Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > opabbrfex0d | Structured version Visualization version GIF version |
Description: A collection of ordered pairs, the class of all possible second components being a set, is a set. (Contributed by AV, 15-Jan-2021.) |
Ref | Expression |
---|---|
opabresex0d.x | ⊢ ((𝜑 ∧ 𝑥𝑅𝑦) → 𝑥 ∈ 𝐶) |
opabresex0d.t | ⊢ ((𝜑 ∧ 𝑥𝑅𝑦) → 𝜃) |
opabresex0d.y | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → {𝑦 ∣ 𝜃} ∈ 𝑉) |
opabresex0d.c | ⊢ (𝜑 → 𝐶 ∈ 𝑊) |
Ref | Expression |
---|---|
opabbrfex0d | ⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ 𝑥𝑅𝑦} ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm4.24 564 | . . 3 ⊢ (𝑥𝑅𝑦 ↔ (𝑥𝑅𝑦 ∧ 𝑥𝑅𝑦)) | |
2 | 1 | opabbii 5141 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ 𝑥𝑅𝑦} = {〈𝑥, 𝑦〉 ∣ (𝑥𝑅𝑦 ∧ 𝑥𝑅𝑦)} |
3 | opabresex0d.x | . . 3 ⊢ ((𝜑 ∧ 𝑥𝑅𝑦) → 𝑥 ∈ 𝐶) | |
4 | opabresex0d.t | . . 3 ⊢ ((𝜑 ∧ 𝑥𝑅𝑦) → 𝜃) | |
5 | opabresex0d.y | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → {𝑦 ∣ 𝜃} ∈ 𝑉) | |
6 | opabresex0d.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝑊) | |
7 | 3, 4, 5, 6 | opabresex0d 44777 | . 2 ⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ (𝑥𝑅𝑦 ∧ 𝑥𝑅𝑦)} ∈ V) |
8 | 2, 7 | eqeltrid 2843 | 1 ⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ 𝑥𝑅𝑦} ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∈ wcel 2106 {cab 2715 Vcvv 3432 class class class wbr 5074 {copab 5136 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-opab 5137 df-xp 5595 df-rel 5596 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |