Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > prjsperref | Structured version Visualization version GIF version |
Description: The relation in ℙ𝕣𝕠𝕛 is reflexive. (Contributed by Steven Nguyen, 30-Apr-2023.) |
Ref | Expression |
---|---|
prjsprel.1 | ⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ 𝐾 𝑥 = (𝑙 · 𝑦))} |
prjspertr.b | ⊢ 𝐵 = ((Base‘𝑉) ∖ {(0g‘𝑉)}) |
prjspertr.s | ⊢ 𝑆 = (Scalar‘𝑉) |
prjspertr.x | ⊢ · = ( ·𝑠 ‘𝑉) |
prjspertr.k | ⊢ 𝐾 = (Base‘𝑆) |
Ref | Expression |
---|---|
prjsperref | ⊢ (𝑉 ∈ LMod → (𝑋 ∈ 𝐵 ↔ 𝑋 ∼ 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prjspertr.s | . . . . . . 7 ⊢ 𝑆 = (Scalar‘𝑉) | |
2 | prjspertr.k | . . . . . . 7 ⊢ 𝐾 = (Base‘𝑆) | |
3 | eqid 2738 | . . . . . . 7 ⊢ (1r‘𝑆) = (1r‘𝑆) | |
4 | 1, 2, 3 | lmod1cl 20160 | . . . . . 6 ⊢ (𝑉 ∈ LMod → (1r‘𝑆) ∈ 𝐾) |
5 | 4 | adantr 481 | . . . . 5 ⊢ ((𝑉 ∈ LMod ∧ 𝑋 ∈ 𝐵) → (1r‘𝑆) ∈ 𝐾) |
6 | oveq1 7274 | . . . . . . 7 ⊢ (𝑚 = (1r‘𝑆) → (𝑚 · 𝑋) = ((1r‘𝑆) · 𝑋)) | |
7 | 6 | eqeq2d 2749 | . . . . . 6 ⊢ (𝑚 = (1r‘𝑆) → (𝑋 = (𝑚 · 𝑋) ↔ 𝑋 = ((1r‘𝑆) · 𝑋))) |
8 | 7 | adantl 482 | . . . . 5 ⊢ (((𝑉 ∈ LMod ∧ 𝑋 ∈ 𝐵) ∧ 𝑚 = (1r‘𝑆)) → (𝑋 = (𝑚 · 𝑋) ↔ 𝑋 = ((1r‘𝑆) · 𝑋))) |
9 | eldifi 4060 | . . . . . . . 8 ⊢ (𝑋 ∈ ((Base‘𝑉) ∖ {(0g‘𝑉)}) → 𝑋 ∈ (Base‘𝑉)) | |
10 | prjspertr.b | . . . . . . . 8 ⊢ 𝐵 = ((Base‘𝑉) ∖ {(0g‘𝑉)}) | |
11 | 9, 10 | eleq2s 2857 | . . . . . . 7 ⊢ (𝑋 ∈ 𝐵 → 𝑋 ∈ (Base‘𝑉)) |
12 | eqid 2738 | . . . . . . . 8 ⊢ (Base‘𝑉) = (Base‘𝑉) | |
13 | prjspertr.x | . . . . . . . 8 ⊢ · = ( ·𝑠 ‘𝑉) | |
14 | 12, 1, 13, 3 | lmodvs1 20161 | . . . . . . 7 ⊢ ((𝑉 ∈ LMod ∧ 𝑋 ∈ (Base‘𝑉)) → ((1r‘𝑆) · 𝑋) = 𝑋) |
15 | 11, 14 | sylan2 593 | . . . . . 6 ⊢ ((𝑉 ∈ LMod ∧ 𝑋 ∈ 𝐵) → ((1r‘𝑆) · 𝑋) = 𝑋) |
16 | 15 | eqcomd 2744 | . . . . 5 ⊢ ((𝑉 ∈ LMod ∧ 𝑋 ∈ 𝐵) → 𝑋 = ((1r‘𝑆) · 𝑋)) |
17 | 5, 8, 16 | rspcedvd 3562 | . . . 4 ⊢ ((𝑉 ∈ LMod ∧ 𝑋 ∈ 𝐵) → ∃𝑚 ∈ 𝐾 𝑋 = (𝑚 · 𝑋)) |
18 | 17 | ex 413 | . . 3 ⊢ (𝑉 ∈ LMod → (𝑋 ∈ 𝐵 → ∃𝑚 ∈ 𝐾 𝑋 = (𝑚 · 𝑋))) |
19 | 18 | pm4.71d 562 | . 2 ⊢ (𝑉 ∈ LMod → (𝑋 ∈ 𝐵 ↔ (𝑋 ∈ 𝐵 ∧ ∃𝑚 ∈ 𝐾 𝑋 = (𝑚 · 𝑋)))) |
20 | pm4.24 564 | . . . 4 ⊢ (𝑋 ∈ 𝐵 ↔ (𝑋 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵)) | |
21 | 20 | anbi1i 624 | . . 3 ⊢ ((𝑋 ∈ 𝐵 ∧ ∃𝑚 ∈ 𝐾 𝑋 = (𝑚 · 𝑋)) ↔ ((𝑋 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) ∧ ∃𝑚 ∈ 𝐾 𝑋 = (𝑚 · 𝑋))) |
