MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vitalilem1 Structured version   Visualization version   GIF version

Theorem vitalilem1 24972
Description: Lemma for vitali 24977. (Contributed by Mario Carneiro, 16-Jun-2014.) (Proof shortened by AV, 1-May-2021.)
Hypothesis
Ref Expression
vitali.1 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]1)) ∧ (𝑥𝑦) ∈ ℚ)}
Assertion
Ref Expression
vitalilem1 Er (0[,]1)
Distinct variable group:   𝑥,𝑦,

Proof of Theorem vitalilem1
Dummy variables 𝑣 𝑤 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vitali.1 . . 3 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]1)) ∧ (𝑥𝑦) ∈ ℚ)}
21relopabiv 5776 . 2 Rel
3 simplr 767 . . . 4 (((𝑢 ∈ (0[,]1) ∧ 𝑣 ∈ (0[,]1)) ∧ (𝑢𝑣) ∈ ℚ) → 𝑣 ∈ (0[,]1))
4 simpll 765 . . . 4 (((𝑢 ∈ (0[,]1) ∧ 𝑣 ∈ (0[,]1)) ∧ (𝑢𝑣) ∈ ℚ) → 𝑢 ∈ (0[,]1))
5 unitssre 13416 . . . . . . . . 9 (0[,]1) ⊆ ℝ
65sseli 3940 . . . . . . . 8 (𝑢 ∈ (0[,]1) → 𝑢 ∈ ℝ)
76recnd 11183 . . . . . . 7 (𝑢 ∈ (0[,]1) → 𝑢 ∈ ℂ)
87ad2antrr 724 . . . . . 6 (((𝑢 ∈ (0[,]1) ∧ 𝑣 ∈ (0[,]1)) ∧ (𝑢𝑣) ∈ ℚ) → 𝑢 ∈ ℂ)
95sseli 3940 . . . . . . . 8 (𝑣 ∈ (0[,]1) → 𝑣 ∈ ℝ)
109recnd 11183 . . . . . . 7 (𝑣 ∈ (0[,]1) → 𝑣 ∈ ℂ)
1110ad2antlr 725 . . . . . 6 (((𝑢 ∈ (0[,]1) ∧ 𝑣 ∈ (0[,]1)) ∧ (𝑢𝑣) ∈ ℚ) → 𝑣 ∈ ℂ)
128, 11negsubdi2d 11528 . . . . 5 (((𝑢 ∈ (0[,]1) ∧ 𝑣 ∈ (0[,]1)) ∧ (𝑢𝑣) ∈ ℚ) → -(𝑢𝑣) = (𝑣𝑢))
13 qnegcl 12891 . . . . . 6 ((𝑢𝑣) ∈ ℚ → -(𝑢𝑣) ∈ ℚ)
1413adantl 482 . . . . 5 (((𝑢 ∈ (0[,]1) ∧ 𝑣 ∈ (0[,]1)) ∧ (𝑢𝑣) ∈ ℚ) → -(𝑢𝑣) ∈ ℚ)
1512, 14eqeltrrd 2839 . . . 4 (((𝑢 ∈ (0[,]1) ∧ 𝑣 ∈ (0[,]1)) ∧ (𝑢𝑣) ∈ ℚ) → (𝑣𝑢) ∈ ℚ)
163, 4, 15jca31 515 . . 3 (((𝑢 ∈ (0[,]1) ∧ 𝑣 ∈ (0[,]1)) ∧ (𝑢𝑣) ∈ ℚ) → ((𝑣 ∈ (0[,]1) ∧ 𝑢 ∈ (0[,]1)) ∧ (𝑣𝑢) ∈ ℚ))
