MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cshwlen Structured version   Visualization version   GIF version

Theorem cshwlen 14161
Description: The length of a cyclically shifted word is the same as the length of the original word. (Contributed by AV, 16-May-2018.) (Revised by AV, 20-May-2018.) (Revised by AV, 27-Oct-2018.) (Proof shortened by AV, 16-Oct-2022.)
Assertion
Ref Expression
cshwlen ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) → (♯‘(𝑊 cyclShift 𝑁)) = (♯‘𝑊))

Proof of Theorem cshwlen
StepHypRef Expression
1 0csh0 14155 . . . . 5 (∅ cyclShift 𝑁) = ∅
2 oveq1 7163 . . . . 5 (𝑊 = ∅ → (𝑊 cyclShift 𝑁) = (∅ cyclShift 𝑁))
3 id 22 . . . . 5 (𝑊 = ∅ → 𝑊 = ∅)
41, 2, 33eqtr4a 2882 . . . 4 (𝑊 = ∅ → (𝑊 cyclShift 𝑁) = 𝑊)
54fveq2d 6674 . . 3 (𝑊 = ∅ → (♯‘(𝑊 cyclShift 𝑁)) = (♯‘𝑊))
65a1d 25 . 2 (𝑊 = ∅ → ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) → (♯‘(𝑊 cyclShift 𝑁)) = (♯‘𝑊)))
7 cshword 14153 . . . . . 6 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) → (𝑊 cyclShift 𝑁) = ((𝑊 substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩) ++ (𝑊 prefix (𝑁 mod (♯‘𝑊)))))
87fveq2d 6674 . . . . 5 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) → (♯‘(𝑊 cyclShift 𝑁)) = (♯‘((𝑊 substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩) ++ (𝑊 prefix (𝑁 mod (♯‘𝑊))))))
98adantr 483 . . . 4 (((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) ∧ 𝑊 ≠ ∅) → (♯‘(𝑊 cyclShift 𝑁)) = (♯‘((𝑊 substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩) ++ (𝑊 prefix (𝑁 mod (♯‘𝑊))))))
10 swrdcl 14007 . . . . . 6 (𝑊 ∈ Word 𝑉 → (𝑊 substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩) ∈ Word 𝑉)
11 pfxcl 14039 . . . . . 6 (𝑊 ∈ Word 𝑉 → (𝑊 prefix (𝑁 mod (♯‘𝑊))) ∈ Word 𝑉)
12 ccatlen 13927 . . . . . 6 (((𝑊 substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩) ∈ Word 𝑉 ∧ (𝑊 prefix (𝑁 mod (♯‘𝑊))) ∈ Word 𝑉) → (♯‘((𝑊 substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩) ++ (𝑊 prefix (𝑁 mod (♯‘𝑊))))) = ((♯‘(𝑊 substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩)) + (♯‘(𝑊 prefix (𝑁 mod (♯‘𝑊))))))
1310, 11, 12syl2anc 586 . . . . 5 (𝑊 ∈ Word 𝑉 → (♯‘((𝑊 substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩) ++ (𝑊 prefix (𝑁 mod (♯‘𝑊))))) = ((♯‘(𝑊 substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩)) + (♯‘(𝑊 prefix (𝑁 mod (♯‘𝑊))))))
1413ad2antrr 724 . . . 4 (((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) ∧ 𝑊 ≠ ∅) → (♯‘((𝑊 substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩) ++ (𝑊 prefix (𝑁 mod (♯‘𝑊))))) = ((♯‘(𝑊 substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩)) + (♯‘(𝑊 prefix (𝑁 mod (♯‘𝑊))))))
15 lennncl 13884 . . . . . . . . . 10 ((𝑊 ∈ Word 𝑉𝑊 ≠ ∅) → (♯‘𝑊) ∈ ℕ)
16 pm3.21 474 . . . . . . . . . . 11 (((♯‘𝑊) ∈ ℕ ∧ 𝑁 ∈ ℤ) → (𝑊 ∈ Word 𝑉 → (𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑁 ∈ ℤ))))
1716ex 415 . . . . . . . . . 10 ((♯‘𝑊) ∈ ℕ → (𝑁 ∈ ℤ → (𝑊 ∈ Word 𝑉 → (𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑁 ∈ ℤ)))))
1815, 17syl 17 . . . . . . . . 9 ((𝑊 ∈ Word 𝑉𝑊 ≠ ∅) → (𝑁 ∈ ℤ → (𝑊 ∈ Word 𝑉 → (𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑁 ∈ ℤ)))))
1918ex 415 . . . . . . . 8 (𝑊 ∈ Word 𝑉 → (𝑊 ≠ ∅ → (𝑁 ∈ ℤ → (𝑊 ∈ Word 𝑉 → (𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑁 ∈ ℤ))))))
2019com24 95 . . . . . . 7 (𝑊 ∈ Word 𝑉 → (𝑊 ∈ Word 𝑉 → (𝑁 ∈ ℤ → (𝑊 ≠ ∅ → (𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑁 ∈ ℤ))))))
2120pm2.43i 52 . . . . . 6 (𝑊 ∈ Word 𝑉 → (𝑁 ∈ ℤ → (𝑊 ≠ ∅ → (𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑁 ∈ ℤ)))))
2221imp31 420 . . . . 5 (((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) ∧ 𝑊 ≠ ∅) → (𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑁 ∈ ℤ)))
23 simpl 485 . . . . . . . 8 ((𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑁 ∈ ℤ)) → 𝑊 ∈ Word 𝑉)
24 zmodfzp1 13264 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ (♯‘𝑊) ∈ ℕ) → (𝑁 mod (♯‘𝑊)) ∈ (0...(♯‘𝑊)))
2524ancoms 461 . . . . . . . . 9 (((♯‘𝑊) ∈ ℕ ∧ 𝑁 ∈ ℤ) → (𝑁 mod (♯‘𝑊)) ∈ (0...(♯‘𝑊)))
2625adantl 484 . . . . . . . 8 ((𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑁 ∈ ℤ)) → (𝑁 mod (♯‘𝑊)) ∈ (0...(♯‘𝑊)))
27 lencl 13883 . . . . . . . . . 10 (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℕ0)
28 nn0fz0 13006 . . . . . . . . . 10 ((♯‘𝑊) ∈ ℕ0 ↔ (♯‘𝑊) ∈ (0...(♯‘𝑊)))
2927, 28sylib 220 . . . . . . . . 9 (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ (0...(♯‘𝑊)))
3029adantr 483 . . . . . . . 8 ((𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑁 ∈ ℤ)) → (♯‘𝑊) ∈ (0...(♯‘𝑊)))
31 swrdlen 14009 . . . . . . . 8 ((𝑊 ∈ Word 𝑉 ∧ (𝑁 mod (♯‘𝑊)) ∈ (0...(♯‘𝑊)) ∧ (♯‘𝑊) ∈ (0...(♯‘𝑊))) → (♯‘(𝑊 substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩)) = ((♯‘𝑊) − (𝑁 mod (♯‘𝑊))))
3223, 26, 30, 31syl3anc 1367 . . . . . . 7 ((𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑁 ∈ ℤ)) → (♯‘(𝑊 substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩)) = ((♯‘𝑊) − (𝑁 mod (♯‘𝑊))))
33 pfxlen 14045 . . . . . . . 8 ((𝑊 ∈ Word 𝑉 ∧ (𝑁 mod (♯‘𝑊)) ∈ (0...(♯‘𝑊))) → (♯‘(𝑊 prefix (𝑁 mod (♯‘𝑊)))) = (𝑁 mod (♯‘𝑊)))
3425, 33sylan2 594 . . . . . . 7 ((𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑁 ∈ ℤ)) → (♯‘(𝑊 prefix (𝑁 mod (♯‘𝑊)))) = (𝑁 mod (♯‘𝑊)))
