MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cshwlen Structured version   Visualization version   GIF version

Theorem cshwlen 14815
Description: The length of a cyclically shifted word is the same as the length of the original word. (Contributed by AV, 16-May-2018.) (Revised by AV, 20-May-2018.) (Revised by AV, 27-Oct-2018.) (Proof shortened by AV, 16-Oct-2022.)
Assertion
Ref Expression
cshwlen ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) → (♯‘(𝑊 cyclShift 𝑁)) = (♯‘𝑊))

Proof of Theorem cshwlen
StepHypRef Expression
1 0csh0 14809 . . . . 5 (∅ cyclShift 𝑁) = ∅
2 oveq1 7410 . . . . 5 (𝑊 = ∅ → (𝑊 cyclShift 𝑁) = (∅ cyclShift 𝑁))
3 id 22 . . . . 5 (𝑊 = ∅ → 𝑊 = ∅)
41, 2, 33eqtr4a 2796 . . . 4 (𝑊 = ∅ → (𝑊 cyclShift 𝑁) = 𝑊)
54fveq2d 6879 . . 3 (𝑊 = ∅ → (♯‘(𝑊 cyclShift 𝑁)) = (♯‘𝑊))
65a1d 25 . 2 (𝑊 = ∅ → ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) → (♯‘(𝑊 cyclShift 𝑁)) = (♯‘𝑊)))
7 cshword 14807 . . . . . 6 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) → (𝑊 cyclShift 𝑁) = ((𝑊 substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩) ++ (𝑊 prefix (𝑁 mod (♯‘𝑊)))))
87fveq2d 6879 . . . . 5 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) → (♯‘(𝑊 cyclShift 𝑁)) = (♯‘((𝑊 substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩) ++ (𝑊 prefix (𝑁 mod (♯‘𝑊))))))
98adantr 480 . . . 4 (((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) ∧ 𝑊 ≠ ∅) → (♯‘(𝑊 cyclShift 𝑁)) = (♯‘((𝑊 substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩) ++ (𝑊 prefix (𝑁 mod (♯‘𝑊))))))
10 swrdcl 14661 . . . . . 6 (𝑊 ∈ Word 𝑉 → (𝑊 substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩) ∈ Word 𝑉)
11 pfxcl 14693 . . . . . 6 (𝑊 ∈ Word 𝑉 → (𝑊 prefix (𝑁 mod (♯‘𝑊))) ∈ Word 𝑉)
12 ccatlen 14591 . . . . . 6 (((𝑊 substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩) ∈ Word 𝑉 ∧ (𝑊 prefix (𝑁 mod (♯‘𝑊))) ∈ Word 𝑉) → (♯‘((𝑊 substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩) ++ (𝑊 prefix (𝑁 mod (♯‘𝑊))))) = ((♯‘(𝑊 substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩)) + (♯‘(𝑊 prefix (𝑁 mod (♯‘𝑊))))))
1310, 11, 12syl2anc 584 . . . . 5 (𝑊 ∈ Word 𝑉 → (♯‘((𝑊 substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩) ++ (𝑊 prefix (𝑁 mod (♯‘𝑊))))) = ((♯‘(𝑊 substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩)) + (♯‘(𝑊 prefix (𝑁 mod (♯‘𝑊))))))
1413ad2antrr 726 . . . 4 (((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) ∧ 𝑊 ≠ ∅) → (♯‘((𝑊 substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩) ++ (𝑊 prefix (𝑁 mod (♯‘𝑊))))) = ((♯‘(𝑊 substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩)) + (♯‘(𝑊 prefix (𝑁 mod (♯‘𝑊))))))
15 lennncl 14550 . . . . . . . . . 10 ((𝑊 ∈ Word 𝑉𝑊 ≠ ∅) → (♯‘𝑊) ∈ ℕ)
16 pm3.21 471 . . . . . . . . . . 11 (((♯‘𝑊) ∈ ℕ ∧ 𝑁 ∈ ℤ) → (𝑊 ∈ Word 𝑉 → (𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑁 ∈ ℤ))))
