![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > crngunit | Structured version Visualization version GIF version |
Description: Property of being a unit in a commutative ring. (Contributed by Mario Carneiro, 18-Apr-2016.) |
Ref | Expression |
---|---|
crngunit.1 | ⊢ 𝑈 = (Unit‘𝑅) |
crngunit.2 | ⊢ 1 = (1r‘𝑅) |
crngunit.3 | ⊢ ∥ = (∥r‘𝑅) |
Ref | Expression |
---|---|
crngunit | ⊢ (𝑅 ∈ CRing → (𝑋 ∈ 𝑈 ↔ 𝑋 ∥ 1 )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2726 | . . . . . . . . . . 11 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
2 | eqid 2726 | . . . . . . . . . . 11 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
3 | eqid 2726 | . . . . . . . . . . 11 ⊢ (oppr‘𝑅) = (oppr‘𝑅) | |
4 | eqid 2726 | . . . . . . . . . . 11 ⊢ (.r‘(oppr‘𝑅)) = (.r‘(oppr‘𝑅)) | |
5 | 1, 2, 3, 4 | crngoppr 20320 | . . . . . . . . . 10 ⊢ ((𝑅 ∈ CRing ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑋 ∈ (Base‘𝑅)) → (𝑦(.r‘𝑅)𝑋) = (𝑦(.r‘(oppr‘𝑅))𝑋)) |
6 | 5 | 3expa 1115 | . . . . . . . . 9 ⊢ (((𝑅 ∈ CRing ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑋 ∈ (Base‘𝑅)) → (𝑦(.r‘𝑅)𝑋) = (𝑦(.r‘(oppr‘𝑅))𝑋)) |
7 | 6 | eqcomd 2732 | . . . . . . . 8 ⊢ (((𝑅 ∈ CRing ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑋 ∈ (Base‘𝑅)) → (𝑦(.r‘(oppr‘𝑅))𝑋) = (𝑦(.r‘𝑅)𝑋)) |
8 | 7 | an32s 650 | . . . . . . 7 ⊢ (((𝑅 ∈ CRing ∧ 𝑋 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑦(.r‘(oppr‘𝑅))𝑋) = (𝑦(.r‘𝑅)𝑋)) |
9 | 8 | eqeq1d 2728 | . . . . . 6 ⊢ (((𝑅 ∈ CRing ∧ 𝑋 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) → ((𝑦(.r‘(oppr‘𝑅))𝑋) = 1 ↔ (𝑦(.r‘𝑅)𝑋) = 1 )) |
10 | 9 | rexbidva 3167 | . . . . 5 ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ (Base‘𝑅)) → (∃𝑦 ∈ (Base‘𝑅)(𝑦(.r‘(oppr‘𝑅))𝑋) = 1 ↔ ∃𝑦 ∈ (Base‘𝑅)(𝑦(.r‘𝑅)𝑋) = 1 )) |
11 | 10 | pm5.32da 577 | . . . 4 ⊢ (𝑅 ∈ CRing → ((𝑋 ∈ (Base‘𝑅) ∧ ∃𝑦 ∈ (Base‘𝑅)(𝑦(.r‘(oppr‘𝑅))𝑋) = 1 ) ↔ (𝑋 ∈ (Base‘𝑅) ∧ ∃𝑦 ∈ (Base‘𝑅)(𝑦(.r‘𝑅)𝑋) = 1 ))) |
12 | 3, 1 | opprbas 20323 | . . . . 5 ⊢ (Base‘𝑅) = (Base‘(oppr‘𝑅)) |
13 | eqid 2726 | . . . . 5 ⊢ (∥r‘(oppr‘𝑅)) = (∥r‘(oppr‘𝑅)) | |
14 | 12, 13, 4 | dvdsr 20344 | . . . 4 ⊢ (𝑋(∥r‘(oppr‘𝑅)) 1 ↔ (𝑋 ∈ (Base‘𝑅) ∧ ∃𝑦 ∈ (Base‘𝑅)(𝑦(.r‘(oppr‘𝑅))𝑋) = 1 )) |
15 | crngunit.3 | . . . . 5 ⊢ ∥ = (∥r‘𝑅) | |
16 | 1, 15, 2 | dvdsr 20344 | . . . 4 ⊢ (𝑋 ∥ 1 ↔ (𝑋 ∈ (Base‘𝑅) ∧ ∃𝑦 ∈ (Base‘𝑅)(𝑦(.r‘𝑅)𝑋) = 1 )) |
