Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prjsperref Structured version   Visualization version   GIF version

Theorem prjsperref 42609
Description: The relation in ℙ𝕣𝕠𝕛 is reflexive. (Contributed by Steven Nguyen, 30-Apr-2023.)
Hypotheses
Ref Expression
prjsprel.1 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))}
prjspertr.b 𝐵 = ((Base‘𝑉) ∖ {(0g𝑉)})
prjspertr.s 𝑆 = (Scalar‘𝑉)
prjspertr.x · = ( ·𝑠𝑉)
prjspertr.k 𝐾 = (Base‘𝑆)
Assertion
Ref Expression
prjsperref (𝑉 ∈ LMod → (𝑋𝐵𝑋 𝑋))
Distinct variable groups:   𝑥,𝐵,𝑦   𝑥,𝑋,𝑦,𝑙   𝑥,𝐾,𝑦,𝑙   𝑥, · ,𝑦,𝑙
Allowed substitution hints:   𝐵(𝑙)   (𝑥,𝑦,𝑙)   𝑆(𝑥,𝑦,𝑙)   𝑉(𝑥,𝑦,𝑙)

Proof of Theorem prjsperref
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 oveq1 7445 . . . . . 6 (𝑚 = (1r𝑆) → (𝑚 · 𝑋) = ((1r𝑆) · 𝑋))
21eqeq2d 2748 . . . . 5 (𝑚 = (1r𝑆) → (𝑋 = (𝑚 · 𝑋) ↔ 𝑋 = ((1r𝑆) · 𝑋)))
3 prjspertr.s . . . . . . 7 𝑆 = (Scalar‘𝑉)
4 prjspertr.k . . . . . . 7 𝐾 = (Base‘𝑆)
5 eqid 2737 . . . . . . 7 (1r𝑆) = (1r𝑆)
63, 4, 5lmod1cl 20913 . . . . . 6 (𝑉 ∈ LMod → (1r𝑆) ∈ 𝐾)
76adantr 480 . . . . 5 ((𝑉 ∈ LMod ∧ 𝑋𝐵) → (1r𝑆) ∈ 𝐾)
8 eldifi 4144 . . . . . . . 8 (𝑋 ∈ ((Base‘𝑉) ∖ {(0g𝑉)}) → 𝑋 ∈ (Base‘𝑉))
9 prjspertr.b . . . . . . . 8 𝐵 = ((Base‘𝑉) ∖ {(0g𝑉)})
108, 9eleq2s 2859 . . . . . . 7 (𝑋𝐵𝑋 ∈ (Base‘𝑉))
11 eqid 2737 . . . . . . . 8 (Base‘𝑉) = (Base‘𝑉)
12 prjspertr.x . . . . . . . 8 · = ( ·𝑠𝑉)
1311, 3, 12, 5lmodvs1 20914 . . . . . . 7 ((𝑉 ∈ LMod ∧ 𝑋 ∈ (Base‘𝑉)) → ((1r𝑆) · 𝑋) = 𝑋)
1410, 13sylan2 593 . . . . . 6 ((𝑉 ∈ LMod ∧ 𝑋𝐵) → ((1r𝑆) · 𝑋) = 𝑋)
1514eqcomd 2743 . . . . 5 ((𝑉 ∈ LMod ∧ 𝑋𝐵) → 𝑋 = ((1r𝑆) · 𝑋))
162, 7, 15rspcedvdw 3628 . . . 4 ((𝑉 ∈ LMod ∧ 𝑋𝐵) → ∃𝑚𝐾 𝑋 = (𝑚 · 𝑋))
1716ex 412 . . 3 (𝑉 ∈ LMod → (𝑋𝐵 → ∃𝑚𝐾 𝑋 = (𝑚 · 𝑋)))
1817pm4.71d 561 . 2 (𝑉 ∈ LMod → (𝑋𝐵 ↔ (𝑋𝐵 ∧ ∃𝑚𝐾 𝑋 = (𝑚 · 𝑋))))
19 pm4.24 563 . . . 4 (𝑋𝐵 ↔ (𝑋𝐵𝑋𝐵))
2019anbi1i 624 . . 3 ((𝑋𝐵 ∧ ∃𝑚𝐾 𝑋 = (𝑚 · 𝑋)) ↔ ((𝑋𝐵𝑋𝐵) ∧ ∃𝑚𝐾 𝑋 = (𝑚 · 𝑋)))
21 prjsprel.1 . . . 4 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))}
2221prjsprel 42607 . . 3 (𝑋 𝑋 ↔ ((𝑋𝐵𝑋𝐵) ∧ ∃𝑚𝐾 𝑋 = (𝑚 · 𝑋)))
2320, 22bitr4i 278 . 2 ((𝑋𝐵 ∧ ∃𝑚𝐾 𝑋 = (𝑚 · 𝑋)) ↔ 𝑋 𝑋)
2418, 23bitrdi 287 1 (𝑉 ∈ LMod → (𝑋𝐵𝑋 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wcel 2108  wrex 3070  cdif 3963  {csn 4634   class class class wbr 5151  {copab 5213  cfv 6569  (class class class)co 7438  Basecbs 17254  Scalarcsca 17310   ·𝑠 cvsca 17311  0gc0g 17495  1rcur 20208  LModclmod 20884
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5305  ax-nul 5315  ax-pow 5374  ax-pr 5441  ax-un 7761  ax-cnex 11218  ax-resscn 11219  ax-1cn 11220  ax-icn 11221  ax-addcl 11222  ax-addrcl 11223  ax-mulcl 11224  ax-mulrcl 11225  ax-mulcom 11226  ax-addass 11227  ax-mulass 11228  ax-distr 11229  ax-i2m1 11230  ax-1ne0 11231  ax-1rid 11232  ax-rnegex 11233  ax-rrecex 11234  ax-cnre 11235  ax-pre-lttri 11236  ax-pre-lttrn 11237  ax-pre-ltadd 11238  ax-pre-mulgt0 11239
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3483  df-sbc 3795  df-csb 3912  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-pss 3986  df-nul 4343  df-if 4535  df-pw 4610  df-sn 4635  df-pr 4637  df-op 4641  df-uni 4916  df-iun 5001  df-br 5152  df-opab 5214  df-mpt 5235  df-tr 5269  df-id 5587  df-eprel 5593  df-po 5601  df-so 5602  df-fr 5645  df-we 5647  df-xp 5699  df-rel 5700  df-cnv 5701  df-co 5702  df-dm 5703  df-rn 5704  df-res 5705  df-ima 5706  df-pred 6329  df-ord 6395  df-on 6396  df-lim 6397  df-suc 6398  df-iota 6522  df-fun 6571  df-fn 6572  df-f 6573  df-f1 6574  df-fo 6575  df-f1o 6576  df-fv 6577  df-riota 7395  df-ov 7441  df-oprab 7442  df-mpo 7443  df-om 7895  df-2nd 8023  df-frecs 8314  df-wrecs 8345  df-recs 8419  df-rdg 8458  df-er 8753  df-en 8994  df-dom 8995  df-sdom 8996  df-pnf 11304  df-mnf 11305  df-xr 11306  df-ltxr 11307  df-le 11308  df-sub 11501  df-neg 11502  df-nn 12274  df-2 12336  df-sets 17207  df-slot 17225  df-ndx 17237  df-base 17255  df-plusg 17320  df-0g 17497  df-mgm 18675  df-sgrp 18754  df-mnd 18770  df-mgp 20162  df-ur 20209  df-ring 20262  df-lmod 20886
This theorem is referenced by:  prjsper  42611
  Copyright terms: Public domain W3C validator