| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mulcompi | Structured version Visualization version GIF version | ||
| Description: Multiplication of positive integers is commutative. (Contributed by NM, 21-Sep-1995.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| mulcompi | ⊢ (𝐴 ·N 𝐵) = (𝐵 ·N 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pinn 10791 | . . . 4 ⊢ (𝐴 ∈ N → 𝐴 ∈ ω) | |
| 2 | pinn 10791 | . . . 4 ⊢ (𝐵 ∈ N → 𝐵 ∈ ω) | |
| 3 | nnmcom 8551 | . . . 4 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ·o 𝐵) = (𝐵 ·o 𝐴)) | |
| 4 | 1, 2, 3 | syl2an 596 | . . 3 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 ·o 𝐵) = (𝐵 ·o 𝐴)) |
| 5 | mulpiord 10798 | . . 3 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 ·N 𝐵) = (𝐴 ·o 𝐵)) | |
| 6 | mulpiord 10798 | . . . 4 ⊢ ((𝐵 ∈ N ∧ 𝐴 ∈ N) → (𝐵 ·N 𝐴) = (𝐵 ·o 𝐴)) | |
| 7 | 6 | ancoms 458 | . . 3 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐵 ·N 𝐴) = (𝐵 ·o 𝐴)) |
| 8 | 4, 5, 7 | 3eqtr4d 2774 | . 2 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 ·N 𝐵) = (𝐵 ·N 𝐴)) |
| 9 | dmmulpi 10804 | . . 3 ⊢ dom ·N = (N × N) | |
| 10 | 9 | ndmovcom 7540 | . 2 ⊢ (¬ (𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 ·N 𝐵) = (𝐵 ·N 𝐴)) |
| 11 | 8, 10 | pm2.61i 182 | 1 ⊢ (𝐴 ·N 𝐵) = (𝐵 ·N 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2109 (class class class)co 7353 ωcom 7806 ·o comu 8393 Ncnpi 10757 ·N cmi 10759 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-oadd 8399 df-omul 8400 df-ni 10785 df-mi 10787 |
| This theorem is referenced by: enqbreq2 10833 enqer 10834 nqereu 10842 addcompq 10863 mulcompq 10865 adderpqlem 10867 mulerpqlem 10868 addassnq 10871 mulcanenq 10873 distrnq 10874 recmulnq 10877 ltsonq 10882 lterpq 10883 ltanq 10884 ltmnq 10885 ltexnq 10888 |
| Copyright terms: Public domain | W3C validator |