Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prjsperref Structured version   Visualization version   GIF version

Theorem prjsperref 40453
Description: The relation in ℙ𝕣𝕠𝕛 is reflexive. (Contributed by Steven Nguyen, 30-Apr-2023.)
Hypotheses
Ref Expression
prjsprel.1 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))}
prjspertr.b 𝐵 = ((Base‘𝑉) ∖ {(0g𝑉)})
prjspertr.s 𝑆 = (Scalar‘𝑉)
prjspertr.x · = ( ·𝑠𝑉)
prjspertr.k 𝐾 = (Base‘𝑆)
Assertion
Ref Expression
prjsperref (𝑉 ∈ LMod → (𝑋𝐵𝑋 𝑋))
Distinct variable groups:   𝑥,𝐵,𝑦   𝑥,𝑋,𝑦,𝑙   𝑥,𝐾,𝑦,𝑙   𝑥, · ,𝑦,𝑙
Allowed substitution hints:   𝐵(𝑙)   (𝑥,𝑦,𝑙)   𝑆(𝑥,𝑦,𝑙)   𝑉(𝑥,𝑦,𝑙)

Proof of Theorem prjsperref
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 prjspertr.s . . . . . . 7 𝑆 = (Scalar‘𝑉)
2 prjspertr.k . . . . . . 7 𝐾 = (Base‘𝑆)
3 eqid 2738 . . . . . . 7 (1r𝑆) = (1r𝑆)
41, 2, 3lmod1cl 20160 . . . . . 6 (𝑉 ∈ LMod → (1r𝑆) ∈ 𝐾)
54adantr 481 . . . . 5 ((𝑉 ∈ LMod ∧ 𝑋𝐵) → (1r𝑆) ∈ 𝐾)
6 oveq1 7274 . . . . . . 7 (𝑚 = (1r𝑆) → (𝑚 · 𝑋) = ((1r𝑆) · 𝑋))
76eqeq2d 2749 . . . . . 6 (𝑚 = (1r𝑆) → (𝑋 = (𝑚 · 𝑋) ↔ 𝑋 = ((1r𝑆) · 𝑋)))
87adantl 482 . . . . 5 (((𝑉 ∈ LMod ∧ 𝑋𝐵) ∧ 𝑚 = (1r𝑆)) → (𝑋 = (𝑚 · 𝑋) ↔ 𝑋 = ((1r𝑆) · 𝑋)))
9 eldifi 4060 . . . . . . . 8 (𝑋 ∈ ((Base‘𝑉) ∖ {(0g𝑉)}) → 𝑋 ∈ (Base‘𝑉))
10 prjspertr.b . . . . . . . 8 𝐵 = ((Base‘𝑉) ∖ {(0g𝑉)})
119, 10eleq2s 2857 . . . . . . 7 (𝑋𝐵𝑋 ∈ (Base‘𝑉))
12 eqid 2738 . . . . . . . 8 (Base‘𝑉) = (Base‘𝑉)
13 prjspertr.x . . . . . . . 8 · = ( ·𝑠𝑉)
1412, 1, 13, 3lmodvs1 20161 . . . . . . 7 ((𝑉 ∈ LMod ∧ 𝑋 ∈ (Base‘𝑉)) → ((1r𝑆) · 𝑋) = 𝑋)
1511, 14sylan2 593 . . . . . 6 ((𝑉 ∈ LMod ∧ 𝑋𝐵) → ((1r𝑆) · 𝑋) = 𝑋)
1615eqcomd 2744 . . . . 5 ((𝑉 ∈ LMod ∧ 𝑋𝐵) → 𝑋 = ((1r𝑆) · 𝑋))
175, 8, 16rspcedvd 3562 . . . 4 ((𝑉 ∈ LMod ∧ 𝑋𝐵) → ∃𝑚𝐾 𝑋 = (𝑚 · 𝑋))
1817ex 413 . . 3 (𝑉 ∈ LMod → (𝑋𝐵 → ∃𝑚𝐾 𝑋 = (𝑚 · 𝑋)))
1918pm4.71d 562 . 2 (𝑉 ∈ LMod → (𝑋𝐵 ↔ (𝑋𝐵 ∧ ∃𝑚𝐾 𝑋 = (𝑚 · 𝑋))))
20 pm4.24 564 . . . 4 (𝑋𝐵 ↔ (𝑋𝐵𝑋𝐵))
2120anbi1i 624 . . 3 ((𝑋𝐵 ∧ ∃𝑚𝐾 𝑋 = (𝑚 · 𝑋)) ↔ ((𝑋𝐵𝑋𝐵) ∧ ∃𝑚𝐾 𝑋 = (𝑚 · 𝑋)))
22 prjsprel.1 . . . 4 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))}
2322prjsprel 40451 . . 3 (𝑋 𝑋 ↔ ((𝑋𝐵𝑋𝐵) ∧ ∃𝑚𝐾 𝑋 = (𝑚 · 𝑋)))
