| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mulcompi | Structured version Visualization version GIF version | ||
| Description: Multiplication of positive integers is commutative. (Contributed by NM, 21-Sep-1995.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| mulcompi | ⊢ (𝐴 ·N 𝐵) = (𝐵 ·N 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pinn 10900 | . . . 4 ⊢ (𝐴 ∈ N → 𝐴 ∈ ω) | |
| 2 | pinn 10900 | . . . 4 ⊢ (𝐵 ∈ N → 𝐵 ∈ ω) | |
| 3 | nnmcom 8646 | . . . 4 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ·o 𝐵) = (𝐵 ·o 𝐴)) | |
| 4 | 1, 2, 3 | syl2an 596 | . . 3 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 ·o 𝐵) = (𝐵 ·o 𝐴)) |
| 5 | mulpiord 10907 | . . 3 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 ·N 𝐵) = (𝐴 ·o 𝐵)) | |
| 6 | mulpiord 10907 | . . . 4 ⊢ ((𝐵 ∈ N ∧ 𝐴 ∈ N) → (𝐵 ·N 𝐴) = (𝐵 ·o 𝐴)) | |
| 7 | 6 | ancoms 458 | . . 3 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐵 ·N 𝐴) = (𝐵 ·o 𝐴)) |
| 8 | 4, 5, 7 | 3eqtr4d 2779 | . 2 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 ·N 𝐵) = (𝐵 ·N 𝐴)) |
| 9 | dmmulpi 10913 | . . 3 ⊢ dom ·N = (N × N) | |
| 10 | 9 | ndmovcom 7602 | . 2 ⊢ (¬ (𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 ·N 𝐵) = (𝐵 ·N 𝐴)) |
| 11 | 8, 10 | pm2.61i 182 | 1 ⊢ (𝐴 ·N 𝐵) = (𝐵 ·N 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1539 ∈ wcel 2107 (class class class)co 7413 ωcom 7869 ·o comu 8486 Ncnpi 10866 ·N cmi 10868 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 ax-un 7737 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7870 df-1st 7996 df-2nd 7997 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-oadd 8492 df-omul 8493 df-ni 10894 df-mi 10896 |
| This theorem is referenced by: enqbreq2 10942 enqer 10943 nqereu 10951 addcompq 10972 mulcompq 10974 adderpqlem 10976 mulerpqlem 10977 addassnq 10980 mulcanenq 10982 distrnq 10983 recmulnq 10986 ltsonq 10991 lterpq 10992 ltanq 10993 ltmnq 10994 ltexnq 10997 |
| Copyright terms: Public domain | W3C validator |