| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > prjsperref | Structured version Visualization version GIF version | ||
| Description: The relation in ℙ𝕣𝕠𝕛 is reflexive. (Contributed by Steven Nguyen, 30-Apr-2023.) |
| Ref | Expression |
|---|---|
| prjsprel.1 | ⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ 𝐾 𝑥 = (𝑙 · 𝑦))} |
| prjspertr.b | ⊢ 𝐵 = ((Base‘𝑉) ∖ {(0g‘𝑉)}) |
| prjspertr.s | ⊢ 𝑆 = (Scalar‘𝑉) |
| prjspertr.x | ⊢ · = ( ·𝑠 ‘𝑉) |
| prjspertr.k | ⊢ 𝐾 = (Base‘𝑆) |
| Ref | Expression |
|---|---|
| prjsperref | ⊢ (𝑉 ∈ LMod → (𝑋 ∈ 𝐵 ↔ 𝑋 ∼ 𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 7420 | . . . . . 6 ⊢ (𝑚 = (1r‘𝑆) → (𝑚 · 𝑋) = ((1r‘𝑆) · 𝑋)) | |
| 2 | 1 | eqeq2d 2745 | . . . . 5 ⊢ (𝑚 = (1r‘𝑆) → (𝑋 = (𝑚 · 𝑋) ↔ 𝑋 = ((1r‘𝑆) · 𝑋))) |
| 3 | prjspertr.s | . . . . . . 7 ⊢ 𝑆 = (Scalar‘𝑉) | |
| 4 | prjspertr.k | . . . . . . 7 ⊢ 𝐾 = (Base‘𝑆) | |
| 5 | eqid 2734 | . . . . . . 7 ⊢ (1r‘𝑆) = (1r‘𝑆) | |
| 6 | 3, 4, 5 | lmod1cl 20855 | . . . . . 6 ⊢ (𝑉 ∈ LMod → (1r‘𝑆) ∈ 𝐾) |
| 7 | 6 | adantr 480 | . . . . 5 ⊢ ((𝑉 ∈ LMod ∧ 𝑋 ∈ 𝐵) → (1r‘𝑆) ∈ 𝐾) |
| 8 | eldifi 4111 | . . . . . . . 8 ⊢ (𝑋 ∈ ((Base‘𝑉) ∖ {(0g‘𝑉)}) → 𝑋 ∈ (Base‘𝑉)) | |
| 9 | prjspertr.b | . . . . . . . 8 ⊢ 𝐵 = ((Base‘𝑉) ∖ {(0g‘𝑉)}) | |
| 10 | 8, 9 | eleq2s 2851 | . . . . . . 7 ⊢ (𝑋 ∈ 𝐵 → 𝑋 ∈ (Base‘𝑉)) |
| 11 | eqid 2734 | . . . . . . . 8 ⊢ (Base‘𝑉) = (Base‘𝑉) | |
| 12 | prjspertr.x | . . . . . . . 8 ⊢ · = ( ·𝑠 ‘𝑉) | |
| 13 | 11, 3, 12, 5 | lmodvs1 20856 | . . . . . . 7 ⊢ ((𝑉 ∈ LMod ∧ 𝑋 ∈ (Base‘𝑉)) → ((1r‘𝑆) · 𝑋) = 𝑋) |
| 14 | 10, 13 | sylan2 593 | . . . . . 6 ⊢ ((𝑉 ∈ LMod ∧ 𝑋 ∈ 𝐵) → ((1r‘𝑆) · 𝑋) = 𝑋) |
| 15 | 14 | eqcomd 2740 | . . . . 5 ⊢ ((𝑉 ∈ LMod ∧ 𝑋 ∈ 𝐵) → 𝑋 = ((1r‘𝑆) · 𝑋)) |
| 16 | 2, 7, 15 | rspcedvdw 3608 | . . . 4 ⊢ ((𝑉 ∈ LMod ∧ 𝑋 ∈ 𝐵) → ∃𝑚 ∈ 𝐾 𝑋 = (𝑚 · 𝑋)) |
| 17 | 16 | ex 412 | . . 3 ⊢ (𝑉 ∈ LMod → (𝑋 ∈ 𝐵 → ∃𝑚 ∈ 𝐾 𝑋 = (𝑚 · 𝑋))) |
| 18 | 17 | pm4.71d 561 | . 2 ⊢ (𝑉 ∈ LMod → (𝑋 ∈ 𝐵 ↔ (𝑋 ∈ 𝐵 ∧ ∃𝑚 ∈ 𝐾 𝑋 = (𝑚 · 𝑋)))) |
| 19 | pm4.24 563 | . . . 4 ⊢ (𝑋 ∈ 𝐵 ↔ (𝑋 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵)) | |
| 20 | 19 | anbi1i 624 | . . 3 ⊢ ((𝑋 ∈ 𝐵 ∧ ∃𝑚 ∈ 𝐾 𝑋 = (𝑚 · 𝑋)) ↔ ((𝑋 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) ∧ ∃𝑚 ∈ 𝐾 𝑋 = (𝑚 · 𝑋))) |
| 21 | prjsprel.1 | . . . 4 ⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ 𝐾 𝑥 = (𝑙 · 𝑦))} | |
| 22 | 21 | prjsprel 42577 | . . 3 ⊢ (𝑋 ∼ 𝑋 ↔ ((𝑋 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) ∧ ∃𝑚 ∈ 𝐾 𝑋 = (𝑚 · 𝑋))) |
| 23 | 20, 22 | bitr4i 278 | . 2 ⊢ ((𝑋 ∈ 𝐵 ∧ ∃𝑚 ∈ 𝐾 𝑋 = (𝑚 · 𝑋)) ↔ 𝑋 ∼ 𝑋) |
| 24 | 18, 23 | bitrdi 287 | 1 ⊢ (𝑉 ∈ LMod → (𝑋 ∈ 𝐵 ↔ 𝑋 ∼ 𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∃wrex 3059 ∖ cdif 3928 {csn 4606 class class class wbr 5123 {copab 5185 ‘cfv 6541 (class class class)co 7413 Basecbs 17229 Scalarcsca 17276 ·𝑠 cvsca 17277 0gc0g 17455 1rcur 20146 LModclmod 20826 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-cnex 11193 ax-resscn 11194 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-addrcl 11198 ax-mulcl 11199 ax-mulrcl 11200 ax-mulcom 11201 ax-addass 11202 ax-mulass 11203 ax-distr 11204 ax-i2m1 11205 ax-1ne0 11206 ax-1rid 11207 ax-rnegex 11208 ax-rrecex 11209 ax-cnre 11210 ax-pre-lttri 11211 ax-pre-lttrn 11212 ax-pre-ltadd 11213 ax-pre-mulgt0 11214 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7870 df-2nd 7997 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-er 8727 df-en 8968 df-dom 8969 df-sdom 8970 df-pnf 11279 df-mnf 11280 df-xr 11281 df-ltxr 11282 df-le 11283 df-sub 11476 df-neg 11477 df-nn 12249 df-2 12311 df-sets 17183 df-slot 17201 df-ndx 17213 df-base 17230 df-plusg 17286 df-0g 17457 df-mgm 18622 df-sgrp 18701 df-mnd 18717 df-mgp 20106 df-ur 20147 df-ring 20200 df-lmod 20828 |
| This theorem is referenced by: prjsper 42581 |
| Copyright terms: Public domain | W3C validator |