![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > crngunit | Structured version Visualization version GIF version |
Description: Property of being a unit in a commutative ring. (Contributed by Mario Carneiro, 18-Apr-2016.) |
Ref | Expression |
---|---|
crngunit.1 | ⊢ 𝑈 = (Unit‘𝑅) |
crngunit.2 | ⊢ 1 = (1r‘𝑅) |
crngunit.3 | ⊢ ∥ = (∥r‘𝑅) |
Ref | Expression |
---|---|
crngunit | ⊢ (𝑅 ∈ CRing → (𝑋 ∈ 𝑈 ↔ 𝑋 ∥ 1 )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2772 | . . . . . . . . . . 11 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
2 | eqid 2772 | . . . . . . . . . . 11 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
3 | eqid 2772 | . . . . . . . . . . 11 ⊢ (oppr‘𝑅) = (oppr‘𝑅) | |
4 | eqid 2772 | . . . . . . . . . . 11 ⊢ (.r‘(oppr‘𝑅)) = (.r‘(oppr‘𝑅)) | |
5 | 1, 2, 3, 4 | crngoppr 19090 | . . . . . . . . . 10 ⊢ ((𝑅 ∈ CRing ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑋 ∈ (Base‘𝑅)) → (𝑦(.r‘𝑅)𝑋) = (𝑦(.r‘(oppr‘𝑅))𝑋)) |
6 | 5 | 3expa 1098 | . . . . . . . . 9 ⊢ (((𝑅 ∈ CRing ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑋 ∈ (Base‘𝑅)) → (𝑦(.r‘𝑅)𝑋) = (𝑦(.r‘(oppr‘𝑅))𝑋)) |
7 | 6 | eqcomd 2778 | . . . . . . . 8 ⊢ (((𝑅 ∈ CRing ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑋 ∈ (Base‘𝑅)) → (𝑦(.r‘(oppr‘𝑅))𝑋) = (𝑦(.r‘𝑅)𝑋)) |
8 | 7 | an32s 639 | . . . . . . 7 ⊢ (((𝑅 ∈ CRing ∧ 𝑋 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑦(.r‘(oppr‘𝑅))𝑋) = (𝑦(.r‘𝑅)𝑋)) |
9 | 8 | eqeq1d 2774 | . . . . . 6 ⊢ (((𝑅 ∈ CRing ∧ 𝑋 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) → ((𝑦(.r‘(oppr‘𝑅))𝑋) = 1 ↔ (𝑦(.r‘𝑅)𝑋) = 1 )) |
10 | 9 | rexbidva 3235 | . . . . 5 ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ (Base‘𝑅)) → (∃𝑦 ∈ (Base‘𝑅)(𝑦(.r‘(oppr‘𝑅))𝑋) = 1 ↔ ∃𝑦 ∈ (Base‘𝑅)(𝑦(.r‘𝑅)𝑋) = 1 )) |
11 | 10 | pm5.32da 571 | . . . 4 ⊢ (𝑅 ∈ CRing → ((𝑋 ∈ (Base‘𝑅) ∧ ∃𝑦 ∈ (Base‘𝑅)(𝑦(.r‘(oppr‘𝑅))𝑋) = 1 ) ↔ (𝑋 ∈ (Base‘𝑅) ∧ ∃𝑦 ∈ (Base‘𝑅)(𝑦(.r‘𝑅)𝑋) = 1 ))) |
12 | 3, 1 | opprbas 19092 | . . . . 5 ⊢ (Base‘𝑅) = (Base‘(oppr‘𝑅)) |
13 | eqid 2772 | . . . . 5 ⊢ (∥r‘(oppr‘𝑅)) = (∥r‘(oppr‘𝑅)) | |
14 | 12, 13, 4 | dvdsr 19109 | . . . 4 ⊢ (𝑋(∥r‘(oppr‘𝑅)) 1 ↔ (𝑋 ∈ (Base‘𝑅) ∧ ∃𝑦 ∈ (Base‘𝑅)(𝑦(.r‘(oppr‘𝑅))𝑋) = 1 )) |
15 | crngunit.3 | . . . . 5 ⊢ ∥ = (∥r‘𝑅) | |
16 | 1, 15, 2 | dvdsr 19109 | . . . 4 ⊢ (𝑋 ∥ 1 ↔ (𝑋 ∈ (Base‘𝑅) ∧ ∃𝑦 ∈ (Base‘𝑅)(𝑦(.r‘𝑅)𝑋) = 1 )) |
17 | 11, 14, 16 | 3bitr4g 306 | . . 3 ⊢ (𝑅 ∈ CRing → (𝑋(∥r‘(oppr‘𝑅)) 1 ↔ 𝑋 ∥ 1 )) |
18 | 17 | anbi2d 619 | . 2 ⊢ (𝑅 ∈ CRing → ((𝑋 ∥ 1 ∧ 𝑋(∥r‘(oppr‘𝑅)) 1 ) ↔ (𝑋 ∥ 1 ∧ 𝑋 ∥ 1 ))) |