22 | prjsprel.1 | . . . 4 ⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ 𝐾 𝑥 = (𝑙 · 𝑦))} | |
23 | 22 | prjsprel 40451 | . . 3 ⊢ (𝑋 ∼ 𝑋 ↔ ((𝑋 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) ∧ ∃𝑚 ∈ 𝐾 𝑋 = (𝑚 · 𝑋))) |
24 | 21, 23 | bitr4i 277 | . 2 ⊢ ((𝑋 ∈ 𝐵 ∧ ∃𝑚 ∈ 𝐾 𝑋 = (𝑚 · 𝑋)) ↔ 𝑋 ∼ 𝑋) |
25 | 19, 24 | bitrdi 287 | 1 ⊢ (𝑉 ∈ LMod → (𝑋 ∈ 𝐵 ↔ 𝑋 ∼ 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∃wrex 3065 ∖ cdif 3883 {csn 4561 class class class wbr 5073 {copab 5135 ‘cfv 6426 (class class class)co 7267 Basecbs 16922 Scalarcsca 16975 ·𝑠 cvsca 16976 0gc0g 17160 1rcur 19747 LModclmod 20133 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5221 ax-nul 5228 ax-pow 5286 ax-pr 5350 ax-un 7578 ax-cnex 10937 ax-resscn 10938 ax-1cn 10939 ax-icn 10940 ax-addcl 10941 ax-addrcl 10942 ax-mulcl 10943 ax-mulrcl 10944 ax-mulcom 10945 ax-addass 10946 ax-mulass 10947 ax-distr 10948 ax-i2m1 10949 ax-1ne0 10950 ax-1rid 10951 ax-rnegex 10952 ax-rrecex 10953 ax-cnre 10954 ax-pre-lttri 10955 ax-pre-lttrn 10956 ax-pre-ltadd 10957 ax-pre-mulgt0 10958 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3071 df-rmo 3072 df-rab 3073 df-v 3431 df-sbc 3716 df-csb 3832 df-dif 3889 df-un 3891 df-in 3893 df-ss 3903 df-pss 3905 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5074 df-opab 5136 df-mpt 5157 df-tr 5191 df-id 5484 df-eprel 5490 df-po 5498 df-so 5499 df-fr 5539 df-we 5541 df-xp 5590 df-rel 5591 df-cnv 5592 df-co 5593 df-dm 5594 df-rn 5595 df-res 5596 df-ima 5597 df-pred 6195 df-ord 6262 df-on 6263 df-lim 6264 df-suc 6265 df-iota 6384 df-fun 6428 df-fn 6429 df-f 6430 df-f1 6431 df-fo 6432 df-f1o 6433 df-fv 6434 df-riota 7224 df-ov 7270 df-oprab 7271 df-mpo 7272 df-om 7703 df-2nd 7821 df-frecs 8084 df-wrecs 8115 df-recs 8189 df-rdg 8228 df-er 8485 df-en 8721 df-dom 8722 df-sdom 8723 df-pnf 11021 df-mnf 11022 df-xr 11023 df-ltxr 11024 df-le 11025 df-sub 11217 df-neg 11218 df-nn 11984 df-2 12046 df-sets 16875 df-slot 16893 df-ndx 16905 df-base 16923 df-plusg 16985 df-0g 17162 df-mgm 18336 df-sgrp 18385 df-mnd 18396 df-mgp 19731 df-ur 19748 df-ring 19795 df-lmod 20135 |
This theorem is referenced by: prjsper 40455 |
Copyright terms: Public domain | W3C validator |