MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cshwlen Structured version   Visualization version   GIF version

Theorem cshwlen 14708
Description: The length of a cyclically shifted word is the same as the length of the original word. (Contributed by AV, 16-May-2018.) (Revised by AV, 20-May-2018.) (Revised by AV, 27-Oct-2018.) (Proof shortened by AV, 16-Oct-2022.)
Assertion
Ref Expression
cshwlen ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) → (♯‘(𝑊 cyclShift 𝑁)) = (♯‘𝑊))

Proof of Theorem cshwlen
StepHypRef Expression
1 0csh0 14702 . . . . 5 (∅ cyclShift 𝑁) = ∅
2 oveq1 7359 . . . . 5 (𝑊 = ∅ → (𝑊 cyclShift 𝑁) = (∅ cyclShift 𝑁))
3 id 22 . . . . 5 (𝑊 = ∅ → 𝑊 = ∅)
41, 2, 33eqtr4a 2794 . . . 4 (𝑊 = ∅ → (𝑊 cyclShift 𝑁) = 𝑊)
54fveq2d 6832 . . 3 (𝑊 = ∅ → (♯‘(𝑊 cyclShift 𝑁)) = (♯‘𝑊))
65a1d 25 . 2 (𝑊 = ∅ → ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) → (♯‘(𝑊 cyclShift 𝑁)) = (♯‘𝑊)))
7 cshword 14700 . . . . . 6 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) → (𝑊 cyclShift 𝑁) = ((𝑊 substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩) ++ (𝑊 prefix (𝑁 mod (♯‘𝑊)))))
87fveq2d 6832 . . . . 5 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) → (♯‘(𝑊 cyclShift 𝑁)) = (♯‘((𝑊 substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩) ++ (𝑊 prefix (𝑁 mod (♯‘𝑊))))))
98adantr 480 . . . 4 (((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) ∧ 𝑊 ≠ ∅) → (♯‘(𝑊 cyclShift 𝑁)) = (♯‘((𝑊 substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩) ++ (𝑊 prefix (𝑁 mod (♯‘𝑊))))))
10 swrdcl 14555 . . . . . 6 (𝑊 ∈ Word 𝑉 → (𝑊 substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩) ∈ Word 𝑉)
11 pfxcl 14587 . . . . . 6 (𝑊 ∈ Word 𝑉 → (𝑊 prefix (𝑁 mod (♯‘𝑊))) ∈ Word 𝑉)
12 ccatlen 14484 . . . . . 6 (((𝑊 substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩) ∈ Word 𝑉 ∧ (𝑊 prefix (𝑁 mod (♯‘𝑊))) ∈ Word 𝑉) → (♯‘((𝑊 substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩) ++ (𝑊 prefix (𝑁 mod (♯‘𝑊))))) = ((♯‘(𝑊 substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩)) + (♯‘(𝑊 prefix (𝑁 mod (♯‘𝑊))))))
1310, 11, 12syl2anc 584 . . . . 5 (𝑊 ∈ Word 𝑉 → (♯‘((𝑊 substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩) ++ (𝑊 prefix (𝑁 mod (♯‘𝑊))))) = ((♯‘(𝑊 substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩)) + (♯‘(𝑊 prefix (𝑁 mod (♯‘𝑊))))))
1413ad2antrr 726 . . . 4 (((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) ∧ 𝑊 ≠ ∅) → (♯‘((𝑊 substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩) ++ (𝑊 prefix (𝑁 mod (♯‘𝑊))))) = ((♯‘(𝑊 substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩)) + (♯‘(𝑊 prefix (𝑁 mod (♯‘𝑊))))))
15 lennncl 14443 . . . . . . . . . 10 ((𝑊 ∈ Word 𝑉𝑊 ≠ ∅) → (♯‘𝑊) ∈ ℕ)
16 pm3.21 471 . . . . . . . . . . 11 (((♯‘𝑊) ∈ ℕ ∧ 𝑁 ∈ ℤ) → (𝑊 ∈ Word 𝑉 → (𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑁 ∈ ℤ))))
1716ex 412 . . . . . . . . . 10 ((♯‘𝑊) ∈ ℕ → (𝑁 ∈ ℤ → (𝑊 ∈ Word 𝑉 → (𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑁 ∈ ℤ)))))
1815, 17syl 17 . . . . . . . . 9 ((𝑊 ∈ Word 𝑉𝑊 ≠ ∅) → (𝑁 ∈ ℤ → (𝑊 ∈ Word 𝑉 → (𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑁 ∈ ℤ)))))
1918ex 412 . . . . . . . 8 (𝑊 ∈ Word 𝑉 → (𝑊 ≠ ∅ → (𝑁 ∈ ℤ → (𝑊 ∈ Word 𝑉 → (𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑁 ∈ ℤ))))))
2019com24 95 . . . . . . 7 (𝑊 ∈ Word 𝑉 → (𝑊 ∈ Word 𝑉 → (𝑁 ∈ ℤ → (𝑊 ≠ ∅ → (𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑁 ∈ ℤ))))))
2120pm2.43i 52 . . . . . 6 (𝑊 ∈ Word 𝑉 → (𝑁 ∈ ℤ → (𝑊 ≠ ∅ → (𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑁 ∈ ℤ)))))
2221imp31 417 . . . . 5 (((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) ∧ 𝑊 ≠ ∅) → (𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑁 ∈ ℤ)))
23 simpl 482 . . . . . . . 8 ((𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑁 ∈ ℤ)) → 𝑊 ∈ Word 𝑉)
24 zmodfzp1 13801 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ (♯‘𝑊) ∈ ℕ) → (𝑁 mod (♯‘𝑊)) ∈ (0...(♯‘𝑊)))
2524ancoms 458 . . . . . . . . 9 (((♯‘𝑊) ∈ ℕ ∧ 𝑁 ∈ ℤ) → (𝑁 mod (♯‘𝑊)) ∈ (0...(♯‘𝑊)))
2625adantl 481 . . . . . . . 8 ((𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑁 ∈ ℤ)) → (𝑁 mod (♯‘𝑊)) ∈ (0...(♯‘𝑊)))
27 lencl 14442 . . . . . . . . . 10 (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℕ0)
28 nn0fz0 13527 . . . . . . . . . 10 ((♯‘𝑊) ∈ ℕ0 ↔ (♯‘𝑊) ∈ (0...(♯‘𝑊)))
2927, 28sylib 218 . . . . . . . . 9 (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ (0...(♯‘𝑊)))
3029adantr 480 . . . . . . . 8 ((𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑁 ∈ ℤ)) → (♯‘𝑊) ∈ (0...(♯‘𝑊)))
31 swrdlen 14557 . . . . . . . 8 ((𝑊 ∈ Word 𝑉 ∧ (𝑁 mod (♯‘𝑊)) ∈ (0...(♯‘𝑊)) ∧ (♯‘𝑊) ∈ (0...(♯‘𝑊))) → (♯‘(𝑊 substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩)) = ((♯‘𝑊) − (𝑁 mod (♯‘𝑊))))
3223, 26, 30, 31syl3anc 1373 . . . . . . 7 ((𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑁 ∈ ℤ)) → (♯‘(𝑊 substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩)) = ((♯‘𝑊) − (𝑁 mod (♯‘𝑊))))
33 pfxlen 14593 . . . . . . . 8 ((𝑊 ∈ Word 𝑉 ∧ (𝑁 mod (♯‘𝑊)) ∈ (0...(♯‘𝑊))) → (♯‘(𝑊 prefix (𝑁 mod (♯‘𝑊)))) = (𝑁 mod (♯‘𝑊)))
3425, 33sylan2 593 . . . . . . 7 ((𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑁 ∈ ℤ)) → (♯‘(𝑊 prefix (𝑁 mod (♯‘𝑊)))) = (𝑁 mod (♯‘𝑊)))
3532, 34oveq12d 7370 . . . . . 6 ((𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑁 ∈ ℤ)) → ((♯‘(𝑊 substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩)) + (♯‘(𝑊 prefix (𝑁 mod (♯‘𝑊))))) = (((♯‘𝑊) − (𝑁 mod (♯‘𝑊))) + (𝑁 mod (♯‘𝑊))))
3627nn0cnd 12451 . . . . . . 7 (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℂ)
37 zmodcl 13797 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ (♯‘𝑊) ∈ ℕ) → (𝑁 mod (♯‘𝑊)) ∈ ℕ0)
3837nn0cnd 12451 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ (♯‘𝑊) ∈ ℕ) → (𝑁 mod (♯‘𝑊)) ∈ ℂ)
3938ancoms 458 . . . . . . 7 (((♯‘𝑊) ∈ ℕ ∧ 𝑁 ∈ ℤ) → (𝑁 mod (♯‘𝑊)) ∈ ℂ)
40 npcan 11376 . . . . . . 7 (((♯‘𝑊) ∈ ℂ ∧ (𝑁 mod (♯‘𝑊)) ∈ ℂ) → (((♯‘𝑊) − (𝑁 mod (♯‘𝑊))) + (𝑁 mod (♯‘𝑊))) = (♯‘𝑊))
4136, 39, 40syl2an 596 . . . . . 6 ((𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑁 ∈ ℤ)) → (((♯‘𝑊) − (𝑁 mod (♯‘𝑊))) + (𝑁 mod (♯‘𝑊))) = (♯‘𝑊))
4235, 41eqtrd 2768 . . . . 5 ((𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑁 ∈ ℤ)) → ((♯‘(𝑊 substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩)) + (♯‘(𝑊 prefix (𝑁 mod (♯‘𝑊))))) = (♯‘𝑊))
4322, 42syl 17 . . . 4 (((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) ∧ 𝑊 ≠ ∅) → ((♯‘(𝑊 substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩)) + (♯‘(𝑊 prefix (𝑁 mod (♯‘𝑊))))) = (♯‘𝑊))
449, 14, 433eqtrd 2772 . . 3 (((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) ∧ 𝑊 ≠ ∅) → (♯‘(𝑊 cyclShift 𝑁)) = (♯‘𝑊))
4544expcom 413 . 2 (𝑊 ≠ ∅ → ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) → (♯‘(𝑊 cyclShift 𝑁)) = (♯‘𝑊)))
466, 45pm2.61ine 3012 1 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) → (♯‘(𝑊 cyclShift 𝑁)) = (♯‘𝑊))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  wne 2929  c0 4282  cop 4581  cfv 6486  (class class class)co 7352  cc 11011  0cc0 11013   + caddc 11016  cmin 11351  cn 12132  0cn0 12388  cz 12475  ...cfz 13409   mod cmo 13775  chash 14239  Word cword 14422   ++ cconcat 14479   substr csubstr 14550   prefix cpfx 14580   cyclShift ccsh 14697
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090  ax-pre-sup 11091
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-sup 9333  df-inf 9334  df-card 9839  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-div 11782  df-nn 12133  df-n0 12389  df-z 12476  df-uz 12739  df-rp 12893  df-fz 13410  df-fzo 13557  df-fl 13698  df-mod 13776  df-hash 14240  df-word 14423  df-concat 14480  df-substr 14551  df-pfx 14581  df-csh 14698
This theorem is referenced by:  cshwf  14709  2cshw  14722  lswcshw  14724  cshwleneq  14726  crctcshlem2  29798  clwwisshclwwslem  29996  clwwisshclwws  29997  erclwwlkeqlen  30001  clwwnisshclwwsn  30041  erclwwlkneqlen  30050  eucrct2eupth  30227
  Copyright terms: Public domain W3C validator