17 oveq12 7366 . . . . 5 ((𝑥 = 𝑢𝑦 = 𝑣) → (𝑥𝑦) = (𝑢𝑣))
1817eleq1d 2822 . . . 4 ((𝑥 = 𝑢𝑦 = 𝑣) → ((𝑥𝑦) ∈ ℚ ↔ (𝑢𝑣) ∈ ℚ))
1918, 1brab2a 5725 . . 3 (𝑢 𝑣 ↔ ((𝑢 ∈ (0[,]1) ∧ 𝑣 ∈ (0[,]1)) ∧ (𝑢𝑣) ∈ ℚ))
20 oveq12 7366 . . . . 5 ((𝑥 = 𝑣𝑦 = 𝑢) → (𝑥𝑦) = (𝑣𝑢))
2120eleq1d 2822 . . . 4 ((𝑥 = 𝑣𝑦 = 𝑢) → ((𝑥𝑦) ∈ ℚ ↔ (𝑣𝑢) ∈ ℚ))
2221, 1brab2a 5725 . . 3 (𝑣 𝑢 ↔ ((𝑣 ∈ (0[,]1) ∧ 𝑢 ∈ (0[,]1)) ∧ (𝑣𝑢) ∈ ℚ))
2316, 19, 223imtr4i 291 . 2 (𝑢 𝑣𝑣 𝑢)
24 simpl 483 . . . . . 6 ((𝑢 𝑣𝑣 𝑤) → 𝑢 𝑣)
2524, 19sylib 217 . . . . 5 ((𝑢 𝑣𝑣 𝑤) → ((𝑢 ∈ (0[,]1) ∧ 𝑣 ∈ (0[,]1)) ∧ (𝑢𝑣) ∈ ℚ))
2625simpld 495 . . . 4 ((𝑢 𝑣𝑣 𝑤) → (𝑢 ∈ (0[,]1) ∧ 𝑣 ∈ (0[,]1)))
2726simpld 495 . . 3 ((𝑢 𝑣𝑣 𝑤) → 𝑢 ∈ (0[,]1))
28 simpr 485 . . . . . 6 ((𝑢 𝑣𝑣 𝑤) → 𝑣 𝑤)
29 oveq12 7366 . . . . . . . 8 ((𝑥 = 𝑣𝑦 = 𝑤) → (𝑥𝑦) = (𝑣𝑤))
3029eleq1d 2822 . . . . . . 7 ((𝑥 = 𝑣𝑦 = 𝑤) → ((𝑥𝑦) ∈ ℚ ↔ (𝑣𝑤) ∈ ℚ))
3130, 1brab2a 5725 . . . . . 6 (𝑣 𝑤 ↔ ((𝑣 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1)) ∧ (𝑣𝑤) ∈ ℚ))
3228, 31sylib 217 . . . . 5 ((𝑢 𝑣𝑣 𝑤) → ((𝑣 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1)) ∧ (𝑣𝑤) ∈ ℚ))
3332simpld 495 . . . 4 ((𝑢 𝑣𝑣 𝑤) → (𝑣 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1)))
3433simprd 496 . . 3 ((𝑢 𝑣𝑣 𝑤) → 𝑤 ∈ (0[,]1))
3527, 7syl 17 . . . . 5 ((𝑢 𝑣𝑣 𝑤) → 𝑢 ∈ ℂ)
3625, 11syl 17 . . . . 5 ((𝑢 𝑣𝑣 𝑤) → 𝑣 ∈ ℂ)
375, 34sselid 3942 . . . . . 6 ((𝑢 𝑣𝑣 𝑤) → 𝑤 ∈ ℝ)
3837recnd 11183 . . . . 5 ((𝑢 𝑣𝑣 𝑤) → 𝑤 ∈ ℂ)
3935, 36, 38npncand 11536 . . . 4 ((𝑢 𝑣𝑣 𝑤) → ((𝑢𝑣) + (𝑣𝑤)) = (𝑢𝑤))
4025simprd 496 . . . . 5 ((𝑢 𝑣𝑣 𝑤) → (𝑢𝑣) ∈ ℚ)
4132simprd 496 . . . . 5 ((𝑢 𝑣𝑣 𝑤) → (𝑣𝑤) ∈ ℚ)
42 qaddcl 12890 . . . . 5 (((𝑢𝑣) ∈ ℚ ∧ (𝑣𝑤) ∈ ℚ) → ((𝑢𝑣) + (𝑣𝑤)) ∈ ℚ)
