![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mulidpi | Structured version Visualization version GIF version |
Description: 1 is an identity element for multiplication on positive integers. (Contributed by NM, 4-Mar-1996.) (Revised by Mario Carneiro, 17-Nov-2014.) (New usage is discouraged.) |
Ref | Expression |
---|---|
mulidpi | ⊢ (𝐴 ∈ N → (𝐴 ·N 1o) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1pi 10027 | . . 3 ⊢ 1o ∈ N | |
2 | mulpiord 10029 | . . 3 ⊢ ((𝐴 ∈ N ∧ 1o ∈ N) → (𝐴 ·N 1o) = (𝐴 ·o 1o)) | |
3 | 1, 2 | mpan2 682 | . 2 ⊢ (𝐴 ∈ N → (𝐴 ·N 1o) = (𝐴 ·o 1o)) |
4 | pinn 10022 | . . 3 ⊢ (𝐴 ∈ N → 𝐴 ∈ ω) | |
5 | nnm1 8000 | . . 3 ⊢ (𝐴 ∈ ω → (𝐴 ·o 1o) = 𝐴) | |
6 | 4, 5 | syl 17 | . 2 ⊢ (𝐴 ∈ N → (𝐴 ·o 1o) = 𝐴) |
7 | 3, 6 | eqtrd 2861 | 1 ⊢ (𝐴 ∈ N → (𝐴 ·N 1o) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1656 ∈ wcel 2164 (class class class)co 6910 ωcom 7331 1oc1o 7824 ·o comu 7829 Ncnpi 9988 ·N cmi 9990 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-8 2166 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-sep 5007 ax-nul 5015 ax-pow 5067 ax-pr 5129 ax-un 7214 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3or 1112 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-ral 3122 df-rex 3123 df-reu 3124 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-pss 3814 df-nul 4147 df-if 4309 df-pw 4382 df-sn 4400 df-pr 4402 df-tp 4404 df-op 4406 df-uni 4661 df-iun 4744 df-br 4876 df-opab 4938 df-mpt 4955 df-tr 4978 df-id 5252 df-eprel 5257 df-po 5265 df-so 5266 df-fr 5305 df-we 5307 df-xp 5352 df-rel 5353 df-cnv 5354 df-co 5355 df-dm 5356 df-rn 5357 df-res 5358 df-ima 5359 df-pred 5924 df-ord 5970 df-on 5971 df-lim 5972 df-suc 5973 df-iota 6090 df-fun 6129 df-fn 6130 df-f 6131 df-f1 6132 df-fo 6133 df-f1o 6134 df-fv 6135 df-ov 6913 df-oprab 6914 df-mpt2 6915 df-om 7332 df-wrecs 7677 df-recs 7739 df-rdg 7777 df-1o 7831 df-oadd 7835 df-omul 7836 df-ni 10016 df-mi 10018 |
This theorem is referenced by: 1nqenq 10106 mulidnq 10107 1lt2nq 10117 archnq 10124 prlem934 10177 |
Copyright terms: Public domain | W3C validator |