Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hlrelat2 Structured version   Visualization version   GIF version

Theorem hlrelat2 37396
Description: A consequence of relative atomicity. (chrelat2i 30706 analog.) (Contributed by NM, 5-Feb-2012.)
Hypotheses
Ref Expression
hlrelat2.b 𝐵 = (Base‘𝐾)
hlrelat2.l = (le‘𝐾)
hlrelat2.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
hlrelat2 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (¬ 𝑋 𝑌 ↔ ∃𝑝𝐴 (𝑝 𝑋 ∧ ¬ 𝑝 𝑌)))
Distinct variable groups:   𝐴,𝑝   𝐵,𝑝   𝐾,𝑝   ,𝑝   𝑋,𝑝   𝑌,𝑝

Proof of Theorem hlrelat2
StepHypRef Expression
1 hllat 37356 . . . 4 (𝐾 ∈ HL → 𝐾 ∈ Lat)
2 hlrelat2.b . . . . 5 𝐵 = (Base‘𝐾)
3 hlrelat2.l . . . . 5 = (le‘𝐾)
4 eqid 2739 . . . . 5 (lt‘𝐾) = (lt‘𝐾)
5 eqid 2739 . . . . 5 (meet‘𝐾) = (meet‘𝐾)
62, 3, 4, 5latnlemlt 18171 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (¬ 𝑋 𝑌 ↔ (𝑋(meet‘𝐾)𝑌)(lt‘𝐾)𝑋))
71, 6syl3an1 1161 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (¬ 𝑋 𝑌 ↔ (𝑋(meet‘𝐾)𝑌)(lt‘𝐾)𝑋))
8 simp1 1134 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → 𝐾 ∈ HL)
92, 5latmcl 18139 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋(meet‘𝐾)𝑌) ∈ 𝐵)
101, 9syl3an1 1161 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝑋(meet‘𝐾)𝑌) ∈ 𝐵)
11 simp2 1135 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → 𝑋𝐵)
12 eqid 2739 . . . . . . 7 (join‘𝐾) = (join‘𝐾)
13 hlrelat2.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
142, 3, 4, 12, 13hlrelat 37395 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑋(meet‘𝐾)𝑌) ∈ 𝐵𝑋𝐵) ∧ (𝑋(meet‘𝐾)𝑌)(lt‘𝐾)𝑋) → ∃𝑝𝐴 ((𝑋(meet‘𝐾)𝑌)(lt‘𝐾)((𝑋(meet‘𝐾)𝑌)(join‘𝐾)𝑝) ∧ ((𝑋(meet‘𝐾)𝑌)(join‘𝐾)𝑝) 𝑋))
1514ex 412 . . . . 5 ((𝐾 ∈ HL ∧ (𝑋(meet‘𝐾)𝑌) ∈ 𝐵𝑋𝐵) → ((𝑋(meet‘𝐾)𝑌)(lt‘𝐾)𝑋 → ∃𝑝𝐴 ((𝑋(meet‘𝐾)𝑌)(lt‘𝐾)((𝑋(meet‘𝐾)𝑌)(join‘𝐾)𝑝) ∧ ((𝑋(meet‘𝐾)𝑌)(join‘𝐾)𝑝) 𝑋)))
168, 10, 11, 15syl3anc 1369 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → ((𝑋(meet‘𝐾)𝑌)(lt‘𝐾)𝑋 → ∃𝑝𝐴 ((𝑋(meet‘𝐾)𝑌)(lt‘𝐾)((𝑋(meet‘𝐾)𝑌)(join‘𝐾)𝑝) ∧ ((𝑋(meet‘𝐾)𝑌)(join‘𝐾)𝑝) 𝑋)))
17 simpl1 1189 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐴) → 𝐾 ∈ HL)
1817hllatd 37357 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐴) → 𝐾 ∈ Lat)
1910adantr 480 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐴) → (𝑋(meet‘𝐾)𝑌) ∈ 𝐵)
202, 13atbase 37282 . . . . . . . . . 10 (𝑝𝐴𝑝𝐵)
2120adantl 481 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐴) → 𝑝𝐵)
22 simpl2 1190 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐴) → 𝑋𝐵)
232, 3, 12latjle12 18149 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ ((𝑋(meet‘𝐾)𝑌) ∈ 𝐵𝑝𝐵𝑋𝐵)) → (((𝑋(meet‘𝐾)𝑌) 𝑋𝑝 𝑋) ↔ ((𝑋(meet‘𝐾)𝑌)(join‘𝐾)𝑝) 𝑋))
2418, 19, 21, 22, 23syl13anc 1370 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐴) → (((𝑋(meet‘𝐾)𝑌) 𝑋𝑝 𝑋) ↔ ((𝑋(meet‘𝐾)𝑌)(join‘𝐾)𝑝) 𝑋))
25 simpr 484 . . . . . . . 8 (((𝑋(meet‘𝐾)𝑌) 𝑋𝑝 𝑋) → 𝑝 𝑋)
2624, 25syl6bir 253 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐴) → (((𝑋(meet‘𝐾)𝑌)(join‘𝐾)𝑝) 𝑋𝑝 𝑋))
2726adantld 490 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐴) → (((𝑋(meet‘𝐾)𝑌)(lt‘𝐾)((𝑋(meet‘𝐾)𝑌)(join‘𝐾)𝑝) ∧ ((𝑋(meet‘𝐾)𝑌)(join‘𝐾)𝑝) 𝑋) → 𝑝 𝑋))
28 simpl3 1191 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐴) → 𝑌𝐵)
292, 3, 5latlem12 18165 . . . . . . . . . . 11 ((𝐾 ∈ Lat ∧ (𝑝𝐵𝑋𝐵𝑌𝐵)) → ((𝑝 𝑋𝑝 𝑌) ↔ 𝑝 (𝑋(meet‘𝐾)𝑌)))
3018, 21, 22, 28, 29syl13anc 1370 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐴) → ((𝑝 𝑋𝑝 𝑌) ↔ 𝑝 (𝑋(meet‘𝐾)𝑌)))
3130notbid 317 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐴) → (¬ (𝑝 𝑋𝑝 𝑌) ↔ ¬ 𝑝 (𝑋(meet‘𝐾)𝑌)))
322, 3, 4, 12latnle 18172 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ (𝑋(meet‘𝐾)𝑌) ∈ 𝐵𝑝𝐵) → (¬ 𝑝 (𝑋(meet‘𝐾)𝑌) ↔ (𝑋(meet‘𝐾)𝑌)(lt‘𝐾)((𝑋(meet‘𝐾)𝑌)(join‘𝐾)𝑝)))
3318, 19, 21, 32syl3anc 1369 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐴) → (¬ 𝑝 (𝑋(meet‘𝐾)𝑌) ↔ (𝑋(meet‘𝐾)𝑌)(lt‘𝐾)((𝑋(meet‘𝐾)𝑌)(join‘𝐾)𝑝)))
3431, 33bitrd 278 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐴) → (¬ (𝑝 𝑋𝑝 𝑌) ↔ (𝑋(meet‘𝐾)𝑌)(lt‘𝐾)((𝑋(meet‘𝐾)𝑌)(join‘𝐾)𝑝)))
3534, 24anbi12d 630 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐴) → ((¬ (𝑝 𝑋𝑝 𝑌) ∧ ((𝑋(meet‘𝐾)𝑌) 𝑋𝑝 𝑋)) ↔ ((𝑋(meet‘𝐾)𝑌)(lt‘𝐾)((𝑋(meet‘𝐾)𝑌)(join‘𝐾)𝑝) ∧ ((𝑋(meet‘𝐾)𝑌)(join‘𝐾)𝑝) 𝑋)))
36 pm3.21 471 . . . . . . . . . 10 (𝑝 𝑌 → (𝑝 𝑋 → (𝑝 𝑋𝑝 𝑌)))
37 orcom 866 . . . . . . . . . . 11 (((𝑝 𝑋𝑝 𝑌) ∨ ¬ 𝑝 𝑋) ↔ (¬ 𝑝 𝑋 ∨ (𝑝 𝑋𝑝 𝑌)))
38 pm4.55 984 . . . . . . . . . . 11 (¬ (¬ (𝑝 𝑋𝑝 𝑌) ∧ 𝑝 𝑋) ↔ ((𝑝 𝑋𝑝 𝑌) ∨ ¬ 𝑝 𝑋))
39 imor 849 . . . . . . . . . . 11 ((𝑝 𝑋 → (𝑝 𝑋𝑝 𝑌)) ↔ (¬ 𝑝 𝑋 ∨ (𝑝 𝑋𝑝 𝑌)))
4037, 38, 393bitr4ri 303 . . . . . . . . . 10 ((𝑝 𝑋 → (𝑝 𝑋𝑝 𝑌)) ↔ ¬ (¬ (𝑝 𝑋𝑝 𝑌) ∧ 𝑝 𝑋))
4136, 40sylib 217 . . . . . . . . 9 (𝑝 𝑌 → ¬ (¬ (𝑝 𝑋𝑝 𝑌) ∧ 𝑝 𝑋))
4241con2i 139 . . . . . . . 8 ((¬ (𝑝 𝑋𝑝 𝑌) ∧ 𝑝 𝑋) → ¬ 𝑝 𝑌)
4342adantrl 712 . . . . . . 7 ((¬ (𝑝 𝑋𝑝 𝑌) ∧ ((𝑋(meet‘𝐾)𝑌) 𝑋𝑝 𝑋)) → ¬ 𝑝 𝑌)
4435, 43syl6bir 253 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐴) → (((𝑋(meet‘𝐾)𝑌)(lt‘𝐾)((𝑋(meet‘𝐾)𝑌)(join‘𝐾)𝑝) ∧ ((𝑋(meet‘𝐾)𝑌)(join‘𝐾)𝑝) 𝑋) → ¬ 𝑝 𝑌))
4527, 44jcad 512 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐴) → (((𝑋(meet‘𝐾)𝑌)(lt‘𝐾)((𝑋(meet‘𝐾)𝑌)(join‘𝐾)𝑝) ∧ ((𝑋(meet‘𝐾)𝑌)(join‘𝐾)𝑝) 𝑋) → (𝑝 𝑋 ∧ ¬ 𝑝 𝑌)))
4645reximdva 3204 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (∃𝑝𝐴 ((𝑋(meet‘𝐾)𝑌)(lt‘𝐾)((𝑋(meet‘𝐾)𝑌)(join‘𝐾)𝑝) ∧ ((𝑋(meet‘𝐾)𝑌)(join‘𝐾)𝑝) 𝑋) → ∃𝑝𝐴 (𝑝 𝑋 ∧ ¬ 𝑝 𝑌)))
4716, 46syld 47 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → ((𝑋(meet‘𝐾)𝑌)(lt‘𝐾)𝑋 → ∃𝑝𝐴 (𝑝 𝑋 ∧ ¬ 𝑝 𝑌)))
487, 47sylbid 239 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (¬ 𝑋 𝑌 → ∃𝑝𝐴 (𝑝 𝑋 ∧ ¬ 𝑝 𝑌)))
492, 3lattr 18143 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ (𝑝𝐵𝑋𝐵𝑌𝐵)) → ((𝑝 𝑋𝑋 𝑌) → 𝑝 𝑌))
5018, 21, 22, 28, 49syl13anc 1370 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐴) → ((𝑝 𝑋𝑋 𝑌) → 𝑝 𝑌))
5150exp4b 430 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝑝𝐴 → (𝑝 𝑋 → (𝑋 𝑌𝑝 𝑌))))
5251com34 91 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝑝𝐴 → (𝑋 𝑌 → (𝑝 𝑋𝑝 𝑌))))
5352com23 86 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌 → (𝑝𝐴 → (𝑝 𝑋𝑝 𝑌))))
5453ralrimdv 3113 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌 → ∀𝑝𝐴 (𝑝 𝑋𝑝 𝑌)))
55 iman 401 . . . . . 6 ((𝑝 𝑋𝑝 𝑌) ↔ ¬ (𝑝 𝑋 ∧ ¬ 𝑝 𝑌))
5655ralbii 3092 . . . . 5 (∀𝑝𝐴 (𝑝 𝑋𝑝 𝑌) ↔ ∀𝑝𝐴 ¬ (𝑝 𝑋 ∧ ¬ 𝑝 𝑌))
57 ralnex 3165 . . . . 5 (∀𝑝𝐴 ¬ (𝑝 𝑋 ∧ ¬ 𝑝 𝑌) ↔ ¬ ∃𝑝𝐴 (𝑝 𝑋 ∧ ¬ 𝑝 𝑌))
5856, 57bitri 274 . . . 4 (∀𝑝𝐴 (𝑝 𝑋𝑝 𝑌) ↔ ¬ ∃𝑝𝐴 (𝑝 𝑋 ∧ ¬ 𝑝 𝑌))
5954, 58syl6ib 250 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌 → ¬ ∃𝑝𝐴 (𝑝 𝑋 ∧ ¬ 𝑝 𝑌)))
6059con2d 134 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (∃𝑝𝐴 (𝑝 𝑋 ∧ ¬ 𝑝 𝑌) → ¬ 𝑋 𝑌))
6148, 60impbid 211 1 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (¬ 𝑋 𝑌 ↔ ∃𝑝𝐴 (𝑝 𝑋 ∧ ¬ 𝑝 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 843  w3a 1085   = wceq 1541  wcel 2109  wral 3065  wrex 3066   class class class wbr 5078  cfv 6430  (class class class)co 7268  Basecbs 16893  lecple 16950  ltcplt 18007  joincjn 18010  meetcmee 18011  Latclat 18130  Atomscatm 37256  HLchlt 37343
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-rep 5213  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-ral 3070  df-rex 3071  df-reu 3072  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4845  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-id 5488  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-riota 7225  df-ov 7271  df-oprab 7272  df-proset 17994  df-poset 18012  df-plt 18029  df-lub 18045  df-glb 18046  df-join 18047  df-meet 18048  df-p0 18124  df-lat 18131  df-clat 18198  df-oposet 37169  df-ol 37171  df-oml 37172  df-covers 37259  df-ats 37260  df-atl 37291  df-cvlat 37315  df-hlat 37344
This theorem is referenced by:  lhpj1  38015
  Copyright terms: Public domain W3C validator