![]() |
Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > prjsperref | Structured version Visualization version GIF version |
Description: The relation in ℙ𝕣𝕠𝕛 is reflexive. (Contributed by Steven Nguyen, 30-Apr-2023.) |
Ref | Expression |
---|---|
prjsprel.1 | ⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ 𝐾 𝑥 = (𝑙 · 𝑦))} |
prjspertr.b | ⊢ 𝐵 = ((Base‘𝑉) ∖ {(0g‘𝑉)}) |
prjspertr.s | ⊢ 𝑆 = (Scalar‘𝑉) |
prjspertr.x | ⊢ · = ( ·𝑠 ‘𝑉) |
prjspertr.k | ⊢ 𝐾 = (Base‘𝑆) |
Ref | Expression |
---|---|
prjsperref | ⊢ (𝑉 ∈ LMod → (𝑋 ∈ 𝐵 ↔ 𝑋 ∼ 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 7452 | . . . . . 6 ⊢ (𝑚 = (1r‘𝑆) → (𝑚 · 𝑋) = ((1r‘𝑆) · 𝑋)) | |
2 | 1 | eqeq2d 2745 | . . . . 5 ⊢ (𝑚 = (1r‘𝑆) → (𝑋 = (𝑚 · 𝑋) ↔ 𝑋 = ((1r‘𝑆) · 𝑋))) |
3 | prjspertr.s | . . . . . . 7 ⊢ 𝑆 = (Scalar‘𝑉) | |
4 | prjspertr.k | . . . . . . 7 ⊢ 𝐾 = (Base‘𝑆) | |
5 | eqid 2734 | . . . . . . 7 ⊢ (1r‘𝑆) = (1r‘𝑆) | |
6 | 3, 4, 5 | lmod1cl 20904 | . . . . . 6 ⊢ (𝑉 ∈ LMod → (1r‘𝑆) ∈ 𝐾) |
7 | 6 | adantr 480 | . . . . 5 ⊢ ((𝑉 ∈ LMod ∧ 𝑋 ∈ 𝐵) → (1r‘𝑆) ∈ 𝐾) |
8 | eldifi 4148 | . . . . . . . 8 ⊢ (𝑋 ∈ ((Base‘𝑉) ∖ {(0g‘𝑉)}) → 𝑋 ∈ (Base‘𝑉)) | |
9 | prjspertr.b | . . . . . . . 8 ⊢ 𝐵 = ((Base‘𝑉) ∖ {(0g‘𝑉)}) | |
10 | 8, 9 | eleq2s 2856 | . . . . . . 7 ⊢ (𝑋 ∈ 𝐵 → 𝑋 ∈ (Base‘𝑉)) |
11 | eqid 2734 | . . . . . . . 8 ⊢ (Base‘𝑉) = (Base‘𝑉) | |
12 | prjspertr.x | . . . . . . . 8 ⊢ · = ( ·𝑠 ‘𝑉) | |
13 | 11, 3, 12, 5 | lmodvs1 20905 | . . . . . . 7 ⊢ ((𝑉 ∈ LMod ∧ 𝑋 ∈ (Base‘𝑉)) → ((1r‘𝑆) · 𝑋) = 𝑋) |
14 | 10, 13 | sylan2 592 | . . . . . 6 ⊢ ((𝑉 ∈ LMod ∧ 𝑋 ∈ 𝐵) → ((1r‘𝑆) · 𝑋) = 𝑋) |
15 | 14 | eqcomd 2740 | . . . . 5 ⊢ ((𝑉 ∈ LMod ∧ 𝑋 ∈ 𝐵) → 𝑋 = ((1r‘𝑆) · 𝑋)) |
16 | 2, 7, 15 | rspcedvdw 3634 | . . . 4 ⊢ ((𝑉 ∈ LMod ∧ 𝑋 ∈ 𝐵) → ∃𝑚 ∈ 𝐾 𝑋 = (𝑚 · 𝑋)) |
17 | 16 | ex 412 | . . 3 ⊢ (𝑉 ∈ LMod → (𝑋 ∈ 𝐵 → ∃𝑚 ∈ 𝐾 𝑋 = (𝑚 · 𝑋))) |
18 | 17 | pm4.71d 561 | . 2 ⊢ (𝑉 ∈ LMod → (𝑋 ∈ 𝐵 ↔ (𝑋 ∈ 𝐵 ∧ ∃𝑚 ∈ 𝐾 𝑋 = (𝑚 · 𝑋)))) |
19 | pm4.24 563 | . . . 4 ⊢ (𝑋 ∈ 𝐵 ↔ (𝑋 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵)) | |
20 | 19 | anbi1i 623 | . . 3 ⊢ ((𝑋 ∈ 𝐵 ∧ ∃𝑚 ∈ 𝐾 𝑋 = (𝑚 · 𝑋)) ↔ ((𝑋 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) ∧ ∃𝑚 ∈ 𝐾 𝑋 = (𝑚 · 𝑋))) |
21 | prjsprel.1 | . . . 4 ⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ 𝐾 𝑥 = (𝑙 · 𝑦))} | |
