| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > prjsperref | Structured version Visualization version GIF version | ||
| Description: The relation in ℙ𝕣𝕠𝕛 is reflexive. (Contributed by Steven Nguyen, 30-Apr-2023.) |
| Ref | Expression |
|---|---|
| prjsprel.1 | ⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ 𝐾 𝑥 = (𝑙 · 𝑦))} |
| prjspertr.b | ⊢ 𝐵 = ((Base‘𝑉) ∖ {(0g‘𝑉)}) |
| prjspertr.s | ⊢ 𝑆 = (Scalar‘𝑉) |
| prjspertr.x | ⊢ · = ( ·𝑠 ‘𝑉) |
| prjspertr.k | ⊢ 𝐾 = (Base‘𝑆) |
| Ref | Expression |
|---|---|
| prjsperref | ⊢ (𝑉 ∈ LMod → (𝑋 ∈ 𝐵 ↔ 𝑋 ∼ 𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 7376 | . . . . . 6 ⊢ (𝑚 = (1r‘𝑆) → (𝑚 · 𝑋) = ((1r‘𝑆) · 𝑋)) | |
| 2 | 1 | eqeq2d 2740 | . . . . 5 ⊢ (𝑚 = (1r‘𝑆) → (𝑋 = (𝑚 · 𝑋) ↔ 𝑋 = ((1r‘𝑆) · 𝑋))) |
| 3 | prjspertr.s | . . . . . . 7 ⊢ 𝑆 = (Scalar‘𝑉) | |
| 4 | prjspertr.k | . . . . . . 7 ⊢ 𝐾 = (Base‘𝑆) | |
| 5 | eqid 2729 | . . . . . . 7 ⊢ (1r‘𝑆) = (1r‘𝑆) | |
| 6 | 3, 4, 5 | lmod1cl 20827 | . . . . . 6 ⊢ (𝑉 ∈ LMod → (1r‘𝑆) ∈ 𝐾) |
| 7 | 6 | adantr 480 | . . . . 5 ⊢ ((𝑉 ∈ LMod ∧ 𝑋 ∈ 𝐵) → (1r‘𝑆) ∈ 𝐾) |
| 8 | eldifi 4090 | . . . . . . . 8 ⊢ (𝑋 ∈ ((Base‘𝑉) ∖ {(0g‘𝑉)}) → 𝑋 ∈ (Base‘𝑉)) | |
| 9 | prjspertr.b | . . . . . . . 8 ⊢ 𝐵 = ((Base‘𝑉) ∖ {(0g‘𝑉)}) | |
| 10 | 8, 9 | eleq2s 2846 | . . . . . . 7 ⊢ (𝑋 ∈ 𝐵 → 𝑋 ∈ (Base‘𝑉)) |
| 11 | eqid 2729 | . . . . . . . 8 ⊢ (Base‘𝑉) = (Base‘𝑉) | |
| 12 | prjspertr.x | . . . . . . . 8 ⊢ · = ( ·𝑠 ‘𝑉) | |
| 13 | 11, 3, 12, 5 | lmodvs1 20828 | . . . . . . 7 ⊢ ((𝑉 ∈ LMod ∧ 𝑋 ∈ (Base‘𝑉)) → ((1r‘𝑆) · 𝑋) = 𝑋) |
| 14 | 10, 13 | sylan2 593 | . . . . . 6 ⊢ ((𝑉 ∈ LMod ∧ 𝑋 ∈ 𝐵) → ((1r‘𝑆) · 𝑋) = 𝑋) |
| 15 | 14 | eqcomd 2735 | . . . . 5 ⊢ ((𝑉 ∈ LMod ∧ 𝑋 ∈ 𝐵) → 𝑋 = ((1r‘𝑆) · 𝑋)) |
| 16 | 2, 7, 15 | rspcedvdw 3588 | . . . 4 ⊢ ((𝑉 ∈ LMod ∧ 𝑋 ∈ 𝐵) → ∃𝑚 ∈ 𝐾 𝑋 = (𝑚 · 𝑋)) |
| 17 | 16 | ex 412 | . . 3 ⊢ (𝑉 ∈ LMod → (𝑋 ∈ 𝐵 → ∃𝑚 ∈ 𝐾 𝑋 = (𝑚 · 𝑋))) |
| 18 | 17 | pm4.71d 561 | . 2 ⊢ (𝑉 ∈ LMod → (𝑋 ∈ 𝐵 ↔ (𝑋 ∈ 𝐵 ∧ ∃𝑚 ∈ 𝐾 𝑋 = (𝑚 · 𝑋)))) |
| 19 | pm4.24 563 | . . . 4 ⊢ (𝑋 ∈ 𝐵 ↔ (𝑋 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵)) | |
| 20 | 19 | anbi1i 624 | . . 3 ⊢ ((𝑋 ∈ 𝐵 ∧ ∃𝑚 ∈ 𝐾 𝑋 = (𝑚 · 𝑋)) ↔ ((𝑋 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) ∧ ∃𝑚 ∈ 𝐾 𝑋 = (𝑚 · 𝑋))) |
| 21 | prjsprel.1 | . . . 4 ⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ 𝐾 𝑥 = (𝑙 · 𝑦))} | |
| 22 | 21 | prjsprel 42585 | . . 3 ⊢ (𝑋 ∼ 𝑋 ↔ ((𝑋 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) ∧ ∃𝑚 ∈ 𝐾 𝑋 = (𝑚 · 𝑋))) |
| 23 | 20, 22 | bitr4i 278 | . 2 ⊢ ((𝑋 ∈ 𝐵 ∧ ∃𝑚 ∈ 𝐾 𝑋 = (𝑚 · 𝑋)) ↔ 𝑋 ∼ 𝑋) |
| 24 | 18, 23 | bitrdi 287 | 1 ⊢ (𝑉 ∈ LMod → (𝑋 ∈ 𝐵 ↔ 𝑋 ∼ 𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 ∖ cdif 3908 {csn 4585 class class class wbr 5102 {copab 5164 ‘cfv 6499 (class class class)co 7369 Basecbs 17155 Scalarcsca 17199 ·𝑠 cvsca 17200 0gc0g 17378 1rcur 20101 LModclmod 20798 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-plusg 17209 df-0g 17380 df-mgm 18549 df-sgrp 18628 df-mnd 18644 df-mgp 20061 df-ur 20102 df-ring 20155 df-lmod 20800 |
| This theorem is referenced by: prjsper 42589 |
| Copyright terms: Public domain | W3C validator |