Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hlrelat2 Structured version   Visualization version   GIF version

Theorem hlrelat2 39397
Description: A consequence of relative atomicity. (chrelat2i 32294 analog.) (Contributed by NM, 5-Feb-2012.)
Hypotheses
Ref Expression
hlrelat2.b 𝐵 = (Base‘𝐾)
hlrelat2.l = (le‘𝐾)
hlrelat2.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
hlrelat2 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (¬ 𝑋 𝑌 ↔ ∃𝑝𝐴 (𝑝 𝑋 ∧ ¬ 𝑝 𝑌)))
Distinct variable groups:   𝐴,𝑝   𝐵,𝑝   𝐾,𝑝   ,𝑝   𝑋,𝑝   𝑌,𝑝

Proof of Theorem hlrelat2
StepHypRef Expression
1 hllat 39356 . . . 4 (𝐾 ∈ HL → 𝐾 ∈ Lat)
2 hlrelat2.b . . . . 5 𝐵 = (Base‘𝐾)
3 hlrelat2.l . . . . 5 = (le‘𝐾)
4 eqid 2729 . . . . 5 (lt‘𝐾) = (lt‘𝐾)
5 eqid 2729 . . . . 5 (meet‘𝐾) = (meet‘𝐾)
62, 3, 4, 5latnlemlt 18431 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (¬ 𝑋 𝑌 ↔ (𝑋(meet‘𝐾)𝑌)(lt‘𝐾)𝑋))
71, 6syl3an1 1163 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (¬ 𝑋 𝑌 ↔ (𝑋(meet‘𝐾)𝑌)(lt‘𝐾)𝑋))
8 simp1 1136 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → 𝐾 ∈ HL)
92, 5latmcl 18399 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋(meet‘𝐾)𝑌) ∈ 𝐵)
101, 9syl3an1 1163 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝑋(meet‘𝐾)𝑌) ∈ 𝐵)
11 simp2 1137 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → 𝑋𝐵)
12 eqid 2729 . . . . . . 7 (join‘𝐾) = (join‘𝐾)
13 hlrelat2.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
142, 3, 4, 12, 13hlrelat 39396 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑋(meet‘𝐾)𝑌) ∈ 𝐵𝑋𝐵) ∧ (𝑋(meet‘𝐾)𝑌)(lt‘𝐾)𝑋) → ∃𝑝𝐴 ((𝑋(meet‘𝐾)𝑌)(lt‘𝐾)((𝑋(meet‘𝐾)𝑌)(join‘𝐾)𝑝) ∧ ((𝑋(meet‘𝐾)𝑌)(join‘𝐾)𝑝) 𝑋))
1514ex 412 . . . . 5 ((𝐾 ∈ HL ∧ (𝑋(meet‘𝐾)𝑌) ∈ 𝐵𝑋𝐵) → ((𝑋(meet‘𝐾)𝑌)(lt‘𝐾)𝑋 → ∃𝑝𝐴 ((𝑋(meet‘𝐾)𝑌)(lt‘𝐾)((𝑋(meet‘𝐾)𝑌)(join‘𝐾)𝑝) ∧ ((𝑋(meet‘𝐾)𝑌)(join‘𝐾)𝑝) 𝑋)))
168, 10, 11, 15syl3anc 1373 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → ((𝑋(meet‘𝐾)𝑌)(lt‘𝐾)𝑋 → ∃𝑝𝐴 ((𝑋(meet‘𝐾)𝑌)(lt‘𝐾)((𝑋(meet‘𝐾)𝑌)(join‘𝐾)𝑝) ∧ ((𝑋(meet‘𝐾)𝑌)(join‘𝐾)𝑝) 𝑋)))
17 simpl1 1192 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐴) → 𝐾 ∈ HL)
1817hllatd 39357 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐴) → 𝐾 ∈ Lat)
1910adantr 480 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐴) → (𝑋(meet‘𝐾)𝑌) ∈ 𝐵)
202, 13atbase 39282 . . . . . . . . . 10 (𝑝𝐴𝑝𝐵)
2120adantl 481 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐴) → 𝑝𝐵)
22 simpl2 1193 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐴) → 𝑋𝐵)
232, 3, 12latjle12 18409 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ ((𝑋(meet‘𝐾)𝑌) ∈ 𝐵𝑝𝐵𝑋𝐵)) → (((𝑋(meet‘𝐾)𝑌) 𝑋𝑝 𝑋) ↔ ((𝑋(meet‘𝐾)𝑌)(join‘𝐾)𝑝) 𝑋))
2418, 19, 21, 22, 23syl13anc 1374 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐴) → (((𝑋(meet‘𝐾)𝑌) 𝑋𝑝 𝑋) ↔ ((𝑋(meet‘𝐾)𝑌)(join‘𝐾)𝑝) 𝑋))
25 simpr 484 . . . . . . . 8 (((𝑋(meet‘𝐾)𝑌) 𝑋𝑝 𝑋) → 𝑝 𝑋)
2624, 25biimtrrdi 254 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐴) → (((𝑋(meet‘𝐾)𝑌)(join‘𝐾)𝑝) 𝑋𝑝 𝑋))
2726adantld 490 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐴) → (((𝑋(meet‘𝐾)𝑌)(lt‘𝐾)((𝑋(meet‘𝐾)𝑌)(join‘𝐾)𝑝) ∧ ((𝑋(meet‘𝐾)𝑌)(join‘𝐾)𝑝) 𝑋) → 𝑝 𝑋))
28 simpl3 1194 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐴) → 𝑌𝐵)
292, 3, 5latlem12 18425 . . . . . . . . . . 11 ((𝐾 ∈ Lat ∧ (𝑝𝐵𝑋𝐵𝑌𝐵)) → ((𝑝 𝑋𝑝 𝑌) ↔ 𝑝 (𝑋(meet‘𝐾)𝑌)))
3018, 21, 22, 28, 29syl13anc 1374 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐴) → ((𝑝 𝑋𝑝 𝑌) ↔ 𝑝 (𝑋(meet‘𝐾)𝑌)))
3130notbid 318 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐴) → (¬ (𝑝 𝑋𝑝 𝑌) ↔ ¬ 𝑝 (𝑋(meet‘𝐾)𝑌)))
322, 3, 4, 12latnle 18432 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ (𝑋(meet‘𝐾)𝑌) ∈ 𝐵𝑝𝐵) → (¬ 𝑝 (𝑋(meet‘𝐾)𝑌) ↔ (𝑋(meet‘𝐾)𝑌)(lt‘𝐾)((𝑋(meet‘𝐾)𝑌)(join‘𝐾)𝑝)))
3318, 19, 21, 32syl3anc 1373 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐴) → (¬ 𝑝 (𝑋(meet‘𝐾)𝑌) ↔ (𝑋(meet‘𝐾)𝑌)(lt‘𝐾)((𝑋(meet‘𝐾)𝑌)(join‘𝐾)𝑝)))
3431, 33bitrd 279 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐴) → (¬ (𝑝 𝑋𝑝 𝑌) ↔ (𝑋(meet‘𝐾)𝑌)(lt‘𝐾)((𝑋(meet‘𝐾)𝑌)(join‘𝐾)𝑝)))
3534, 24anbi12d 632 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐴) → ((¬ (𝑝 𝑋𝑝 𝑌) ∧ ((𝑋(meet‘𝐾)𝑌) 𝑋𝑝 𝑋)) ↔ ((𝑋(meet‘𝐾)𝑌)(lt‘𝐾)((𝑋(meet‘𝐾)𝑌)(join‘𝐾)𝑝) ∧ ((𝑋(meet‘𝐾)𝑌)(join‘𝐾)𝑝) 𝑋)))
36 pm3.21 471 . . . . . . . . . 10 (𝑝 𝑌 → (𝑝 𝑋 → (𝑝 𝑋𝑝 𝑌)))
37 orcom 870 . . . . . . . . . . 11 (((𝑝 𝑋𝑝 𝑌) ∨ ¬ 𝑝 𝑋) ↔ (¬ 𝑝 𝑋 ∨ (𝑝 𝑋𝑝 𝑌)))
38 pm4.55 989 . . . . . . . . . . 11 (¬ (¬ (𝑝 𝑋𝑝 𝑌) ∧ 𝑝 𝑋) ↔ ((𝑝 𝑋𝑝 𝑌) ∨ ¬ 𝑝 𝑋))
39 imor 853 . . . . . . . . . . 11 ((𝑝 𝑋 → (𝑝 𝑋𝑝 𝑌)) ↔ (¬ 𝑝 𝑋 ∨ (𝑝 𝑋𝑝 𝑌)))
4037, 38, 393bitr4ri 304 . . . . . . . . . 10 ((𝑝 𝑋 → (𝑝 𝑋𝑝 𝑌)) ↔ ¬ (¬ (𝑝 𝑋𝑝 𝑌) ∧ 𝑝 𝑋))
4136, 40sylib 218 . . . . . . . . 9 (𝑝 𝑌 → ¬ (¬ (𝑝 𝑋𝑝 𝑌) ∧ 𝑝 𝑋))
4241con2i 139 . . . . . . . 8 ((¬ (𝑝 𝑋𝑝 𝑌) ∧ 𝑝 𝑋) → ¬ 𝑝 𝑌)
4342adantrl 716 . . . . . . 7 ((¬ (𝑝 𝑋𝑝 𝑌) ∧ ((𝑋(meet‘𝐾)𝑌) 𝑋𝑝 𝑋)) → ¬ 𝑝 𝑌)
4435, 43biimtrrdi 254 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐴) → (((𝑋(meet‘𝐾)𝑌)(lt‘𝐾)((𝑋(meet‘𝐾)𝑌)(join‘𝐾)𝑝) ∧ ((𝑋(meet‘𝐾)𝑌)(join‘𝐾)𝑝) 𝑋) → ¬ 𝑝 𝑌))
