Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > crngunit | Structured version Visualization version GIF version |
Description: Property of being a unit in a commutative ring. (Contributed by Mario Carneiro, 18-Apr-2016.) |
Ref | Expression |
---|---|
crngunit.1 | ⊢ 𝑈 = (Unit‘𝑅) |
crngunit.2 | ⊢ 1 = (1r‘𝑅) |
crngunit.3 | ⊢ ∥ = (∥r‘𝑅) |
Ref | Expression |
---|---|
crngunit | ⊢ (𝑅 ∈ CRing → (𝑋 ∈ 𝑈 ↔ 𝑋 ∥ 1 )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . . . . . . . . . 11 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
2 | eqid 2738 | . . . . . . . . . . 11 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
3 | eqid 2738 | . . . . . . . . . . 11 ⊢ (oppr‘𝑅) = (oppr‘𝑅) | |
4 | eqid 2738 | . . . . . . . . . . 11 ⊢ (.r‘(oppr‘𝑅)) = (.r‘(oppr‘𝑅)) | |
5 | 1, 2, 3, 4 | crngoppr 19866 | . . . . . . . . . 10 ⊢ ((𝑅 ∈ CRing ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑋 ∈ (Base‘𝑅)) → (𝑦(.r‘𝑅)𝑋) = (𝑦(.r‘(oppr‘𝑅))𝑋)) |
6 | 5 | 3expa 1117 | . . . . . . . . 9 ⊢ (((𝑅 ∈ CRing ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑋 ∈ (Base‘𝑅)) → (𝑦(.r‘𝑅)𝑋) = (𝑦(.r‘(oppr‘𝑅))𝑋)) |
7 | 6 | eqcomd 2744 | . . . . . . . 8 ⊢ (((𝑅 ∈ CRing ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑋 ∈ (Base‘𝑅)) → (𝑦(.r‘(oppr‘𝑅))𝑋) = (𝑦(.r‘𝑅)𝑋)) |
8 | 7 | an32s 649 | . . . . . . 7 ⊢ (((𝑅 ∈ CRing ∧ 𝑋 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑦(.r‘(oppr‘𝑅))𝑋) = (𝑦(.r‘𝑅)𝑋)) |
9 | 8 | eqeq1d 2740 | . . . . . 6 ⊢ (((𝑅 ∈ CRing ∧ 𝑋 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) → ((𝑦(.r‘(oppr‘𝑅))𝑋) = 1 ↔ (𝑦(.r‘𝑅)𝑋) = 1 )) |
10 | 9 | rexbidva 3225 | . . . . 5 ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ (Base‘𝑅)) → (∃𝑦 ∈ (Base‘𝑅)(𝑦(.r‘(oppr‘𝑅))𝑋) = 1 ↔ ∃𝑦 ∈ (Base‘𝑅)(𝑦(.r‘𝑅)𝑋) = 1 )) |
11 | 10 | pm5.32da 579 | . . . 4 ⊢ (𝑅 ∈ CRing → ((𝑋 ∈ (Base‘𝑅) ∧ ∃𝑦 ∈ (Base‘𝑅)(𝑦(.r‘(oppr‘𝑅))𝑋) = 1 ) ↔ (𝑋 ∈ (Base‘𝑅) ∧ ∃𝑦 ∈ (Base‘𝑅)(𝑦(.r‘𝑅)𝑋) = 1 ))) |
12 | 3, 1 | opprbas 19869 | . . . . 5 ⊢ (Base‘𝑅) = (Base‘(oppr‘𝑅)) |
13 | eqid 2738 | . . . . 5 ⊢ (∥r‘(oppr‘𝑅)) = (∥r‘(oppr‘𝑅)) | |
14 | 12, 13, 4 | dvdsr 19888 | . . . 4 ⊢ (𝑋(∥r‘(oppr‘𝑅)) 1 ↔ (𝑋 ∈ (Base‘𝑅) ∧ ∃𝑦 ∈ (Base‘𝑅)(𝑦(.r‘(oppr‘𝑅))𝑋) = 1 )) |
15 | crngunit.3 | . . . . 5 ⊢ ∥ = (∥r‘𝑅) | |
16 | 1, 15, 2 | dvdsr 19888 | . . . 4 ⊢ (𝑋 ∥ 1 ↔ (𝑋 ∈ (Base‘𝑅) ∧ ∃𝑦 ∈ (Base‘𝑅)(𝑦(.r‘𝑅)𝑋) = 1 )) |
17 | 11, 14, 16 | 3bitr4g 314 | . . 3 ⊢ (𝑅 ∈ CRing → (𝑋(∥r‘(oppr‘𝑅)) 1 ↔ 𝑋 ∥ 1 )) |
18 | 17 | anbi2d 629 | . 2 ⊢ (𝑅 ∈ CRing → ((𝑋 ∥ 1 ∧ 𝑋(∥r‘(oppr‘𝑅)) 1 ) ↔ (𝑋 ∥ 1 ∧ 𝑋 ∥ 1 ))) |
19 | crngunit.1 | . . 3 ⊢ 𝑈 = (Unit‘𝑅) | |
20 | crngunit.2 | . . 3 ⊢ 1 = (1r‘𝑅) | |
21 | 19, 20, 15, 3, 13 | isunit 19899 | . 2 ⊢ (𝑋 ∈ 𝑈 ↔ (𝑋 ∥ 1 ∧ 𝑋(∥r‘(oppr‘𝑅)) 1 )) |
22 | pm4.24 564 | . 2 ⊢ (𝑋 ∥ 1 ↔ (𝑋 ∥ 1 ∧ 𝑋 ∥ 1 )) | |
23 | 18, 21, 22 | 3bitr4g 314 | 1 ⊢ (𝑅 ∈ CRing → (𝑋 ∈ 𝑈 ↔ 𝑋 ∥ 1 )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∃wrex 3065 class class class wbr 5074 ‘cfv 6433 (class class class)co 7275 Basecbs 16912 .rcmulr 16963 1rcur 19737 CRingccrg 19784 opprcoppr 19861 ∥rcdsr 19880 Unitcui 19881 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-2nd 7832 df-tpos 8042 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-2 12036 df-3 12037 df-sets 16865 df-slot 16883 df-ndx 16895 df-base 16913 df-plusg 16975 df-mulr 16976 df-cmn 19388 df-mgp 19721 df-cring 19786 df-oppr 19862 df-dvdsr 19883 df-unit 19884 |
This theorem is referenced by: dvdsunit 19905 znunit 20771 matunitlindflem2 35774 |
Copyright terms: Public domain | W3C validator |