19 | crngunit.1 | . . 3 ⊢ 𝑈 = (Unit‘𝑅) | |
20 | crngunit.2 | . . 3 ⊢ 1 = (1r‘𝑅) | |
21 | 19, 20, 15, 3, 13 | isunit 19120 | . 2 ⊢ (𝑋 ∈ 𝑈 ↔ (𝑋 ∥ 1 ∧ 𝑋(∥r‘(oppr‘𝑅)) 1 )) |
22 | pm4.24 556 | . 2 ⊢ (𝑋 ∥ 1 ↔ (𝑋 ∥ 1 ∧ 𝑋 ∥ 1 )) | |
23 | 18, 21, 22 | 3bitr4g 306 | 1 ⊢ (𝑅 ∈ CRing → (𝑋 ∈ 𝑈 ↔ 𝑋 ∥ 1 )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 387 = wceq 1507 ∈ wcel 2048 ∃wrex 3083 class class class wbr 4923 ‘cfv 6182 (class class class)co 6970 Basecbs 16329 .rcmulr 16412 1rcur 18964 CRingccrg 19011 opprcoppr 19085 ∥rcdsr 19101 Unitcui 19102 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1964 ax-8 2050 ax-9 2057 ax-10 2077 ax-11 2091 ax-12 2104 ax-13 2299 ax-ext 2745 ax-rep 5043 ax-sep 5054 ax-nul 5061 ax-pow 5113 ax-pr 5180 ax-un 7273 ax-cnex 10383 ax-resscn 10384 ax-1cn 10385 ax-icn 10386 ax-addcl 10387 ax-addrcl 10388 ax-mulcl 10389 ax-mulrcl 10390 ax-mulcom 10391 ax-addass 10392 ax-mulass 10393 ax-distr 10394 ax-i2m1 10395 ax-1ne0 10396 ax-1rid 10397 ax-rnegex 10398 ax-rrecex 10399 ax-cnre 10400 ax-pre-lttri 10401 ax-pre-lttrn 10402 ax-pre-ltadd 10403 ax-pre-mulgt0 10404 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2014 df-mo 2544 df-eu 2580 df-clab 2754 df-cleq 2765 df-clel 2840 df-nfc 2912 df-ne 2962 df-nel 3068 df-ral 3087 df-rex 3088 df-reu 3089 df-rab 3091 df-v 3411 df-sbc 3678 df-csb 3783 df-dif 3828 df-un 3830 df-in 3832 df-ss 3839 df-pss 3841 df-nul 4174 df-if 4345 df-pw 4418 df-sn 4436 df-pr 4438 df-tp 4440 df-op 4442 df-uni 4707 df-iun 4788 df-br 4924 df-opab 4986 df-mpt 5003 df-tr 5025 df-id 5305 df-eprel 5310 df-po 5319 df-so 5320 df-fr 5359 df-we 5361 df-xp 5406 df-rel 5407 df-cnv 5408 df-co 5409 df-dm 5410 df-rn 5411 df-res 5412 df-ima 5413 df-pred 5980 df-ord 6026 df-on 6027 df-lim 6028 df-suc 6029 df-iota 6146 df-fun 6184 df-fn 6185 df-f 6186 df-f1 6187 df-fo 6188 df-f1o 6189 df-fv 6190 df-riota 6931 df-ov 6973 df-oprab 6974 df-mpo 6975 df-om 7391 df-tpos 7688 df-wrecs 7743 df-recs 7805 df-rdg 7843 df-er 8081 df-en 8299 df-dom 8300 df-sdom 8301 df-pnf 10468 df-mnf 10469 df-xr 10470 df-ltxr 10471 df-le 10472 df-sub 10664 df-neg 10665 df-nn 11432 df-2 11496 df-3 11497 df-ndx 16332 df-slot 16333 df-base 16335 df-sets 16336 df-plusg 16424 df-mulr 16425 df-cmn 18658 df-mgp 18953 df-cring 19013 df-oppr 19086 df-dvdsr 19104 df-unit 19105 |
This theorem is referenced by: dvdsunit 19126 znunit 20402 matunitlindflem2 34278 |
Copyright terms: Public domain | W3C validator |