22 | 21 | prjsprel 42492 | . . 3 ⊢ (𝑋 ∼ 𝑋 ↔ ((𝑋 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) ∧ ∃𝑚 ∈ 𝐾 𝑋 = (𝑚 · 𝑋))) |
23 | 20, 22 | bitr4i 278 | . 2 ⊢ ((𝑋 ∈ 𝐵 ∧ ∃𝑚 ∈ 𝐾 𝑋 = (𝑚 · 𝑋)) ↔ 𝑋 ∼ 𝑋) |
24 | 18, 23 | bitrdi 287 | 1 ⊢ (𝑉 ∈ LMod → (𝑋 ∈ 𝐵 ↔ 𝑋 ∼ 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2103 ∃wrex 3072 ∖ cdif 3967 {csn 4648 class class class wbr 5169 {copab 5231 ‘cfv 6572 (class class class)co 7445 Basecbs 17253 Scalarcsca 17309 ·𝑠 cvsca 17310 0gc0g 17494 1rcur 20203 LModclmod 20875 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2105 ax-9 2113 ax-10 2136 ax-11 2153 ax-12 2173 ax-ext 2705 ax-sep 5320 ax-nul 5327 ax-pow 5386 ax-pr 5450 ax-un 7766 ax-cnex 11236 ax-resscn 11237 ax-1cn 11238 ax-icn 11239 ax-addcl 11240 ax-addrcl 11241 ax-mulcl 11242 ax-mulrcl 11243 ax-mulcom 11244 ax-addass 11245 ax-mulass 11246 ax-distr 11247 ax-i2m1 11248 ax-1ne0 11249 ax-1rid 11250 ax-rnegex 11251 ax-rrecex 11252 ax-cnre 11253 ax-pre-lttri 11254 ax-pre-lttrn 11255 ax-pre-ltadd 11256 ax-pre-mulgt0 11257 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2890 df-ne 2943 df-nel 3049 df-ral 3064 df-rex 3073 df-rmo 3383 df-reu 3384 df-rab 3439 df-v 3484 df-sbc 3799 df-csb 3916 df-dif 3973 df-un 3975 df-in 3977 df-ss 3987 df-pss 3990 df-nul 4348 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5021 df-br 5170 df-opab 5232 df-mpt 5253 df-tr 5287 df-id 5597 df-eprel 5603 df-po 5611 df-so 5612 df-fr 5654 df-we 5656 df-xp 5705 df-rel 5706 df-cnv 5707 df-co 5708 df-dm 5709 df-rn 5710 df-res 5711 df-ima 5712 df-pred 6331 df-ord 6397 df-on 6398 df-lim 6399 df-suc 6400 df-iota 6524 df-fun 6574 df-fn 6575 df-f 6576 df-f1 6577 df-fo 6578 df-f1o 6579 df-fv 6580 df-riota 7401 df-ov 7448 df-oprab 7449 df-mpo 7450 df-om 7900 df-2nd 8027 df-frecs 8318 df-wrecs 8349 df-recs 8423 df-rdg 8462 df-er 8759 df-en 9000 df-dom 9001 df-sdom 9002 df-pnf 11322 df-mnf 11323 df-xr 11324 df-ltxr 11325 df-le 11326 df-sub 11518 df-neg 11519 df-nn 12290 df-2 12352 df-sets 17206 df-slot 17224 df-ndx 17236 df-base 17254 df-plusg 17319 df-0g 17496 df-mgm 18673 df-sgrp 18752 df-mnd 18768 df-mgp 20157 df-ur 20204 df-ring 20257 df-lmod 20877 |
This theorem is referenced by: prjsper 42496 |
Copyright terms: Public domain | W3C validator |