3532, 34oveq12d 7174 . . . . . 6 ((𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑁 ∈ ℤ)) → ((♯‘(𝑊 substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩)) + (♯‘(𝑊 prefix (𝑁 mod (♯‘𝑊))))) = (((♯‘𝑊) − (𝑁 mod (♯‘𝑊))) + (𝑁 mod (♯‘𝑊))))
3627nn0cnd 11958 . . . . . . 7 (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℂ)
37 zmodcl 13260 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ (♯‘𝑊) ∈ ℕ) → (𝑁 mod (♯‘𝑊)) ∈ ℕ0)
3837nn0cnd 11958 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ (♯‘𝑊) ∈ ℕ) → (𝑁 mod (♯‘𝑊)) ∈ ℂ)
3938ancoms 461 . . . . . . 7 (((♯‘𝑊) ∈ ℕ ∧ 𝑁 ∈ ℤ) → (𝑁 mod (♯‘𝑊)) ∈ ℂ)
40 npcan 10895 . . . . . . 7 (((♯‘𝑊) ∈ ℂ ∧ (𝑁 mod (♯‘𝑊)) ∈ ℂ) → (((♯‘𝑊) − (𝑁 mod (♯‘𝑊))) + (𝑁 mod (♯‘𝑊))) = (♯‘𝑊))
4136, 39, 40syl2an 597 . . . . . 6 ((𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑁 ∈ ℤ)) → (((♯‘𝑊) − (𝑁 mod (♯‘𝑊))) + (𝑁 mod (♯‘𝑊))) = (♯‘𝑊))
4235, 41eqtrd 2856 . . . . 5 ((𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑁 ∈ ℤ)) → ((♯‘(𝑊 substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩)) + (♯‘(𝑊 prefix (𝑁 mod (♯‘𝑊))))) = (♯‘𝑊))
4322, 42syl 17 . . . 4 (((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) ∧ 𝑊 ≠ ∅) → ((♯‘(𝑊 substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩)) + (♯‘(𝑊 prefix (𝑁 mod (♯‘𝑊))))) = (♯‘𝑊))
449, 14, 433eqtrd 2860 . . 3 (((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) ∧ 𝑊 ≠ ∅) → (♯‘(𝑊 cyclShift 𝑁)) = (♯‘𝑊))
4544expcom 416 . 2 (𝑊 ≠ ∅ → ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) → (♯‘(𝑊 cyclShift 𝑁)) = (♯‘𝑊)))
466, 45pm2.61ine 3100 1 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) → (♯‘(𝑊 cyclShift 𝑁)) = (♯‘𝑊))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  wne 3016  c0 4291  cop 4573  cfv 6355  (class class class)co 7156  cc 10535  0cc0 10537   + caddc 10540  cmin 10870  cn 11638  0cn0 11898  cz 11982  ...cfz 12893   mod cmo 13238  chash 13691  Word cword 13862   ++ cconcat 13922   substr csubstr 14002   prefix cpfx 14032   cyclShift ccsh 14150
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-oadd 8106  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-sup 8906  df-inf 8907  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-n0 11899  df-z 11983  df-uz 12245  df-rp 12391  df-fz 12894  df-fzo 13035  df-fl 13163  df-mod 13239  df-hash 13692  df-word 13863  df-concat 13923  df-substr 14003  df-pfx 14033  df-csh 14151
This theorem is referenced by:  cshwf  14162  2cshw  14175  lswcshw  14177  cshwleneq  14179  crctcshlem2  27596  clwwisshclwwslem  27792  clwwisshclwws  27793  erclwwlkeqlen  27797  clwwnisshclwwsn  27838  erclwwlkneqlen  27847  eucrct2eupth  28024
  Copyright terms: Public domain W3C validator