2779 . 2 ((𝐴N𝐵N) → (𝐴 ·N 𝐵) = (𝐵 ·N 𝐴))
9 dmmulpi 10913 . . 3 dom ·N = (N × N)
109ndmovcom 7602 . 2 (¬ (𝐴N𝐵N) → (𝐴 ·N 𝐵) = (𝐵 ·N 𝐴))
118, 10pm2.61i 182 1 (𝐴 ·N 𝐵) = (𝐵 ·N 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1539  wcel 2107  (class class class)co 7413  ωcom 7869   ·o comu 8486  Ncnpi 10866   ·N cmi 10868
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pr 5412  ax-un 7737
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7870  df-1st 7996  df-2nd 7997  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-oadd 8492  df-omul 8493  df-ni 10894  df-mi 10896
This theorem is referenced by:  enqbreq2  10942  enqer  10943  nqereu  10951  addcompq  10972  mulcompq  10974  adderpqlem  10976  mulerpqlem  10977  addassnq  10980  mulcanenq  10982  distrnq  10983  recmulnq  10986  ltsonq  10991  lterpq  10992  ltanq  10993  ltmnq  10994  ltexnq  10997
  Copyright terms: Public domain W3C validator