MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vitalilem1 Structured version   Visualization version   GIF version

Theorem vitalilem1 25657
Description: Lemma for vitali 25662. (Contributed by Mario Carneiro, 16-Jun-2014.) (Proof shortened by AV, 1-May-2021.)
Hypothesis
Ref Expression
vitali.1 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]1)) ∧ (𝑥𝑦) ∈ ℚ)}
Assertion
Ref Expression
vitalilem1 Er (0[,]1)
Distinct variable group:   𝑥,𝑦,

Proof of Theorem vitalilem1
Dummy variables 𝑣 𝑤 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vitali.1 . . 3 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]1)) ∧ (𝑥𝑦) ∈ ℚ)}
21relopabiv 5833 . 2 Rel
3 simplr 769 . . . 4 (((𝑢 ∈ (0[,]1) ∧ 𝑣 ∈ (0[,]1)) ∧ (𝑢𝑣) ∈ ℚ) → 𝑣 ∈ (0[,]1))
4 simpll 767 . . . 4 (((𝑢 ∈ (0[,]1) ∧ 𝑣 ∈ (0[,]1)) ∧ (𝑢𝑣) ∈ ℚ) → 𝑢 ∈ (0[,]1))
5 unitssre 13536 . . . . . . . . 9 (0[,]1) ⊆ ℝ
65sseli 3991 . . . . . . . 8 (𝑢 ∈ (0[,]1) → 𝑢 ∈ ℝ)
76recnd 11287 . . . . . . 7 (𝑢 ∈ (0[,]1) → 𝑢 ∈ ℂ)
87ad2antrr 726 . . . . . 6 (((𝑢 ∈ (0[,]1) ∧ 𝑣 ∈ (0[,]1)) ∧ (𝑢𝑣) ∈ ℚ) → 𝑢 ∈ ℂ)
95sseli 3991 . . . . . . . 8 (𝑣 ∈ (0[,]1) → 𝑣 ∈ ℝ)
109recnd 11287 . . . . . . 7 (𝑣 ∈ (0[,]1) → 𝑣 ∈ ℂ)
1110ad2antlr 727 . . . . . 6 (((𝑢 ∈ (0[,]1) ∧ 𝑣 ∈ (0[,]1)) ∧ (𝑢𝑣) ∈ ℚ) → 𝑣 ∈ ℂ)
128, 11negsubdi2d 11634 . . . . 5 (((𝑢 ∈ (0[,]1) ∧ 𝑣 ∈ (0[,]1)) ∧ (𝑢𝑣) ∈ ℚ) → -(𝑢𝑣) = (𝑣𝑢))
13 qnegcl 13006 . . . . . 6 ((𝑢𝑣) ∈ ℚ → -(𝑢𝑣) ∈ ℚ)
1413adantl 481 . . . . 5 (((𝑢 ∈ (0[,]1) ∧ 𝑣 ∈ (0[,]1)) ∧ (𝑢𝑣) ∈ ℚ) → -(𝑢𝑣) ∈ ℚ)
1512, 14eqeltrrd 2840 . . . 4 (((𝑢 ∈ (0[,]1) ∧ 𝑣 ∈ (0[,]1)) ∧ (𝑢𝑣) ∈ ℚ) → (𝑣𝑢) ∈ ℚ)
163, 4, 15jca31 514 . . 3 (((𝑢 ∈ (0[,]1) ∧ 𝑣 ∈ (0[,]1)) ∧ (𝑢𝑣) ∈ ℚ) → ((𝑣 ∈ (0[,]1) ∧ 𝑢 ∈ (0[,]1)) ∧ (𝑣𝑢) ∈ ℚ))