4340, 41, 42syl2anc 584 . . . 4 ((𝑢 𝑣𝑣 𝑤) → ((𝑢𝑣) + (𝑣𝑤)) ∈ ℚ)
4439, 43eqeltrrd 2839 . . 3 ((𝑢 𝑣𝑣 𝑤) → (𝑢𝑤) ∈ ℚ)
45 oveq12 7366 . . . . 5 ((𝑥 = 𝑢𝑦 = 𝑤) → (𝑥𝑦) = (𝑢𝑤))
4645eleq1d 2822 . . . 4 ((𝑥 = 𝑢𝑦 = 𝑤) → ((𝑥𝑦) ∈ ℚ ↔ (𝑢𝑤) ∈ ℚ))
4746, 1brab2a 5725 . . 3 (𝑢 𝑤 ↔ ((𝑢 ∈ (0[,]1) ∧ 𝑤 ∈ (0[,]1)) ∧ (𝑢𝑤) ∈ ℚ))
4827, 34, 44, 47syl21anbrc 1344 . 2 ((𝑢 𝑣𝑣 𝑤) → 𝑢 𝑤)
497subidd 11500 . . . . . 6 (𝑢 ∈ (0[,]1) → (𝑢𝑢) = 0)
50 0z 12510 . . . . . . 7 0 ∈ ℤ
51 zq 12879 . . . . . . 7 (0 ∈ ℤ → 0 ∈ ℚ)
5250, 51ax-mp 5 . . . . . 6 0 ∈ ℚ
5349, 52eqeltrdi 2846 . . . . 5 (𝑢 ∈ (0[,]1) → (𝑢𝑢) ∈ ℚ)
5453adantr 481 . . . 4 ((𝑢 ∈ (0[,]1) ∧ 𝑢 ∈ (0[,]1)) → (𝑢𝑢) ∈ ℚ)
5554pm4.71i 560 . . 3 ((𝑢 ∈ (0[,]1) ∧ 𝑢 ∈ (0[,]1)) ↔ ((𝑢 ∈ (0[,]1) ∧ 𝑢 ∈ (0[,]1)) ∧ (𝑢𝑢) ∈ ℚ))
56 pm4.24 564 . . 3 (𝑢 ∈ (0[,]1) ↔ (𝑢 ∈ (0[,]1) ∧ 𝑢 ∈ (0[,]1)))
57 oveq12 7366 . . . . 5 ((𝑥 = 𝑢𝑦 = 𝑢) → (𝑥𝑦) = (𝑢𝑢))
5857eleq1d 2822 . . . 4 ((𝑥 = 𝑢𝑦 = 𝑢) → ((𝑥𝑦) ∈ ℚ ↔ (𝑢𝑢) ∈ ℚ))
5958, 1brab2a 5725 . . 3 (𝑢 𝑢 ↔ ((𝑢 ∈ (0[,]1) ∧ 𝑢 ∈ (0[,]1)) ∧ (𝑢𝑢) ∈ ℚ))
6055, 56, 593bitr4i 302 . 2 (𝑢 ∈ (0[,]1) ↔ 𝑢 𝑢)
612, 23, 48, 60iseri 8675 1 Er (0[,]1)
Colors of variables: wff setvar class
Syntax hints:  wa 396   = wceq 1541  wcel 2106   class class class wbr 5105  {copab 5167  (class class class)co 7357   Er wer 8645  cc 11049  cr 11050  0cc0 11051  1c1 11052   + caddc 11054  cmin 11385  -cneg 11386  cz 12499  cq 12873  [,]cicc 13267
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-n0 12414  df-z 12500  df-q 12874  df-icc 13271
This theorem is referenced by:  vitalilem2  24973  vitalilem3  24974  vitalilem5  24976  vitali  24977
  Copyright terms: Public domain W3C validator