Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prjsperref Structured version   Visualization version   GIF version

Theorem prjsperref 42579
Description: The relation in ℙ𝕣𝕠𝕛 is reflexive. (Contributed by Steven Nguyen, 30-Apr-2023.)
Hypotheses
Ref Expression
prjsprel.1 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))}
prjspertr.b 𝐵 = ((Base‘𝑉) ∖ {(0g𝑉)})
prjspertr.s 𝑆 = (Scalar‘𝑉)
prjspertr.x · = ( ·𝑠𝑉)
prjspertr.k 𝐾 = (Base‘𝑆)
Assertion
Ref Expression
prjsperref (𝑉 ∈ LMod → (𝑋𝐵𝑋 𝑋))
Distinct variable groups:   𝑥,𝐵,𝑦   𝑥,𝑋,𝑦,𝑙   𝑥,𝐾,𝑦,𝑙   𝑥, · ,𝑦,𝑙
Allowed substitution hints:   𝐵(𝑙)   (𝑥,𝑦,𝑙)   𝑆(𝑥,𝑦,𝑙)   𝑉(𝑥,𝑦,𝑙)

Proof of Theorem prjsperref
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 oveq1 7420 . . . . . 6 (𝑚 = (1r𝑆) → (𝑚 · 𝑋) = ((1r𝑆) · 𝑋))
21eqeq2d 2745 . . . . 5 (𝑚 = (1r𝑆) → (𝑋 = (𝑚 · 𝑋) ↔ 𝑋 = ((1r𝑆) · 𝑋)))
3 prjspertr.s . . . . . . 7 𝑆 = (Scalar‘𝑉)
4 prjspertr.k . . . . . . 7 𝐾 = (Base‘𝑆)
5 eqid 2734 . . . . . . 7 (1r𝑆) = (1r𝑆)
63, 4, 5lmod1cl 20855 . . . . . 6 (𝑉 ∈ LMod → (1r𝑆) ∈ 𝐾)
76adantr 480 . . . . 5 ((𝑉 ∈ LMod ∧ 𝑋𝐵) → (1r𝑆) ∈ 𝐾)
8 eldifi 4111 . . . . . . . 8 (𝑋 ∈ ((Base‘𝑉) ∖ {(0g𝑉)}) → 𝑋 ∈ (Base‘𝑉))
9 prjspertr.b . . . . . . . 8 𝐵 = ((Base‘𝑉) ∖ {(0g𝑉)})
108, 9eleq2s 2851 . . . . . . 7 (𝑋𝐵𝑋 ∈ (Base‘𝑉))
11 eqid 2734 . . . . . . . 8 (Base‘𝑉) = (Base‘𝑉)
12 prjspertr.x . . . . . . . 8 · = ( ·𝑠𝑉)
1311, 3, 12, 5lmodvs1 20856 . . . . . . 7 ((𝑉 ∈ LMod ∧ 𝑋 ∈ (Base‘𝑉)) → ((1r𝑆) · 𝑋) = 𝑋)
1410, 13sylan2 593 . . . . . 6 ((𝑉 ∈ LMod ∧ 𝑋𝐵) → ((1r𝑆) · 𝑋) = 𝑋)
1514eqcomd 2740 . . . . 5 ((𝑉 ∈ LMod ∧ 𝑋𝐵) → 𝑋 = ((1r𝑆) · 𝑋))
162, 7, 15rspcedvdw 3608 . . . 4 ((𝑉 ∈ LMod ∧ 𝑋𝐵) → ∃𝑚𝐾 𝑋 = (𝑚 · 𝑋))
1716ex 412 . . 3 (𝑉 ∈ LMod → (𝑋𝐵 → ∃𝑚𝐾 𝑋 = (𝑚 · 𝑋)))
1817pm4.71d 561 . 2 (𝑉 ∈ LMod → (𝑋𝐵 ↔ (𝑋𝐵 ∧ ∃𝑚𝐾 𝑋 = (𝑚 · 𝑋))))
19 pm4.24 563 . . . 4 (𝑋𝐵 ↔ (𝑋𝐵𝑋𝐵))
2019anbi1i 624 . . 3 ((𝑋𝐵 ∧ ∃𝑚𝐾 𝑋 = (𝑚 · 𝑋)) ↔ ((𝑋𝐵𝑋𝐵) ∧ ∃𝑚𝐾 𝑋 = (𝑚 · 𝑋)))
21 prjsprel.1 . . . 4 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))}
2221prjsprel 42577 . . 3 (𝑋 𝑋 ↔ ((𝑋𝐵𝑋𝐵) ∧ ∃𝑚𝐾 𝑋 = (𝑚 · 𝑋)))
2320, 22bitr4i 278 . 2 ((𝑋𝐵 ∧ ∃𝑚𝐾 𝑋 = (𝑚 · 𝑋)) ↔ 𝑋 𝑋)
2418, 23bitrdi 287 1 (𝑉 ∈ LMod → (𝑋𝐵𝑋 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107  wrex 3059  cdif 3928  {csn 4606   class class class wbr 5123  {copab 5185  cfv 6541  (class class class)co 7413  Basecbs 17229  Scalarcsca 17276   ·𝑠 cvsca 17277  0gc0g 17455  1rcur 20146  LModclmod 20826
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-cnex 11193  ax-resscn 11194  ax-1cn 11195  ax-icn 11196  ax-addcl 11197  ax-addrcl 11198  ax-mulcl 11199  ax-mulrcl 11200  ax-mulcom 11201  ax-addass 11202  ax-mulass 11203  ax-distr 11204  ax-i2m1 11205  ax-1ne0 11206  ax-1rid 11207  ax-rnegex 11208  ax-rrecex 11209  ax-cnre 11210  ax-pre-lttri 11211  ax-pre-lttrn 11212  ax-pre-ltadd 11213  ax-pre-mulgt0 11214
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7870  df-2nd 7997  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-er 8727  df-en 8968  df-dom 8969  df-sdom 8970  df-pnf 11279  df-mnf 11280  df-xr 11281  df-ltxr 11282  df-le 11283  df-sub 11476  df-neg 11477  df-nn 12249  df-2 12311  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17230  df-plusg 17286  df-0g 17457  df-mgm 18622  df-sgrp 18701  df-mnd 18717  df-mgp 20106  df-ur 20147  df-ring 20200  df-lmod 20828
This theorem is referenced by:  prjsper  42581
  Copyright terms: Public domain W3C validator