4527, 44jcad 512 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐴) → (((𝑋(meet‘𝐾)𝑌)(lt‘𝐾)((𝑋(meet‘𝐾)𝑌)(join‘𝐾)𝑝) ∧ ((𝑋(meet‘𝐾)𝑌)(join‘𝐾)𝑝) 𝑋) → (𝑝 𝑋 ∧ ¬ 𝑝 𝑌)))
4645reximdva 3146 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (∃𝑝𝐴 ((𝑋(meet‘𝐾)𝑌)(lt‘𝐾)((𝑋(meet‘𝐾)𝑌)(join‘𝐾)𝑝) ∧ ((𝑋(meet‘𝐾)𝑌)(join‘𝐾)𝑝) 𝑋) → ∃𝑝𝐴 (𝑝 𝑋 ∧ ¬ 𝑝 𝑌)))
4716, 46syld 47 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → ((𝑋(meet‘𝐾)𝑌)(lt‘𝐾)𝑋 → ∃𝑝𝐴 (𝑝 𝑋 ∧ ¬ 𝑝 𝑌)))
487, 47sylbid 240 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (¬ 𝑋 𝑌 → ∃𝑝𝐴 (𝑝 𝑋 ∧ ¬ 𝑝 𝑌)))
492, 3lattr 18403 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ (𝑝𝐵𝑋𝐵𝑌𝐵)) → ((𝑝 𝑋𝑋 𝑌) → 𝑝 𝑌))
5018, 21, 22, 28, 49syl13anc 1374 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐴) → ((𝑝 𝑋𝑋 𝑌) → 𝑝 𝑌))
5150exp4b 430 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝑝𝐴 → (𝑝 𝑋 → (𝑋 𝑌𝑝 𝑌))))
5251com34 91 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝑝𝐴 → (𝑋 𝑌 → (𝑝 𝑋𝑝 𝑌))))
5352com23 86 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌 → (𝑝𝐴 → (𝑝 𝑋𝑝 𝑌))))
5453ralrimdv 3131 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌 → ∀𝑝𝐴 (𝑝 𝑋𝑝 𝑌)))
55 iman 401 . . . . . 6 ((𝑝 𝑋𝑝 𝑌) ↔ ¬ (𝑝 𝑋 ∧ ¬ 𝑝 𝑌))
5655ralbii 3075 . . . . 5 (∀𝑝𝐴 (𝑝 𝑋𝑝 𝑌) ↔ ∀𝑝𝐴 ¬ (𝑝 𝑋 ∧ ¬ 𝑝 𝑌))
57 ralnex 3055 . . . . 5 (∀𝑝𝐴 ¬ (𝑝 𝑋 ∧ ¬ 𝑝 𝑌) ↔ ¬ ∃𝑝𝐴 (𝑝 𝑋 ∧ ¬ 𝑝 𝑌))
5856, 57bitri 275 . . . 4 (∀𝑝𝐴 (𝑝 𝑋𝑝 𝑌) ↔ ¬ ∃𝑝𝐴 (𝑝 𝑋 ∧ ¬ 𝑝 𝑌))
5954, 58imbitrdi 251 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌 → ¬ ∃𝑝𝐴 (𝑝 𝑋 ∧ ¬ 𝑝 𝑌)))
6059con2d 134 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (∃𝑝𝐴 (𝑝 𝑋 ∧ ¬ 𝑝 𝑌) → ¬ 𝑋 𝑌))
6148, 60impbid 212 1 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (¬ 𝑋 𝑌 ↔ ∃𝑝𝐴 (𝑝 𝑋 ∧ ¬ 𝑝 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wral 3044  wrex 3053   class class class wbr 5107  cfv 6511  (class class class)co 7387  Basecbs 17179  lecple 17227  ltcplt 18269  joincjn 18272  meetcmee 18273  Latclat 18390  Atomscatm 39256  HLchlt 39343
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-proset 18255  df-poset 18274  df-plt 18289  df-lub 18305  df-glb 18306  df-join 18307  df-meet 18308  df-p0 18384  df-lat 18391  df-clat 18458  df-oposet 39169  df-ol 39171  df-oml 39172  df-covers 39259  df-ats 39260  df-atl 39291  df-cvlat 39315  df-hlat 39344
This theorem is referenced by:  lhpj1  40016
  Copyright terms: Public domain W3C validator