| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > crngunit | Structured version Visualization version GIF version | ||
| Description: Property of being a unit in a commutative ring. (Contributed by Mario Carneiro, 18-Apr-2016.) |
| Ref | Expression |
|---|---|
| crngunit.1 | ⊢ 𝑈 = (Unit‘𝑅) |
| crngunit.2 | ⊢ 1 = (1r‘𝑅) |
| crngunit.3 | ⊢ ∥ = (∥r‘𝑅) |
| Ref | Expression |
|---|---|
| crngunit | ⊢ (𝑅 ∈ CRing → (𝑋 ∈ 𝑈 ↔ 𝑋 ∥ 1 )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . . . . . . . . . 11 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 2 | eqid 2729 | . . . . . . . . . . 11 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 3 | eqid 2729 | . . . . . . . . . . 11 ⊢ (oppr‘𝑅) = (oppr‘𝑅) | |
| 4 | eqid 2729 | . . . . . . . . . . 11 ⊢ (.r‘(oppr‘𝑅)) = (.r‘(oppr‘𝑅)) | |
| 5 | 1, 2, 3, 4 | crngoppr 20226 | . . . . . . . . . 10 ⊢ ((𝑅 ∈ CRing ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑋 ∈ (Base‘𝑅)) → (𝑦(.r‘𝑅)𝑋) = (𝑦(.r‘(oppr‘𝑅))𝑋)) |
| 6 | 5 | 3expa 1118 | . . . . . . . . 9 ⊢ (((𝑅 ∈ CRing ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑋 ∈ (Base‘𝑅)) → (𝑦(.r‘𝑅)𝑋) = (𝑦(.r‘(oppr‘𝑅))𝑋)) |
| 7 | 6 | eqcomd 2735 | . . . . . . . 8 ⊢ (((𝑅 ∈ CRing ∧ 𝑦 ∈ (Base‘𝑅)) ∧ 𝑋 ∈ (Base‘𝑅)) → (𝑦(.r‘(oppr‘𝑅))𝑋) = (𝑦(.r‘𝑅)𝑋)) |
| 8 | 7 | an32s 652 | . . . . . . 7 ⊢ (((𝑅 ∈ CRing ∧ 𝑋 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑦(.r‘(oppr‘𝑅))𝑋) = (𝑦(.r‘𝑅)𝑋)) |
| 9 | 8 | eqeq1d 2731 | . . . . . 6 ⊢ (((𝑅 ∈ CRing ∧ 𝑋 ∈ (Base‘𝑅)) ∧ 𝑦 ∈ (Base‘𝑅)) → ((𝑦(.r‘(oppr‘𝑅))𝑋) = 1 ↔ (𝑦(.r‘𝑅)𝑋) = 1 )) |
| 10 | 9 | rexbidva 3155 | . . . . 5 ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ (Base‘𝑅)) → (∃𝑦 ∈ (Base‘𝑅)(𝑦(.r‘(oppr‘𝑅))𝑋) = 1 ↔ ∃𝑦 ∈ (Base‘𝑅)(𝑦(.r‘𝑅)𝑋) = 1 )) |
| 11 | 10 | pm5.32da 579 | . . . 4 ⊢ (𝑅 ∈ CRing → ((𝑋 ∈ (Base‘𝑅) ∧ ∃𝑦 ∈ (Base‘𝑅)(𝑦(.r‘(oppr‘𝑅))𝑋) = 1 ) ↔ (𝑋 ∈ (Base‘𝑅) ∧ ∃𝑦 ∈ (Base‘𝑅)(𝑦(.r‘𝑅)𝑋) = 1 ))) |
| 12 | 3, 1 | opprbas 20228 | . . . . 5 ⊢ (Base‘𝑅) = (Base‘(oppr‘𝑅)) |
| 13 | eqid 2729 | . . . . 5 ⊢ (∥r‘(oppr‘𝑅)) = (∥r‘(oppr‘𝑅)) | |
| 14 | 12, 13, 4 | dvdsr 20247 | . . . 4 ⊢ (𝑋(∥r‘(oppr‘𝑅)) 1 ↔ (𝑋 ∈ (Base‘𝑅) ∧ ∃𝑦 ∈ (Base‘𝑅)(𝑦(.r‘(oppr‘𝑅))𝑋) = 1 )) |
| 15 | crngunit.3 | . . . . 5 ⊢ ∥ = (∥r‘𝑅) | |
| 16 | 1, 15, 2 | dvdsr 20247 | . . . 4 ⊢ (𝑋 ∥ 1 ↔ (𝑋 ∈ (Base‘𝑅) ∧ ∃𝑦 ∈ (Base‘𝑅)(𝑦(.r‘𝑅)𝑋) = 1 )) |
| 17 | 11, 14, 16 | 3bitr4g 314 | . . 3 ⊢ (𝑅 ∈ CRing → (𝑋(∥r‘(oppr‘𝑅)) 1 ↔ 𝑋 ∥ 1 )) |
| 18 | 17 | anbi2d 630 | . 2 ⊢ (𝑅 ∈ CRing → ((𝑋 ∥ 1 ∧ 𝑋(∥r‘(oppr‘𝑅)) 1 ) ↔ (𝑋 ∥ 1 ∧ 𝑋 ∥ 1 ))) |
| 19 | crngunit.1 | . . 3 ⊢ 𝑈 = (Unit‘𝑅) | |
| 20 | crngunit.2 | . . 3 ⊢ 1 = (1r‘𝑅) | |
| 21 | 19, 20, 15, 3, 13 | isunit 20258 | . 2 ⊢ (𝑋 ∈ 𝑈 ↔ (𝑋 ∥ 1 ∧ 𝑋(∥r‘(oppr‘𝑅)) 1 )) |
| 22 | pm4.24 563 | . 2 ⊢ (𝑋 ∥ 1 ↔ (𝑋 ∥ 1 ∧ 𝑋 ∥ 1 )) | |
| 23 | 18, 21, 22 | 3bitr4g 314 | 1 ⊢ (𝑅 ∈ CRing → (𝑋 ∈ 𝑈 ↔ 𝑋 ∥ 1 )) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 class class class wbr 5102 ‘cfv 6499 (class class class)co 7369 Basecbs 17155 .rcmulr 17197 1rcur 20066 CRingccrg 20119 opprcoppr 20221 ∥rcdsr 20239 Unitcui 20240 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-2nd 7948 df-tpos 8182 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-3 12226 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-plusg 17209 df-mulr 17210 df-cmn 19688 df-mgp 20026 df-cring 20121 df-oppr 20222 df-dvdsr 20242 df-unit 20243 |
| This theorem is referenced by: dvdsunit 20264 znunit 21449 rprmndvdsr1 33468 rprmndvdsru 33473 rprmirredlem 33474 matunitlindflem2 37584 unitscyglem5 42160 |
| Copyright terms: Public domain | W3C validator |