2421, 23bitr4i 277 . 2 ((𝑋𝐵 ∧ ∃𝑚𝐾 𝑋 = (𝑚 · 𝑋)) ↔ 𝑋 𝑋)
2519, 24bitrdi 287 1 (𝑉 ∈ LMod → (𝑋𝐵𝑋 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wrex 3065  cdif 3883  {csn 4561   class class class wbr 5073  {copab 5135  cfv 6426  (class class class)co 7267  Basecbs 16922  Scalarcsca 16975   ·𝑠 cvsca 16976  0gc0g 17160  1rcur 19747  LModclmod 20133
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5221  ax-nul 5228  ax-pow 5286  ax-pr 5350  ax-un 7578  ax-cnex 10937  ax-resscn 10938  ax-1cn 10939  ax-icn 10940  ax-addcl 10941  ax-addrcl 10942  ax-mulcl 10943  ax-mulrcl 10944  ax-mulcom 10945  ax-addass 10946  ax-mulass 10947  ax-distr 10948  ax-i2m1 10949  ax-1ne0 10950  ax-1rid 10951  ax-rnegex 10952  ax-rrecex 10953  ax-cnre 10954  ax-pre-lttri 10955  ax-pre-lttrn 10956  ax-pre-ltadd 10957  ax-pre-mulgt0 10958
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3071  df-rmo 3072  df-rab 3073  df-v 3431  df-sbc 3716  df-csb 3832  df-dif 3889  df-un 3891  df-in 3893  df-ss 3903  df-pss 3905  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5074  df-opab 5136  df-mpt 5157  df-tr 5191  df-id 5484  df-eprel 5490  df-po 5498  df-so 5499  df-fr 5539  df-we 5541  df-xp 5590  df-rel 5591  df-cnv 5592  df-co 5593  df-dm 5594  df-rn 5595  df-res 5596  df-ima 5597  df-pred 6195  df-ord 6262  df-on 6263  df-lim 6264  df-suc 6265  df-iota 6384  df-fun 6428  df-fn 6429  df-f 6430  df-f1 6431  df-fo 6432  df-f1o 6433  df-fv 6434  df-riota 7224  df-ov 7270  df-oprab 7271  df-mpo 7272  df-om 7703  df-2nd 7821  df-frecs 8084  df-wrecs 8115  df-recs 8189  df-rdg 8228  df-er 8485  df-en 8721  df-dom 8722  df-sdom 8723  df-pnf 11021  df-mnf 11022  df-xr 11023  df-ltxr 11024  df-le 11025  df-sub 11217  df-neg 11218  df-nn 11984  df-2 12046  df-sets 16875  df-slot 16893  df-ndx 16905  df-base 16923  df-plusg 16985  df-0g 17162  df-mgm 18336  df-sgrp 18385  df-mnd 18396  df-mgp 19731  df-ur 19748  df-ring 19795  df-lmod 20135
This theorem is referenced by:  prjsper  40455
  Copyright terms: Public domain W3C validator