17 | 11, 14, 16 | 3bitr4g 313 | . . 3 ⊢ (𝑅 ∈ CRing → (𝑋(∥r‘(oppr‘𝑅)) 1 ↔ 𝑋 ∥ 1 )) |
18 | 17 | anbi2d 628 | . 2 ⊢ (𝑅 ∈ CRing → ((𝑋 ∥ 1 ∧ 𝑋(∥r‘(oppr‘𝑅)) 1 ) ↔ (𝑋 ∥ 1 ∧ 𝑋 ∥ 1 ))) |
19 | crngunit.1 | . . 3 ⊢ 𝑈 = (Unit‘𝑅) | |
20 | crngunit.2 | . . 3 ⊢ 1 = (1r‘𝑅) | |
21 | 19, 20, 15, 3, 13 | isunit 20355 | . 2 ⊢ (𝑋 ∈ 𝑈 ↔ (𝑋 ∥ 1 ∧ 𝑋(∥r‘(oppr‘𝑅)) 1 )) |
22 | pm4.24 562 | . 2 ⊢ (𝑋 ∥ 1 ↔ (𝑋 ∥ 1 ∧ 𝑋 ∥ 1 )) | |
23 | 18, 21, 22 | 3bitr4g 313 | 1 ⊢ (𝑅 ∈ CRing → (𝑋 ∈ 𝑈 ↔ 𝑋 ∥ 1 )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1534 ∈ wcel 2099 ∃wrex 3060 class class class wbr 5153 ‘cfv 6554 (class class class)co 7424 Basecbs 17213 .rcmulr 17267 1rcur 20164 CRingccrg 20217 opprcoppr 20315 ∥rcdsr 20336 Unitcui 20337 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5290 ax-sep 5304 ax-nul 5311 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-cnex 11214 ax-resscn 11215 ax-1cn 11216 ax-icn 11217 ax-addcl 11218 ax-addrcl 11219 ax-mulcl 11220 ax-mulrcl 11221 ax-mulcom 11222 ax-addass 11223 ax-mulass 11224 ax-distr 11225 ax-i2m1 11226 ax-1ne0 11227 ax-1rid 11228 ax-rnegex 11229 ax-rrecex 11230 ax-cnre 11231 ax-pre-lttri 11232 ax-pre-lttrn 11233 ax-pre-ltadd 11234 ax-pre-mulgt0 11235 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3967 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4914 df-iun 5003 df-br 5154 df-opab 5216 df-mpt 5237 df-tr 5271 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6312 df-ord 6379 df-on 6380 df-lim 6381 df-suc 6382 df-iota 6506 df-fun 6556 df-fn 6557 df-f 6558 df-f1 6559 df-fo 6560 df-f1o 6561 df-fv 6562 df-riota 7380 df-ov 7427 df-oprab 7428 df-mpo 7429 df-om 7877 df-2nd 8004 df-tpos 8241 df-frecs 8296 df-wrecs 8327 df-recs 8401 df-rdg 8440 df-er 8734 df-en 8975 df-dom 8976 df-sdom 8977 df-pnf 11300 df-mnf 11301 df-xr 11302 df-ltxr 11303 df-le 11304 df-sub 11496 df-neg 11497 df-nn 12265 df-2 12327 df-3 12328 df-sets 17166 df-slot 17184 df-ndx 17196 df-base 17214 df-plusg 17279 df-mulr 17280 df-cmn 19780 df-mgp 20118 df-cring 20219 df-oppr 20316 df-dvdsr 20339 df-unit 20340 |
This theorem is referenced by: dvdsunit 20361 znunit 21561 rprmndvdsr1 33399 rprmndvdsru 33404 rprmirredlem 33405 matunitlindflem2 37318 |
Copyright terms: Public domain | W3C validator |