17 oveq12 7440 . . . . 5 ((𝑥 = 𝑢𝑦 = 𝑣) → (𝑥𝑦) = (𝑢𝑣))
1817eleq1d 2824 . . . 4 ((𝑥 = 𝑢𝑦 = 𝑣) → ((𝑥𝑦) ∈ ℚ ↔ (𝑢𝑣) ∈ ℚ))
1918, 1brab2a 5782 . . 3 (𝑢 𝑣 ↔ ((𝑢 ∈ (0[,]1) ∧ 𝑣 ∈ (0[,]1)) ∧ (𝑢𝑣) ∈ ℚ))
20 oveq12 7440 . . . . 5 ((𝑥 = 𝑣𝑦 = 𝑢) → (𝑥𝑦) = (𝑣𝑢))
2120eleq1d 2824 . . . 4 ((𝑥 = 𝑣𝑦 = 𝑢) → ((𝑥𝑦) ∈ ℚ ↔ (𝑣𝑢) ∈ ℚ))
2221, 1brab2a 5782 . . 3 (𝑣 𝑢 ↔ ((𝑣 ∈ (0[,]1) ∧ 𝑢 ∈ (0[,]1)) ∧ (𝑣𝑢) ∈ ℚ))
2316, 19, 223imtr4i 292 . 2 (𝑢 𝑣𝑣 𝑢)
24 simpl 482 . . . . . 6 ((𝑢 𝑣𝑣 𝑤) → 𝑢 𝑣)
2524, 19sylib 218 . . . . 5 ((𝑢 𝑣𝑣 𝑤) → ((𝑢 ∈ (0[,]1) ∧ 𝑣 ∈ (0[,]1)) ∧ (𝑢𝑣) ∈ ℚ))
2625simpld 494 . . . 4 ((𝑢 𝑣𝑣 𝑤) → (𝑢 ∈ (0[,]1) ∧ 𝑣 ∈ (0[,]1)))
2726simpld 494 . . 3 ((𝑢 𝑣𝑣 𝑤) → 𝑢 ∈ (0[,]1))
28 simpr 484 . . . . . 6 ((𝑢 𝑣𝑣 𝑤) → 𝑣 𝑤)
29 oveq12 7440 . . . . . . . 8 ((𝑥 = 𝑣𝑦 = 𝑤) → (𝑥𝑦) = (𝑣𝑤))
3029eleq1d 2824 . . . . . . 7 ((𝑥 = 𝑣𝑦 = 𝑤) → ((𝑥𝑦) ∈ ℚ ↔ (𝑣𝑤) ∈ ℚ))
3130, 1brab2a 5782 . . . . . 6 (𝑣 𝑤 ↔ ((𝑣 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1)) ∧ (𝑣𝑤) ∈ ℚ))
3228, 31sylib 218 . . . . 5 ((𝑢 𝑣𝑣 𝑤) → ((𝑣 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1)) ∧ (𝑣𝑤) ∈ ℚ))
3332simpld 494 . . . 4 ((𝑢 𝑣𝑣 𝑤) → (𝑣 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1)))
3433simprd 495 . . 3 ((𝑢 𝑣𝑣 𝑤) → 𝑤 ∈ (0[,]1))
3527, 7syl 17 . . . . 5 ((𝑢 𝑣𝑣 𝑤) → 𝑢 ∈ ℂ)
3625, 11syl 17 . . . . 5 ((𝑢 𝑣𝑣 𝑤) → 𝑣 ∈ ℂ)
375, 34sselid 3993 . . . . . 6 ((𝑢 𝑣𝑣 𝑤) → 𝑤 ∈ ℝ)
3837recnd 11287 . . . . 5 ((𝑢 𝑣𝑣 𝑤) → 𝑤 ∈ ℂ)
3935, 36, 38npncand 11642 . . . 4 ((𝑢 𝑣𝑣 𝑤) → ((𝑢𝑣) + (𝑣𝑤)) = (𝑢𝑤))
4025simprd 495 . . . . 5 ((𝑢 𝑣𝑣 𝑤) → (𝑢𝑣) ∈ ℚ)
4132simprd 495 . . . . 5 ((𝑢 𝑣𝑣 𝑤) → (𝑣𝑤) ∈ ℚ)
42 qaddcl 13005 . . . . 5 (((𝑢𝑣) ∈ ℚ ∧ (𝑣𝑤) ∈ ℚ) → ((𝑢𝑣) + (𝑣𝑤)) ∈ ℚ)
