Proof of Theorem hlrelat2
Step | Hyp | Ref
| Expression |
1 | | hllat 37304 |
. . . 4
⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) |
2 | | hlrelat2.b |
. . . . 5
⊢ 𝐵 = (Base‘𝐾) |
3 | | hlrelat2.l |
. . . . 5
⊢ ≤ =
(le‘𝐾) |
4 | | eqid 2738 |
. . . . 5
⊢
(lt‘𝐾) =
(lt‘𝐾) |
5 | | eqid 2738 |
. . . . 5
⊢
(meet‘𝐾) =
(meet‘𝐾) |
6 | 2, 3, 4, 5 | latnlemlt 18105 |
. . . 4
⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (¬ 𝑋 ≤ 𝑌 ↔ (𝑋(meet‘𝐾)𝑌)(lt‘𝐾)𝑋)) |
7 | 1, 6 | syl3an1 1161 |
. . 3
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (¬ 𝑋 ≤ 𝑌 ↔ (𝑋(meet‘𝐾)𝑌)(lt‘𝐾)𝑋)) |
8 | | simp1 1134 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝐾 ∈ HL) |
9 | 2, 5 | latmcl 18073 |
. . . . . 6
⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋(meet‘𝐾)𝑌) ∈ 𝐵) |
10 | 1, 9 | syl3an1 1161 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋(meet‘𝐾)𝑌) ∈ 𝐵) |
11 | | simp2 1135 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑋 ∈ 𝐵) |
12 | | eqid 2738 |
. . . . . . 7
⊢
(join‘𝐾) =
(join‘𝐾) |
13 | | hlrelat2.a |
. . . . . . 7
⊢ 𝐴 = (Atoms‘𝐾) |
14 | 2, 3, 4, 12, 13 | hlrelat 37343 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ (𝑋(meet‘𝐾)𝑌) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) ∧ (𝑋(meet‘𝐾)𝑌)(lt‘𝐾)𝑋) → ∃𝑝 ∈ 𝐴 ((𝑋(meet‘𝐾)𝑌)(lt‘𝐾)((𝑋(meet‘𝐾)𝑌)(join‘𝐾)𝑝) ∧ ((𝑋(meet‘𝐾)𝑌)(join‘𝐾)𝑝) ≤ 𝑋)) |
15 | 14 | ex 412 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ (𝑋(meet‘𝐾)𝑌) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → ((𝑋(meet‘𝐾)𝑌)(lt‘𝐾)𝑋 → ∃𝑝 ∈ 𝐴 ((𝑋(meet‘𝐾)𝑌)(lt‘𝐾)((𝑋(meet‘𝐾)𝑌)(join‘𝐾)𝑝) ∧ ((𝑋(meet‘𝐾)𝑌)(join‘𝐾)𝑝) ≤ 𝑋))) |
16 | 8, 10, 11, 15 | syl3anc 1369 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋(meet‘𝐾)𝑌)(lt‘𝐾)𝑋 → ∃𝑝 ∈ 𝐴 ((𝑋(meet‘𝐾)𝑌)(lt‘𝐾)((𝑋(meet‘𝐾)𝑌)(join‘𝐾)𝑝) ∧ ((𝑋(meet‘𝐾)𝑌)(join‘𝐾)𝑝) ≤ 𝑋))) |
17 | | simpl1 1189 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑝 ∈ 𝐴) → 𝐾 ∈ HL) |
18 | 17 | hllatd 37305 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑝 ∈ 𝐴) → 𝐾 ∈ Lat) |
19 | 10 | adantr 480 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑝 ∈ 𝐴) → (𝑋(meet‘𝐾)𝑌) ∈ 𝐵) |
20 | 2, 13 | atbase 37230 |
. . . . . . . . . 10
⊢ (𝑝 ∈ 𝐴 → 𝑝 ∈ 𝐵) |
21 | 20 | adantl 481 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑝 ∈ 𝐴) → 𝑝 ∈ 𝐵) |
22 | | simpl2 1190 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑝 ∈ 𝐴) → 𝑋 ∈ 𝐵) |
23 | 2, 3, 12 | latjle12 18083 |
. . . . . . . . 9
⊢ ((𝐾 ∈ Lat ∧ ((𝑋(meet‘𝐾)𝑌) ∈ 𝐵 ∧ 𝑝 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵)) → (((𝑋(meet‘𝐾)𝑌) ≤ 𝑋 ∧ 𝑝 ≤ 𝑋) ↔ ((𝑋(meet‘𝐾)𝑌)(join‘𝐾)𝑝) ≤ 𝑋)) |
24 | 18, 19, 21, 22, 23 | syl13anc 1370 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑝 ∈ 𝐴) → (((𝑋(meet‘𝐾)𝑌) ≤ 𝑋 ∧ 𝑝 ≤ 𝑋) ↔ ((𝑋(meet‘𝐾)𝑌)(join‘𝐾)𝑝) ≤ 𝑋)) |
25 | | simpr 484 |
. . . . . . . 8
⊢ (((𝑋(meet‘𝐾)𝑌) ≤ 𝑋 ∧ 𝑝 ≤ 𝑋) → 𝑝 ≤ 𝑋) |
26 | 24, 25 | syl6bir 253 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑝 ∈ 𝐴) → (((𝑋(meet‘𝐾)𝑌)(join‘𝐾)𝑝) ≤ 𝑋 → 𝑝 ≤ 𝑋)) |
27 | 26 | adantld 490 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑝 ∈ 𝐴) → (((𝑋(meet‘𝐾)𝑌)(lt‘𝐾)((𝑋(meet‘𝐾)𝑌)(join‘𝐾)𝑝) ∧ ((𝑋(meet‘𝐾)𝑌)(join‘𝐾)𝑝) ≤ 𝑋) → 𝑝 ≤ 𝑋)) |
28 | | simpl3 1191 |
. . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑝 ∈ 𝐴) → 𝑌 ∈ 𝐵) |
29 | 2, 3, 5 | latlem12 18099 |
. . . . . . . . . . 11
⊢ ((𝐾 ∈ Lat ∧ (𝑝 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ((𝑝 ≤ 𝑋 ∧ 𝑝 ≤ 𝑌) ↔ 𝑝 ≤ (𝑋(meet‘𝐾)𝑌))) |
30 | 18, 21, 22, 28, 29 | syl13anc 1370 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑝 ∈ 𝐴) → ((𝑝 ≤ 𝑋 ∧ 𝑝 ≤ 𝑌) ↔ 𝑝 ≤ (𝑋(meet‘𝐾)𝑌))) |
31 | 30 | notbid 317 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑝 ∈ 𝐴) → (¬ (𝑝 ≤ 𝑋 ∧ 𝑝 ≤ 𝑌) ↔ ¬ 𝑝 ≤ (𝑋(meet‘𝐾)𝑌))) |
32 | 2, 3, 4, 12 | latnle 18106 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ Lat ∧ (𝑋(meet‘𝐾)𝑌) ∈ 𝐵 ∧ 𝑝 ∈ 𝐵) → (¬ 𝑝 ≤ (𝑋(meet‘𝐾)𝑌) ↔ (𝑋(meet‘𝐾)𝑌)(lt‘𝐾)((𝑋(meet‘𝐾)𝑌)(join‘𝐾)𝑝))) |
33 | 18, 19, 21, 32 | syl3anc 1369 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑝 ∈ 𝐴) → (¬ 𝑝 ≤ (𝑋(meet‘𝐾)𝑌) ↔ (𝑋(meet‘𝐾)𝑌)(lt‘𝐾)((𝑋(meet‘𝐾)𝑌)(join‘𝐾)𝑝))) |
34 | 31, 33 | bitrd 278 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑝 ∈ 𝐴) → (¬ (𝑝 ≤ 𝑋 ∧ 𝑝 ≤ 𝑌) ↔ (𝑋(meet‘𝐾)𝑌)(lt‘𝐾)((𝑋(meet‘𝐾)𝑌)(join‘𝐾)𝑝))) |
35 | 34, 24 | anbi12d 630 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑝 ∈ 𝐴) → ((¬ (𝑝 ≤ 𝑋 ∧ 𝑝 ≤ 𝑌) ∧ ((𝑋(meet‘𝐾)𝑌) ≤ 𝑋 ∧ 𝑝 ≤ 𝑋)) ↔ ((𝑋(meet‘𝐾)𝑌)(lt‘𝐾)((𝑋(meet‘𝐾)𝑌)(join‘𝐾)𝑝) ∧ ((𝑋(meet‘𝐾)𝑌)(join‘𝐾)𝑝) ≤ 𝑋))) |
36 | | pm3.21 471 |
. . . . . . . . . 10
⊢ (𝑝 ≤ 𝑌 → (𝑝 ≤ 𝑋 → (𝑝 ≤ 𝑋 ∧ 𝑝 ≤ 𝑌))) |
37 | | orcom 866 |
. . . . . . . . . . 11
⊢ (((𝑝 ≤ 𝑋 ∧ 𝑝 ≤ 𝑌) ∨ ¬ 𝑝 ≤ 𝑋) ↔ (¬ 𝑝 ≤ 𝑋 ∨ (𝑝 ≤ 𝑋 ∧ 𝑝 ≤ 𝑌))) |
38 | | pm4.55 984 |
. . . . . . . . . . 11
⊢ (¬
(¬ (𝑝 ≤ 𝑋 ∧ 𝑝 ≤ 𝑌) ∧ 𝑝 ≤ 𝑋) ↔ ((𝑝 ≤ 𝑋 ∧ 𝑝 ≤ 𝑌) ∨ ¬ 𝑝 ≤ 𝑋)) |
39 | | imor 849 |
. . . . . . . . . . 11
⊢ ((𝑝 ≤ 𝑋 → (𝑝 ≤ 𝑋 ∧ 𝑝 ≤ 𝑌)) ↔ (¬ 𝑝 ≤ 𝑋 ∨ (𝑝 ≤ 𝑋 ∧ 𝑝 ≤ 𝑌))) |
40 | 37, 38, 39 | 3bitr4ri 303 |
. . . . . . . . . 10
⊢ ((𝑝 ≤ 𝑋 → (𝑝 ≤ 𝑋 ∧ 𝑝 ≤ 𝑌)) ↔ ¬ (¬ (𝑝 ≤ 𝑋 ∧ 𝑝 ≤ 𝑌) ∧ 𝑝 ≤ 𝑋)) |
41 | 36, 40 | sylib 217 |
. . . . . . . . 9
⊢ (𝑝 ≤ 𝑌 → ¬ (¬ (𝑝 ≤ 𝑋 ∧ 𝑝 ≤ 𝑌) ∧ 𝑝 ≤ 𝑋)) |
42 | 41 | con2i 139 |
. . . . . . . 8
⊢ ((¬
(𝑝 ≤ 𝑋 ∧ 𝑝 ≤ 𝑌) ∧ 𝑝 ≤ 𝑋) → ¬ 𝑝 ≤ 𝑌) |
43 | 42 | adantrl 712 |
. . . . . . 7
⊢ ((¬
(𝑝 ≤ 𝑋 ∧ 𝑝 ≤ 𝑌) ∧ ((𝑋(meet‘𝐾)𝑌) ≤ 𝑋 ∧ 𝑝 ≤ 𝑋)) → ¬ 𝑝 ≤ 𝑌) |
44 | 35, 43 | syl6bir 253 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑝 ∈ 𝐴) → (((𝑋(meet‘𝐾)𝑌)(lt‘𝐾)((𝑋(meet‘𝐾)𝑌)(join‘𝐾)𝑝) ∧ ((𝑋(meet‘𝐾)𝑌)(join‘𝐾)𝑝) ≤ 𝑋) → ¬ 𝑝 ≤ 𝑌)) |
45 | 27, 44 | jcad 512 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑝 ∈ 𝐴) → (((𝑋(meet‘𝐾)𝑌)(lt‘𝐾)((𝑋(meet‘𝐾)𝑌)(join‘𝐾)𝑝) ∧ ((𝑋(meet‘𝐾)𝑌)(join‘𝐾)𝑝) ≤ 𝑋) → (𝑝 ≤ 𝑋 ∧ ¬ 𝑝 ≤ 𝑌))) |
46 | 45 | reximdva 3202 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (∃𝑝 ∈ 𝐴 ((𝑋(meet‘𝐾)𝑌)(lt‘𝐾)((𝑋(meet‘𝐾)𝑌)(join‘𝐾)𝑝) ∧ ((𝑋(meet‘𝐾)𝑌)(join‘𝐾)𝑝) ≤ 𝑋) → ∃𝑝 ∈ 𝐴 (𝑝 ≤ 𝑋 ∧ ¬ 𝑝 ≤ 𝑌))) |
47 | 16, 46 | syld 47 |
. . 3
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋(meet‘𝐾)𝑌)(lt‘𝐾)𝑋 → ∃𝑝 ∈ 𝐴 (𝑝 ≤ 𝑋 ∧ ¬ 𝑝 ≤ 𝑌))) |
48 | 7, 47 | sylbid 239 |
. 2
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (¬ 𝑋 ≤ 𝑌 → ∃𝑝 ∈ 𝐴 (𝑝 ≤ 𝑋 ∧ ¬ 𝑝 ≤ 𝑌))) |
49 | 2, 3 | lattr 18077 |
. . . . . . . . 9
⊢ ((𝐾 ∈ Lat ∧ (𝑝 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ((𝑝 ≤ 𝑋 ∧ 𝑋 ≤ 𝑌) → 𝑝 ≤ 𝑌)) |
50 | 18, 21, 22, 28, 49 | syl13anc 1370 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑝 ∈ 𝐴) → ((𝑝 ≤ 𝑋 ∧ 𝑋 ≤ 𝑌) → 𝑝 ≤ 𝑌)) |
51 | 50 | exp4b 430 |
. . . . . . 7
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑝 ∈ 𝐴 → (𝑝 ≤ 𝑋 → (𝑋 ≤ 𝑌 → 𝑝 ≤ 𝑌)))) |
52 | 51 | com34 91 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑝 ∈ 𝐴 → (𝑋 ≤ 𝑌 → (𝑝 ≤ 𝑋 → 𝑝 ≤ 𝑌)))) |
53 | 52 | com23 86 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ≤ 𝑌 → (𝑝 ∈ 𝐴 → (𝑝 ≤ 𝑋 → 𝑝 ≤ 𝑌)))) |
54 | 53 | ralrimdv 3111 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ≤ 𝑌 → ∀𝑝 ∈ 𝐴 (𝑝 ≤ 𝑋 → 𝑝 ≤ 𝑌))) |
55 | | iman 401 |
. . . . . 6
⊢ ((𝑝 ≤ 𝑋 → 𝑝 ≤ 𝑌) ↔ ¬ (𝑝 ≤ 𝑋 ∧ ¬ 𝑝 ≤ 𝑌)) |
56 | 55 | ralbii 3090 |
. . . . 5
⊢
(∀𝑝 ∈
𝐴 (𝑝 ≤ 𝑋 → 𝑝 ≤ 𝑌) ↔ ∀𝑝 ∈ 𝐴 ¬ (𝑝 ≤ 𝑋 ∧ ¬ 𝑝 ≤ 𝑌)) |
57 | | ralnex 3163 |
. . . . 5
⊢
(∀𝑝 ∈
𝐴 ¬ (𝑝 ≤ 𝑋 ∧ ¬ 𝑝 ≤ 𝑌) ↔ ¬ ∃𝑝 ∈ 𝐴 (𝑝 ≤ 𝑋 ∧ ¬ 𝑝 ≤ 𝑌)) |
58 | 56, 57 | bitri 274 |
. . . 4
⊢
(∀𝑝 ∈
𝐴 (𝑝 ≤ 𝑋 → 𝑝 ≤ 𝑌) ↔ ¬ ∃𝑝 ∈ 𝐴 (𝑝 ≤ 𝑋 ∧ ¬ 𝑝 ≤ 𝑌)) |
59 | 54, 58 | syl6ib 250 |
. . 3
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ≤ 𝑌 → ¬ ∃𝑝 ∈ 𝐴 (𝑝 ≤ 𝑋 ∧ ¬ 𝑝 ≤ 𝑌))) |
60 | 59 | con2d 134 |
. 2
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (∃𝑝 ∈ 𝐴 (𝑝 ≤ 𝑋 ∧ ¬ 𝑝 ≤ 𝑌) → ¬ 𝑋 ≤ 𝑌)) |
61 | 48, 60 | impbid 211 |
1
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (¬ 𝑋 ≤ 𝑌 ↔ ∃𝑝 ∈ 𝐴 (𝑝 ≤ 𝑋 ∧ ¬ 𝑝 ≤ 𝑌))) |