MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fisupg Structured version   Visualization version   GIF version

Theorem fisupg 9352
Description: Lemma showing existence and closure of supremum of a finite set. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
fisupg ((𝑅 Or 𝐴𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥𝐴 (∀𝑦𝐴 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐴 𝑦𝑅𝑧)))
Distinct variable groups:   𝑥,𝑅,𝑦,𝑧   𝑥,𝐴,𝑦,𝑧

Proof of Theorem fisupg
StepHypRef Expression
1 fimaxg 9351 . 2 ((𝑅 Or 𝐴𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑅𝑥))
2 sotrieq2 5639 . . . . . . . . . . 11 ((𝑅 Or 𝐴 ∧ (𝑥𝐴𝑦𝐴)) → (𝑥 = 𝑦 ↔ (¬ 𝑥𝑅𝑦 ∧ ¬ 𝑦𝑅𝑥)))
32simprbda 498 . . . . . . . . . 10 (((𝑅 Or 𝐴 ∧ (𝑥𝐴𝑦𝐴)) ∧ 𝑥 = 𝑦) → ¬ 𝑥𝑅𝑦)
43ex 412 . . . . . . . . 9 ((𝑅 Or 𝐴 ∧ (𝑥𝐴𝑦𝐴)) → (𝑥 = 𝑦 → ¬ 𝑥𝑅𝑦))
54anassrs 467 . . . . . . . 8 (((𝑅 Or 𝐴𝑥𝐴) ∧ 𝑦𝐴) → (𝑥 = 𝑦 → ¬ 𝑥𝑅𝑦))
65a1dd 50 . . . . . . 7 (((𝑅 Or 𝐴𝑥𝐴) ∧ 𝑦𝐴) → (𝑥 = 𝑦 → ((𝑥𝑦𝑦𝑅𝑥) → ¬ 𝑥𝑅𝑦)))
7 pm2.27 42 . . . . . . . 8 (𝑥𝑦 → ((𝑥𝑦𝑦𝑅𝑥) → 𝑦𝑅𝑥))
8 so2nr 5635 . . . . . . . . . 10 ((𝑅 Or 𝐴 ∧ (𝑥𝐴𝑦𝐴)) → ¬ (𝑥𝑅𝑦𝑦𝑅𝑥))
9 pm3.21 471 . . . . . . . . . . 11 (𝑦𝑅𝑥 → (𝑥𝑅𝑦 → (𝑥𝑅𝑦𝑦𝑅𝑥)))
109con3d 152 . . . . . . . . . 10 (𝑦𝑅𝑥 → (¬ (𝑥𝑅𝑦𝑦𝑅𝑥) → ¬ 𝑥𝑅𝑦))
118, 10syl5com 31 . . . . . . . . 9 ((𝑅 Or 𝐴 ∧ (𝑥𝐴𝑦𝐴)) → (𝑦𝑅𝑥 → ¬ 𝑥𝑅𝑦))
1211anassrs 467 . . . . . . . 8 (((𝑅 Or 𝐴𝑥𝐴) ∧ 𝑦𝐴) → (𝑦𝑅𝑥 → ¬ 𝑥𝑅𝑦))
137, 12syl9r 78 . . . . . . 7 (((𝑅 Or 𝐴𝑥𝐴) ∧ 𝑦𝐴) → (𝑥𝑦 → ((𝑥𝑦𝑦𝑅𝑥) → ¬ 𝑥𝑅𝑦)))
146, 13pm2.61dne 3034 . . . . . 6 (((𝑅 Or 𝐴𝑥𝐴) ∧ 𝑦𝐴) → ((𝑥𝑦𝑦𝑅𝑥) → ¬ 𝑥𝑅𝑦))
1514ralimdva 3173 . . . . 5 ((𝑅 Or 𝐴𝑥𝐴) → (∀𝑦𝐴 (𝑥𝑦𝑦𝑅𝑥) → ∀𝑦𝐴 ¬ 𝑥𝑅𝑦))
16 breq2 5170 . . . . . . . . 9 (𝑧 = 𝑥 → (𝑦𝑅𝑧𝑦𝑅𝑥))
1716rspcev 3635 . . . . . . . 8 ((𝑥𝐴𝑦𝑅𝑥) → ∃𝑧𝐴 𝑦𝑅𝑧)
1817ex 412 . . . . . . 7 (𝑥𝐴 → (𝑦𝑅𝑥 → ∃𝑧𝐴 𝑦𝑅𝑧))
1918ralrimivw 3156 . . . . . 6 (𝑥𝐴 → ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐴 𝑦𝑅𝑧))
2019adantl 481 . . . . 5 ((𝑅 Or 𝐴𝑥𝐴) → ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐴 𝑦𝑅𝑧))
2115, 20jctird 526 . . . 4 ((𝑅 Or 𝐴𝑥𝐴) → (∀𝑦𝐴 (𝑥𝑦𝑦𝑅𝑥) → (∀𝑦𝐴 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐴 𝑦𝑅𝑧))))
2221reximdva 3174 . . 3 (𝑅 Or 𝐴 → (∃𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑅𝑥) → ∃𝑥𝐴 (∀𝑦𝐴 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐴 𝑦𝑅𝑧))))
23223ad2ant1 1133 . 2 ((𝑅 Or 𝐴𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → (∃𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑅𝑥) → ∃𝑥𝐴 (∀𝑦𝐴 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐴 𝑦𝑅𝑧))))
241, 23mpd 15 1 ((𝑅 Or 𝐴𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥𝐴 (∀𝑦𝐴 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐴 𝑦𝑅𝑧)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1087  wcel 2108  wne 2946  wral 3067  wrex 3076  c0 4352   class class class wbr 5166   Or wor 5606  Fincfn 9003
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-om 7904  df-en 9004  df-fin 9007
This theorem is referenced by:  fisup2g  9537  fisupcl  9538  rencldnfilem  42776
  Copyright terms: Public domain W3C validator