1716ex 412 . . . . . . . . . 10 ((♯‘𝑊) ∈ ℕ → (𝑁 ∈ ℤ → (𝑊 ∈ Word 𝑉 → (𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑁 ∈ ℤ)))))
1815, 17syl 17 . . . . . . . . 9 ((𝑊 ∈ Word 𝑉𝑊 ≠ ∅) → (𝑁 ∈ ℤ → (𝑊 ∈ Word 𝑉 → (𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑁 ∈ ℤ)))))
1918ex 412 . . . . . . . 8 (𝑊 ∈ Word 𝑉 → (𝑊 ≠ ∅ → (𝑁 ∈ ℤ → (𝑊 ∈ Word 𝑉 → (𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑁 ∈ ℤ))))))
2019com24 95 . . . . . . 7 (𝑊 ∈ Word 𝑉 → (𝑊 ∈ Word 𝑉 → (𝑁 ∈ ℤ → (𝑊 ≠ ∅ → (𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑁 ∈ ℤ))))))
2120pm2.43i 52 . . . . . 6 (𝑊 ∈ Word 𝑉 → (𝑁 ∈ ℤ → (𝑊 ≠ ∅ → (𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑁 ∈ ℤ)))))
2221imp31 417 . . . . 5 (((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) ∧ 𝑊 ≠ ∅) → (𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑁 ∈ ℤ)))
23 simpl 482 . . . . . . . 8 ((𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑁 ∈ ℤ)) → 𝑊 ∈ Word 𝑉)
24 zmodfzp1 13910 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ (♯‘𝑊) ∈ ℕ) → (𝑁 mod (♯‘𝑊)) ∈ (0...(♯‘𝑊)))
2524ancoms 458 . . . . . . . . 9 (((♯‘𝑊) ∈ ℕ ∧ 𝑁 ∈ ℤ) → (𝑁 mod (♯‘𝑊)) ∈ (0...(♯‘𝑊)))
2625adantl 481 . . . . . . . 8 ((𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑁 ∈ ℤ)) → (𝑁 mod (♯‘𝑊)) ∈ (0...(♯‘𝑊)))
27 lencl 14549 . . . . . . . . . 10 (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℕ0)
28 nn0fz0 13640 . . . . . . . . . 10 ((♯‘𝑊) ∈ ℕ0 ↔ (♯‘𝑊) ∈ (0...(♯‘𝑊)))
2927, 28sylib 218 . . . . . . . . 9 (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ (0...(♯‘𝑊)))
3029adantr 480 . . . . . . . 8 ((𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑁 ∈ ℤ)) → (♯‘𝑊) ∈ (0...(♯‘𝑊)))
31 swrdlen 14663 . . . . . . . 8 ((𝑊 ∈ Word 𝑉 ∧ (𝑁 mod (♯‘𝑊)) ∈ (0...(♯‘𝑊)) ∧ (♯‘𝑊) ∈ (0...(♯‘𝑊))) → (♯‘(𝑊 substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩)) = ((♯‘𝑊) − (𝑁 mod (♯‘𝑊))))
3223, 26, 30, 31syl3anc 1373 . . . . . . 7 ((𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑁 ∈ ℤ)) → (♯‘(𝑊 substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩)) = ((♯‘𝑊) − (𝑁 mod (♯‘𝑊))))
33 pfxlen 14699 . . . . . . . 8 ((𝑊 ∈ Word 𝑉 ∧ (𝑁 mod (♯‘𝑊)) ∈ (0...(♯‘𝑊))) → (♯‘(𝑊 prefix (𝑁 mod (♯‘𝑊)))) = (𝑁 mod (♯‘𝑊)))
3425, 33sylan2 593 . . . . . . 7 ((𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑁 ∈ ℤ)) → (♯‘(𝑊 prefix (𝑁 mod (♯‘𝑊)))) = (𝑁 mod (♯‘𝑊)))
3532, 34oveq12d 7421 . . . . . 6 ((𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑁 ∈ ℤ)) → ((♯‘(𝑊 substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩)) + (♯‘(𝑊 prefix (𝑁 mod (♯‘𝑊))))) = (((♯‘𝑊) − (𝑁 mod (♯‘𝑊))) + (𝑁 mod (♯‘𝑊))))
3627nn0cnd 12562 . . . . . . 7 (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℂ)
37 zmodcl 13906 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ (♯‘𝑊) ∈ ℕ) → (𝑁 mod (♯‘𝑊)) ∈ ℕ0)
