| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > opabbrfex0d | Structured version Visualization version GIF version | ||
| Description: A collection of ordered pairs, the class of all possible second components being a set, is a set. (Contributed by AV, 15-Jan-2021.) |
| Ref | Expression |
|---|---|
| opabresex0d.x | ⊢ ((𝜑 ∧ 𝑥𝑅𝑦) → 𝑥 ∈ 𝐶) |
| opabresex0d.t | ⊢ ((𝜑 ∧ 𝑥𝑅𝑦) → 𝜃) |
| opabresex0d.y | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → {𝑦 ∣ 𝜃} ∈ 𝑉) |
| opabresex0d.c | ⊢ (𝜑 → 𝐶 ∈ 𝑊) |
| Ref | Expression |
|---|---|
| opabbrfex0d | ⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ 𝑥𝑅𝑦} ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm4.24 563 | . . 3 ⊢ (𝑥𝑅𝑦 ↔ (𝑥𝑅𝑦 ∧ 𝑥𝑅𝑦)) | |
| 2 | 1 | opabbii 5182 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ 𝑥𝑅𝑦} = {〈𝑥, 𝑦〉 ∣ (𝑥𝑅𝑦 ∧ 𝑥𝑅𝑦)} |
| 3 | opabresex0d.x | . . 3 ⊢ ((𝜑 ∧ 𝑥𝑅𝑦) → 𝑥 ∈ 𝐶) | |
| 4 | opabresex0d.t | . . 3 ⊢ ((𝜑 ∧ 𝑥𝑅𝑦) → 𝜃) | |
| 5 | opabresex0d.y | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → {𝑦 ∣ 𝜃} ∈ 𝑉) | |
| 6 | opabresex0d.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝑊) | |
| 7 | 3, 4, 5, 6 | opabresex0d 47256 | . 2 ⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ (𝑥𝑅𝑦 ∧ 𝑥𝑅𝑦)} ∈ V) |
| 8 | 2, 7 | eqeltrid 2833 | 1 ⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ 𝑥𝑅𝑦} ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 {cab 2708 Vcvv 3455 class class class wbr 5115 {copab 5177 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5242 ax-sep 5259 ax-nul 5269 ax-pow 5328 ax-pr 5395 ax-un 7718 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3047 df-rex 3056 df-rab 3412 df-v 3457 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-nul 4305 df-if 4497 df-pw 4573 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-iun 4965 df-opab 5178 df-xp 5652 df-rel 5653 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |