MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fisupg Structured version   Visualization version   GIF version

Theorem fisupg 9062
Description: Lemma showing existence and closure of supremum of a finite set. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
fisupg ((𝑅 Or 𝐴𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥𝐴 (∀𝑦𝐴 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐴 𝑦𝑅𝑧)))
Distinct variable groups:   𝑥,𝑅,𝑦,𝑧   𝑥,𝐴,𝑦,𝑧

Proof of Theorem fisupg
StepHypRef Expression
1 fimaxg 9061 . 2 ((𝑅 Or 𝐴𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑅𝑥))
2 sotrieq2 5533 . . . . . . . . . . 11 ((𝑅 Or 𝐴 ∧ (𝑥𝐴𝑦𝐴)) → (𝑥 = 𝑦 ↔ (¬ 𝑥𝑅𝑦 ∧ ¬ 𝑦𝑅𝑥)))
32simprbda 499 . . . . . . . . . 10 (((𝑅 Or 𝐴 ∧ (𝑥𝐴𝑦𝐴)) ∧ 𝑥 = 𝑦) → ¬ 𝑥𝑅𝑦)
43ex 413 . . . . . . . . 9 ((𝑅 Or 𝐴 ∧ (𝑥𝐴𝑦𝐴)) → (𝑥 = 𝑦 → ¬ 𝑥𝑅𝑦))
54anassrs 468 . . . . . . . 8 (((𝑅 Or 𝐴𝑥𝐴) ∧ 𝑦𝐴) → (𝑥 = 𝑦 → ¬ 𝑥𝑅𝑦))
65a1dd 50 . . . . . . 7 (((𝑅 Or 𝐴𝑥𝐴) ∧ 𝑦𝐴) → (𝑥 = 𝑦 → ((𝑥𝑦𝑦𝑅𝑥) → ¬ 𝑥𝑅𝑦)))
7 pm2.27 42 . . . . . . . 8 (𝑥𝑦 → ((𝑥𝑦𝑦𝑅𝑥) → 𝑦𝑅𝑥))
8 so2nr 5529 . . . . . . . . . 10 ((𝑅 Or 𝐴 ∧ (𝑥𝐴𝑦𝐴)) → ¬ (𝑥𝑅𝑦𝑦𝑅𝑥))
9 pm3.21 472 . . . . . . . . . . 11 (𝑦𝑅𝑥 → (𝑥𝑅𝑦 → (𝑥𝑅𝑦𝑦𝑅𝑥)))
109con3d 152 . . . . . . . . . 10 (𝑦𝑅𝑥 → (¬ (𝑥𝑅𝑦𝑦𝑅𝑥) → ¬ 𝑥𝑅𝑦))
118, 10syl5com 31 . . . . . . . . 9 ((𝑅 Or 𝐴 ∧ (𝑥𝐴𝑦𝐴)) → (𝑦𝑅𝑥 → ¬ 𝑥𝑅𝑦))
1211anassrs 468 . . . . . . . 8 (((𝑅 Or 𝐴𝑥𝐴) ∧ 𝑦𝐴) → (𝑦𝑅𝑥 → ¬ 𝑥𝑅𝑦))
137, 12syl9r 78 . . . . . . 7 (((𝑅 Or 𝐴𝑥𝐴) ∧ 𝑦𝐴) → (𝑥𝑦 → ((𝑥𝑦𝑦𝑅𝑥) → ¬ 𝑥𝑅𝑦)))
146, 13pm2.61dne 3031 . . . . . 6 (((𝑅 Or 𝐴𝑥𝐴) ∧ 𝑦𝐴) → ((𝑥𝑦𝑦𝑅𝑥) → ¬ 𝑥𝑅𝑦))
1514ralimdva 3108 . . . . 5 ((𝑅 Or 𝐴𝑥𝐴) → (∀𝑦𝐴 (𝑥𝑦𝑦𝑅𝑥) → ∀𝑦𝐴 ¬ 𝑥𝑅𝑦))
16 breq2 5078 . . . . . . . . 9 (𝑧 = 𝑥 → (𝑦𝑅𝑧𝑦𝑅𝑥))
1716rspcev 3561 . . . . . . . 8 ((𝑥𝐴𝑦𝑅𝑥) → ∃𝑧𝐴 𝑦𝑅𝑧)
1817ex 413 . . . . . . 7 (𝑥𝐴 → (𝑦𝑅𝑥 → ∃𝑧𝐴 𝑦𝑅𝑧))
1918ralrimivw 3104 . . . . . 6 (𝑥𝐴 → ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐴 𝑦𝑅𝑧))
2019adantl 482 . . . . 5 ((𝑅 Or 𝐴𝑥𝐴) → ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐴 𝑦𝑅𝑧))
2115, 20jctird 527 . . . 4 ((𝑅 Or 𝐴𝑥𝐴) → (∀𝑦𝐴 (𝑥𝑦𝑦𝑅𝑥) → (∀𝑦𝐴 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐴 𝑦𝑅𝑧))))
2221reximdva 3203 . . 3 (𝑅 Or 𝐴 → (∃𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑅𝑥) → ∃𝑥𝐴 (∀𝑦𝐴 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐴 𝑦𝑅𝑧))))
23223ad2ant1 1132 . 2 ((𝑅 Or 𝐴𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → (∃𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑅𝑥) → ∃𝑥𝐴 (∀𝑦𝐴 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐴 𝑦𝑅𝑧))))
241, 23mpd 15 1 ((𝑅 Or 𝐴𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥𝐴 (∀𝑦𝐴 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝑥 → ∃𝑧𝐴 𝑦𝑅𝑧)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  w3a 1086  wcel 2106  wne 2943  wral 3064  wrex 3065  c0 4256   class class class wbr 5074   Or wor 5502  Fincfn 8733
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-om 7713  df-en 8734  df-fin 8737
This theorem is referenced by:  fisup2g  9227  fisupcl  9228  rencldnfilem  40642
  Copyright terms: Public domain W3C validator