4340, 41, 42syl2anc 584 . . . 4 ((𝑢 𝑣𝑣 𝑤) → ((𝑢𝑣) + (𝑣𝑤)) ∈ ℚ)
4439, 43eqeltrrd 2840 . . 3 ((𝑢 𝑣𝑣 𝑤) → (𝑢𝑤) ∈ ℚ)
45 oveq12 7440 . . . . 5 ((𝑥 = 𝑢𝑦 = 𝑤) → (𝑥𝑦) = (𝑢𝑤))
4645eleq1d 2824 . . . 4 ((𝑥 = 𝑢𝑦 = 𝑤) → ((𝑥𝑦) ∈ ℚ ↔ (𝑢𝑤) ∈ ℚ))
4746, 1brab2a 5782 . . 3 (𝑢 𝑤 ↔ ((𝑢 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1)) ∧ (𝑢𝑤) ∈ ℚ))
4827, 34, 44, 47syl21anbrc 1343 . 2 ((𝑢 𝑣𝑣 𝑤) → 𝑢 𝑤)
497subidd 11606 . . . . . 6 (𝑢 ∈ (0[,]1) → (𝑢𝑢) = 0)
50 0z 12622 . . . . . . 7 0 ∈ ℤ
51 zq 12994 . . . . . . 7 (0 ∈ ℤ → 0 ∈ ℚ)
5250, 51ax-mp 5 . . . . . 6 0 ∈ ℚ
5349, 52eqeltrdi 2847 . . . . 5 (𝑢 ∈ (0[,]1) → (𝑢𝑢) ∈ ℚ)
5453adantr 480 . . . 4 ((𝑢 ∈ (0[,]1) ∧ 𝑢 ∈ (0[,]1)) → (𝑢𝑢) ∈ ℚ)
5554pm4.71i 559 . . 3 ((𝑢 ∈ (0[,]1) ∧ 𝑢 ∈ (0[,]1)) ↔ ((𝑢 ∈ (0[,]1) ∧ 𝑢 ∈ (0[,]1)) ∧ (𝑢𝑢) ∈ ℚ))
56 pm4.24 563 . . 3 (𝑢 ∈ (0[,]1) ↔ (𝑢 ∈ (0[,]1) ∧ 𝑢 ∈ (0[,]1)))
57 oveq12 7440 . . . . 5 ((𝑥 = 𝑢𝑦 = 𝑢) → (𝑥𝑦) = (𝑢𝑢))
5857eleq1d 2824 . . . 4 ((𝑥 = 𝑢𝑦 = 𝑢) → ((𝑥𝑦) ∈ ℚ ↔ (𝑢𝑢) ∈ ℚ))
5958, 1brab2a 5782 . . 3 (𝑢 𝑢 ↔ ((𝑢 ∈ (0[,]1) ∧ 𝑢 ∈ (0[,]1)) ∧ (𝑢𝑢) ∈ ℚ))
6055, 56, 593bitr4i 303 . 2 (𝑢 ∈ (0[,]1) ↔ 𝑢 𝑢)
612, 23, 48, 60iseri 8771 1 Er (0[,]1)
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1537  wcel 2106   class class class wbr 5148  {copab 5210  (class class class)co 7431   Er wer 8741  cc 11151  cr 11152  0cc0 11153  1c1 11154   + caddc 11156  cmin 11490  -cneg 11491  cz 12611  cq 12988  [,]cicc 13387
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-n0 12525  df-z 12612  df-q 12989  df-icc 13391
This theorem is referenced by:  vitalilem2  25658  vitalilem3  25659  vitalilem5  25661  vitali  25662
  Copyright terms: Public domain W3C validator