| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > crngunit | Structured version Visualization version GIF version | ||
| Description: Property of being a unit in a commutative ring. (Contributed by Mario Carneiro, 18-Apr-2016.) |
| Ref | Expression |
|---|---|
| crngunit.1 | ⊢ 𝑈 = (Unit‘𝑅) |
| crngunit.2 | ⊢ 1 = (1r‘𝑅) |
| crngunit.3 | ⊢ ∥ = (∥r‘𝑅) |
| Ref | Expression |
|---|---|
| crngunit | ⊢ (𝑅 ∈ CRing → (𝑋 ∈ 𝑈 ↔ 𝑋 ∥ 1 )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . . . . . . . . . . 11 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 2 | eqid 2731 | . . . . . . . . . . 11 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 3 | eqid 2731 | . . . . . . . . . . 11 ⊢ (oppr‘𝑅) = (oppr‘𝑅) | |
| 4 | eqid 2731 | . . . . . . . . . . 11 ⊢ (.r‘(oppr‘𝑅)) = (.r‘(oppr‘𝑅)) | |
| 5 | 1, 2, 3, 4 | crngoppr 20254 | . . . . . . . . . 10 ⊢ ((𝑅 ∈ CRing ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑋 ∈ (Base‘𝑅)) → (𝑦(.r‘𝑅)𝑋) = (𝑦(.r‘(oppr‘𝑅))𝑋)) |
| 6 | 5 | 3expa 1118 | . . . . . . . . 9 ⊢ (((𝑅 ∈ CRing ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑋 ∈ (Base‘𝑅)) → (𝑦(.r‘𝑅)𝑋) = (𝑦(.r‘(oppr‘𝑅))𝑋)) |
| 7 | 6 | eqcomd 2737 | . . . . . . . 8 ⊢ (((𝑅 ∈ CRing ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑋 ∈ (Base‘𝑅)) → (𝑦(.r‘(oppr‘𝑅))𝑋) = (𝑦(.r‘𝑅)𝑋)) |
| 8 | 7 | an32s 652 | . . . . . . 7 ⊢ (((𝑅 ∈ CRing ∧ 𝑋 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑦(.r‘(oppr‘𝑅))𝑋) = (𝑦(.r‘𝑅)𝑋)) |
| 9 | 8 | eqeq1d 2733 | . . . . . 6 ⊢ (((𝑅 ∈ CRing ∧ 𝑋 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) → ((𝑦(.r‘(oppr‘𝑅))𝑋) = 1 ↔ (𝑦(.r‘𝑅)𝑋) = 1 )) |
| 10 | 9 | rexbidva 3154 | . . . . 5 ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ (Base‘𝑅)) → (∃𝑦 ∈ (Base‘𝑅)(𝑦(.r‘(oppr‘𝑅))𝑋) = 1 ↔ ∃𝑦 ∈ (Base‘𝑅)(𝑦(.r‘𝑅)𝑋) = 1 )) |
| 11 | 10 | pm5.32da 579 | . . . 4 ⊢ (𝑅 ∈ CRing → ((𝑋 ∈ (Base‘𝑅) ∧ ∃𝑦 ∈ (Base‘𝑅)(𝑦(.r‘(oppr‘𝑅))𝑋) = 1 ) ↔ (𝑋 ∈ (Base‘𝑅) ∧ ∃𝑦 ∈ (Base‘𝑅)(𝑦(.r‘𝑅)𝑋) = 1 ))) |
| 12 | 3, 1 | opprbas 20256 | . . . . 5 ⊢ (Base‘𝑅) = (Base‘(oppr‘𝑅)) |
| 13 | eqid 2731 | . . . . 5 ⊢ (∥r‘(oppr‘𝑅)) = (∥r‘(oppr‘𝑅)) | |
| 14 | 12, 13, 4 | dvdsr 20275 | . . . 4 ⊢ (𝑋(∥r‘(oppr‘𝑅)) 1 ↔ (𝑋 ∈ (Base‘𝑅) ∧ ∃𝑦 ∈ (Base‘𝑅)(𝑦(.r‘(oppr‘𝑅))𝑋) = 1 )) |
| 15 | crngunit.3 | . . . . 5 ⊢ ∥ = (∥r‘𝑅) | |
| 16 | 1, 15, 2 | dvdsr 20275 | . . . 4 ⊢ (𝑋 ∥ 1 ↔ (𝑋 ∈ (Base‘𝑅) ∧ ∃𝑦 ∈ (Base‘𝑅)(𝑦(.r‘𝑅)𝑋) = 1 )) |
| 17 | 11, 14, 16 | 3bitr4g 314 | . . 3 ⊢ (𝑅 ∈ CRing → (𝑋(∥r‘(oppr‘𝑅)) 1 ↔ 𝑋 ∥ 1 )) |
| 18 | 17 | anbi2d 630 | . 2 ⊢ (𝑅 ∈ CRing → ((𝑋 ∥ 1 ∧ 𝑋(∥r‘(oppr‘𝑅)) 1 ) ↔ (𝑋 ∥ 1 ∧ 𝑋 ∥ 1 ))) |
| 19 | crngunit.1 | . . 3 ⊢ 𝑈 = (Unit‘𝑅) | |
| 20 | crngunit.2 | . . 3 ⊢ 1 = (1r‘𝑅) | |
| 21 | 19, 20, 15, 3, 13 | isunit 20286 | . 2 ⊢ (𝑋 ∈ 𝑈 ↔ (𝑋 ∥ 1 ∧ 𝑋(∥r‘(oppr‘𝑅)) 1 )) |
| 22 | pm4.24 563 | . 2 ⊢ (𝑋 ∥ 1 ↔ (𝑋 ∥ 1 ∧ 𝑋 ∥ 1 )) | |
| 23 | 18, 21, 22 | 3bitr4g 314 | 1 ⊢ (𝑅 ∈ CRing → (𝑋 ∈ 𝑈 ↔ 𝑋 ∥ 1 )) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∃wrex 3056 class class class wbr 5086 ‘cfv 6476 (class class class)co 7341 Basecbs 17115 .rcmulr 17157 1rcur 20094 CRingccrg 20147 opprcoppr 20249 ∥rcdsr 20267 Unitcui 20268 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-2nd 7917 df-tpos 8151 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-nn 12121 df-2 12183 df-3 12184 df-sets 17070 df-slot 17088 df-ndx 17100 df-base 17116 df-plusg 17169 df-mulr 17170 df-cmn 19689 df-mgp 20054 df-cring 20149 df-oppr 20250 df-dvdsr 20270 df-unit 20271 |
| This theorem is referenced by: dvdsunit 20292 znunit 21495 rprmndvdsr1 33481 rprmndvdsru 33486 rprmirredlem 33487 matunitlindflem2 37657 unitscyglem5 42232 |
| Copyright terms: Public domain | W3C validator |