3837nn0cnd 12562 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ (♯‘𝑊) ∈ ℕ) → (𝑁 mod (♯‘𝑊)) ∈ ℂ)
3938ancoms 458 . . . . . . 7 (((♯‘𝑊) ∈ ℕ ∧ 𝑁 ∈ ℤ) → (𝑁 mod (♯‘𝑊)) ∈ ℂ)
40 npcan 11489 . . . . . . 7 (((♯‘𝑊) ∈ ℂ ∧ (𝑁 mod (♯‘𝑊)) ∈ ℂ) → (((♯‘𝑊) − (𝑁 mod (♯‘𝑊))) + (𝑁 mod (♯‘𝑊))) = (♯‘𝑊))
4136, 39, 40syl2an 596 . . . . . 6 ((𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑁 ∈ ℤ)) → (((♯‘𝑊) − (𝑁 mod (♯‘𝑊))) + (𝑁 mod (♯‘𝑊))) = (♯‘𝑊))
4235, 41eqtrd 2770 . . . . 5 ((𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑁 ∈ ℤ)) → ((♯‘(𝑊 substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩)) + (♯‘(𝑊 prefix (𝑁 mod (♯‘𝑊))))) = (♯‘𝑊))
4322, 42syl 17 . . . 4 (((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) ∧ 𝑊 ≠ ∅) → ((♯‘(𝑊 substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩)) + (♯‘(𝑊 prefix (𝑁 mod (♯‘𝑊))))) = (♯‘𝑊))
449, 14, 433eqtrd 2774 . . 3 (((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) ∧ 𝑊 ≠ ∅) → (♯‘(𝑊 cyclShift 𝑁)) = (♯‘𝑊))
4544expcom 413 . 2 (𝑊 ≠ ∅ → ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) → (♯‘(𝑊 cyclShift 𝑁)) = (♯‘𝑊)))
466, 45pm2.61ine 3015 1 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) → (♯‘(𝑊 cyclShift 𝑁)) = (♯‘𝑊))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wne 2932  c0 4308  cop 4607  cfv 6530  (class class class)co 7403  cc 11125  0cc0 11127   + caddc 11130  cmin 11464  cn 12238  0cn0 12499  cz 12586  ...cfz 13522   mod cmo 13884  chash 14346  Word cword 14529   ++ cconcat 14586   substr csubstr 14656   prefix cpfx 14686   cyclShift ccsh 14804
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-cnex 11183  ax-resscn 11184  ax-1cn 11185  ax-icn 11186  ax-addcl 11187  ax-addrcl 11188  ax-mulcl 11189  ax-mulrcl 11190  ax-mulcom 11191  ax-addass 11192  ax-mulass 11193  ax-distr 11194  ax-i2m1 11195  ax-1ne0 11196  ax-1rid 11197  ax-rnegex 11198  ax-rrecex 11199  ax-cnre 11200  ax-pre-lttri 11201  ax-pre-lttrn 11202  ax-pre-ltadd 11203  ax-pre-mulgt0 11204  ax-pre-sup 11205
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-om 7860  df-1st 7986  df-2nd 7987  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-1o 8478  df-er 8717  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-sup 9452  df-inf 9453  df-card 9951  df-pnf 11269  df-mnf 11270  df-xr 11271  df-ltxr 11272  df-le 11273  df-sub 11466  df-neg 11467  df-div 11893  df-nn 12239  df-n0 12500  df-z 12587  df-uz 12851  df-rp 13007  df-fz 13523  df-fzo 13670  df-fl 13807  df-mod 13885  df-hash 14347  df-word 14530  df-concat 14587  df-substr 14657  df-pfx 14687  df-csh 14805
This theorem is referenced by:  cshwf  14816  2cshw  14829  lswcshw  14831  cshwleneq  14833  crctcshlem2  29746  clwwisshclwwslem  29941  clwwisshclwws  29942  erclwwlkeqlen  29946  clwwnisshclwwsn  29986  erclwwlkneqlen  29995  eucrct2eupth  30172
  Copyright terms: Public domain W3C validator