![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > opabbrfex0d | Structured version Visualization version GIF version |
Description: A collection of ordered pairs, the class of all possible second components being a set, is a set. (Contributed by AV, 15-Jan-2021.) |
Ref | Expression |
---|---|
opabresex0d.x | ⊢ ((𝜑 ∧ 𝑥𝑅𝑦) → 𝑥 ∈ 𝐶) |
opabresex0d.t | ⊢ ((𝜑 ∧ 𝑥𝑅𝑦) → 𝜃) |
opabresex0d.y | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → {𝑦 ∣ 𝜃} ∈ 𝑉) |
opabresex0d.c | ⊢ (𝜑 → 𝐶 ∈ 𝑊) |
Ref | Expression |
---|---|
opabbrfex0d | ⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ 𝑥𝑅𝑦} ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm4.24 563 | . . 3 ⊢ (𝑥𝑅𝑦 ↔ (𝑥𝑅𝑦 ∧ 𝑥𝑅𝑦)) | |
2 | 1 | opabbii 5218 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ 𝑥𝑅𝑦} = {〈𝑥, 𝑦〉 ∣ (𝑥𝑅𝑦 ∧ 𝑥𝑅𝑦)} |
3 | opabresex0d.x | . . 3 ⊢ ((𝜑 ∧ 𝑥𝑅𝑦) → 𝑥 ∈ 𝐶) | |
4 | opabresex0d.t | . . 3 ⊢ ((𝜑 ∧ 𝑥𝑅𝑦) → 𝜃) | |
5 | opabresex0d.y | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → {𝑦 ∣ 𝜃} ∈ 𝑉) | |
6 | opabresex0d.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝑊) | |
7 | 3, 4, 5, 6 | opabresex0d 47263 | . 2 ⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ (𝑥𝑅𝑦 ∧ 𝑥𝑅𝑦)} ∈ V) |
8 | 2, 7 | eqeltrid 2845 | 1 ⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ 𝑥𝑅𝑦} ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 {cab 2714 Vcvv 3481 class class class wbr 5151 {copab 5213 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5288 ax-sep 5305 ax-nul 5315 ax-pow 5374 ax-pr 5441 ax-un 7761 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-clab 2715 df-cleq 2729 df-clel 2816 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3483 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-iun 5001 df-opab 5214 df-xp 5699 df-rel 5700 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |