MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulidpi Structured version   Visualization version   GIF version

Theorem mulidpi 10955
Description: 1 is an identity element for multiplication on positive integers. (Contributed by NM, 4-Mar-1996.) (Revised by Mario Carneiro, 17-Nov-2014.) (New usage is discouraged.)
Assertion
Ref Expression
mulidpi (𝐴N → (𝐴 ·N 1o) = 𝐴)

Proof of Theorem mulidpi
StepHypRef Expression
1 1pi 10952 . . 3 1oN
2 mulpiord 10954 . . 3 ((𝐴N ∧ 1oN) → (𝐴 ·N 1o) = (𝐴 ·o 1o))
31, 2mpan2 690 . 2 (𝐴N → (𝐴 ·N 1o) = (𝐴 ·o 1o))
4 pinn 10947 . . 3 (𝐴N𝐴 ∈ ω)
5 nnm1 8708 . . 3 (𝐴 ∈ ω → (𝐴 ·o 1o) = 𝐴)
64, 5syl 17 . 2 (𝐴N → (𝐴 ·o 1o) = 𝐴)
73, 6eqtrd 2780 1 (𝐴N → (𝐴 ·N 1o) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  (class class class)co 7448  ωcom 7903  1oc1o 8515   ·o comu 8520  Ncnpi 10913   ·N cmi 10915
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-oadd 8526  df-omul 8527  df-ni 10941  df-mi 10943
This theorem is referenced by:  1nqenq  11031  mulidnq  11032  1lt2nq  11042  archnq  11049  prlem934  11102
  Copyright terms: Public domain W3C validator