![]() |
Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > prjsperref | Structured version Visualization version GIF version |
Description: The relation in βπ£π π is reflexive. (Contributed by Steven Nguyen, 30-Apr-2023.) |
Ref | Expression |
---|---|
prjsprel.1 | β’ βΌ = {β¨π₯, π¦β© β£ ((π₯ β π΅ β§ π¦ β π΅) β§ βπ β πΎ π₯ = (π Β· π¦))} |
prjspertr.b | β’ π΅ = ((Baseβπ) β {(0gβπ)}) |
prjspertr.s | β’ π = (Scalarβπ) |
prjspertr.x | β’ Β· = ( Β·π βπ) |
prjspertr.k | β’ πΎ = (Baseβπ) |
Ref | Expression |
---|---|
prjsperref | β’ (π β LMod β (π β π΅ β π βΌ π)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prjspertr.s | . . . . . . 7 β’ π = (Scalarβπ) | |
2 | prjspertr.k | . . . . . . 7 β’ πΎ = (Baseβπ) | |
3 | eqid 2730 | . . . . . . 7 β’ (1rβπ) = (1rβπ) | |
4 | 1, 2, 3 | lmod1cl 20643 | . . . . . 6 β’ (π β LMod β (1rβπ) β πΎ) |
5 | 4 | adantr 479 | . . . . 5 β’ ((π β LMod β§ π β π΅) β (1rβπ) β πΎ) |
6 | oveq1 7418 | . . . . . . 7 β’ (π = (1rβπ) β (π Β· π) = ((1rβπ) Β· π)) | |
7 | 6 | eqeq2d 2741 | . . . . . 6 β’ (π = (1rβπ) β (π = (π Β· π) β π = ((1rβπ) Β· π))) |
8 | 7 | adantl 480 | . . . . 5 β’ (((π β LMod β§ π β π΅) β§ π = (1rβπ)) β (π = (π Β· π) β π = ((1rβπ) Β· π))) |
9 | eldifi 4125 | . . . . . . . 8 β’ (π β ((Baseβπ) β {(0gβπ)}) β π β (Baseβπ)) | |
10 | prjspertr.b | . . . . . . . 8 β’ π΅ = ((Baseβπ) β {(0gβπ)}) | |
11 | 9, 10 | eleq2s 2849 | . . . . . . 7 β’ (π β π΅ β π β (Baseβπ)) |
12 | eqid 2730 | . . . . . . . 8 β’ (Baseβπ) = (Baseβπ) | |
13 | prjspertr.x | . . . . . . . 8 β’ Β· = ( Β·π βπ) | |
14 | 12, 1, 13, 3 | lmodvs1 20644 | . . . . . . 7 β’ ((π β LMod β§ π β (Baseβπ)) β ((1rβπ) Β· π) = π) |
15 | 11, 14 | sylan2 591 | . . . . . 6 β’ ((π β LMod β§ π β π΅) β ((1rβπ) Β· π) = π) |
16 | 15 | eqcomd 2736 | . . . . 5 β’ ((π β LMod β§ π β π΅) β π = ((1rβπ) Β· π)) |
17 | 5, 8, 16 | rspcedvd 3613 | . . . 4 β’ ((π β LMod β§ π β π΅) β βπ β πΎ π = (π Β· π)) |
18 | 17 | ex 411 | . . 3 β’ (π β LMod β (π β π΅ β βπ β πΎ π = (π Β· π))) |
19 | 18 | pm4.71d 560 | . 2 β’ (π β LMod β (π β π΅ β (π β π΅ β§ βπ β πΎ π = (π Β· π)))) |
20 | pm4.24 562 | . . . 4 β’ (π β π΅ β (π β π΅ β§ π β π΅)) | |
21 | 20 | anbi1i 622 | . . 3 β’ ((π β π΅ β§ βπ β πΎ π = (π Β· π)) β ((π β π΅ β§ π β π΅) β§ βπ β πΎ π = (π Β· π))) |
22 | prjsprel.1 | . . . 4 β’ βΌ = {β¨π₯, π¦β© β£ ((π₯ β π΅ β§ π¦ β π΅) β§ βπ β πΎ π₯ = (π Β· π¦))} | |
23 | 22 | prjsprel 41648 | . . 3 β’ (π βΌ π β ((π β π΅ β§ π β π΅) β§ βπ β πΎ π = (π Β· π))) |
24 | 21, 23 | bitr4i 277 | . 2 β’ ((π β π΅ β§ βπ β πΎ π = (π Β· π)) β π βΌ π) |
25 | 19, 24 | bitrdi 286 | 1 β’ (π β LMod β (π β π΅ β π βΌ π)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 394 = wceq 1539 β wcel 2104 βwrex 3068 β cdif 3944 {csn 4627 class class class wbr 5147 {copab 5209 βcfv 6542 (class class class)co 7411 Basecbs 17148 Scalarcsca 17204 Β·π cvsca 17205 0gc0g 17389 1rcur 20075 LModclmod 20614 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7727 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-om 7858 df-2nd 7978 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-nn 12217 df-2 12279 df-sets 17101 df-slot 17119 df-ndx 17131 df-base 17149 df-plusg 17214 df-0g 17391 df-mgm 18565 df-sgrp 18644 df-mnd 18660 df-mgp 20029 df-ur 20076 df-ring 20129 df-lmod 20616 |
This theorem is referenced by: prjsper 41652 |
Copyright terms: Public domain | W3C validator |