![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mulidpi | Structured version Visualization version GIF version |
Description: 1 is an identity element for multiplication on positive integers. (Contributed by NM, 4-Mar-1996.) (Revised by Mario Carneiro, 17-Nov-2014.) (New usage is discouraged.) |
Ref | Expression |
---|---|
mulidpi | โข (๐ด โ N โ (๐ด ยทN 1o) = ๐ด) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1pi 10881 | . . 3 โข 1o โ N | |
2 | mulpiord 10883 | . . 3 โข ((๐ด โ N โง 1o โ N) โ (๐ด ยทN 1o) = (๐ด ยทo 1o)) | |
3 | 1, 2 | mpan2 688 | . 2 โข (๐ด โ N โ (๐ด ยทN 1o) = (๐ด ยทo 1o)) |
4 | pinn 10876 | . . 3 โข (๐ด โ N โ ๐ด โ ฯ) | |
5 | nnm1 8654 | . . 3 โข (๐ด โ ฯ โ (๐ด ยทo 1o) = ๐ด) | |
6 | 4, 5 | syl 17 | . 2 โข (๐ด โ N โ (๐ด ยทo 1o) = ๐ด) |
7 | 3, 6 | eqtrd 2771 | 1 โข (๐ด โ N โ (๐ด ยทN 1o) = ๐ด) |
Colors of variables: wff setvar class |
Syntax hints: โ wi 4 = wceq 1540 โ wcel 2105 (class class class)co 7412 ฯcom 7858 1oc1o 8462 ยทo comu 8467 Ncnpi 10842 ยทN cmi 10844 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pr 5427 ax-un 7728 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7859 df-2nd 7979 df-frecs 8269 df-wrecs 8300 df-recs 8374 df-rdg 8413 df-1o 8469 df-oadd 8473 df-omul 8474 df-ni 10870 df-mi 10872 |
This theorem is referenced by: 1nqenq 10960 mulidnq 10961 1lt2nq 10971 archnq 10978 prlem934 11031 |
Copyright terms: Public domain | W3C validator |