MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  srg1zr Structured version   Visualization version   GIF version

Theorem srg1zr 19946
Description: The only semiring with a base set consisting of one element is the zero ring (at least if its operations are internal binary operations). (Contributed by FL, 13-Feb-2010.) (Revised by AV, 25-Jan-2020.)
Hypotheses
Ref Expression
srg1zr.b 𝐵 = (Base‘𝑅)
srg1zr.p + = (+g𝑅)
srg1zr.t = (.r𝑅)
Assertion
Ref Expression
srg1zr (((𝑅 ∈ SRing ∧ + Fn (𝐵 × 𝐵) ∧ Fn (𝐵 × 𝐵)) ∧ 𝑍𝐵) → (𝐵 = {𝑍} ↔ ( + = {⟨⟨𝑍, 𝑍⟩, 𝑍⟩} ∧ = {⟨⟨𝑍, 𝑍⟩, 𝑍⟩})))

Proof of Theorem srg1zr
StepHypRef Expression
1 pm4.24 564 . 2 (𝐵 = {𝑍} ↔ (𝐵 = {𝑍} ∧ 𝐵 = {𝑍}))
2 srgmnd 19921 . . . . . . 7 (𝑅 ∈ SRing → 𝑅 ∈ Mnd)
323ad2ant1 1133 . . . . . 6 ((𝑅 ∈ SRing ∧ + Fn (𝐵 × 𝐵) ∧ Fn (𝐵 × 𝐵)) → 𝑅 ∈ Mnd)
43adantr 481 . . . . 5 (((𝑅 ∈ SRing ∧ + Fn (𝐵 × 𝐵) ∧ Fn (𝐵 × 𝐵)) ∧ 𝑍𝐵) → 𝑅 ∈ Mnd)
5 mndmgm 18563 . . . . 5 (𝑅 ∈ Mnd → 𝑅 ∈ Mgm)
64, 5syl 17 . . . 4 (((𝑅 ∈ SRing ∧ + Fn (𝐵 × 𝐵) ∧ Fn (𝐵 × 𝐵)) ∧ 𝑍𝐵) → 𝑅 ∈ Mgm)
7 simpr 485 . . . 4 (((𝑅 ∈ SRing ∧ + Fn (𝐵 × 𝐵) ∧ Fn (𝐵 × 𝐵)) ∧ 𝑍𝐵) → 𝑍𝐵)
8 simpl2 1192 . . . 4 (((𝑅 ∈ SRing ∧ + Fn (𝐵 × 𝐵) ∧ Fn (𝐵 × 𝐵)) ∧ 𝑍𝐵) → + Fn (𝐵 × 𝐵))
9 srg1zr.b . . . . 5 𝐵 = (Base‘𝑅)
10 srg1zr.p . . . . 5 + = (+g𝑅)
119, 10mgmb1mgm1 18510 . . . 4 ((𝑅 ∈ Mgm ∧ 𝑍𝐵+ Fn (𝐵 × 𝐵)) → (𝐵 = {𝑍} ↔ + = {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}))
126, 7, 8, 11syl3anc 1371 . . 3 (((𝑅 ∈ SRing ∧ + Fn (𝐵 × 𝐵) ∧ Fn (𝐵 × 𝐵)) ∧ 𝑍𝐵) → (𝐵 = {𝑍} ↔ + = {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}))
13 simpl1 1191 . . . . . 6 (((𝑅 ∈ SRing ∧ + Fn (𝐵 × 𝐵) ∧ Fn (𝐵 × 𝐵)) ∧ 𝑍𝐵) → 𝑅 ∈ SRing)
14 eqid 2736 . . . . . . 7 (mulGrp‘𝑅) = (mulGrp‘𝑅)
1514srgmgp 19922 . . . . . 6 (𝑅 ∈ SRing → (mulGrp‘𝑅) ∈ Mnd)
16 mndmgm 18563 . . . . . 6 ((mulGrp‘𝑅) ∈ Mnd → (mulGrp‘𝑅) ∈ Mgm)
1713, 15, 163syl 18 . . . . 5 (((𝑅 ∈ SRing ∧ + Fn (𝐵 × 𝐵) ∧ Fn (𝐵 × 𝐵)) ∧ 𝑍𝐵) → (mulGrp‘𝑅) ∈ Mgm)
18 srg1zr.t . . . . . . . . . 10 = (.r𝑅)
1914, 18mgpplusg 19900 . . . . . . . . 9 = (+g‘(mulGrp‘𝑅))
2019fneq1i 6599 . . . . . . . 8 ( Fn (𝐵 × 𝐵) ↔ (+g‘(mulGrp‘𝑅)) Fn (𝐵 × 𝐵))
2120biimpi 215 . . . . . . 7 ( Fn (𝐵 × 𝐵) → (+g‘(mulGrp‘𝑅)) Fn (𝐵 × 𝐵))
22213ad2ant3 1135 . . . . . 6 ((𝑅 ∈ SRing ∧ + Fn (𝐵 × 𝐵) ∧ Fn (𝐵 × 𝐵)) → (+g‘(mulGrp‘𝑅)) Fn (𝐵 × 𝐵))
2322adantr 481 . . . . 5 (((𝑅 ∈ SRing ∧ + Fn (𝐵 × 𝐵) ∧ Fn (𝐵 × 𝐵)) ∧ 𝑍𝐵) → (+g‘(mulGrp‘𝑅)) Fn (𝐵 × 𝐵))
2414, 9mgpbas 19902 . . . . . 6 𝐵 = (Base‘(mulGrp‘𝑅))
25 eqid 2736 . . . . . 6 (+g‘(mulGrp‘𝑅)) = (+g‘(mulGrp‘𝑅))
2624, 25mgmb1mgm1 18510 . . . . 5 (((mulGrp‘𝑅) ∈ Mgm ∧ 𝑍𝐵 ∧ (+g‘(mulGrp‘𝑅)) Fn (𝐵 × 𝐵)) → (𝐵 = {𝑍} ↔ (+g‘(mulGrp‘𝑅)) = {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}))
2717, 7, 23, 26syl3anc 1371 . . . 4 (((𝑅 ∈ SRing ∧ + Fn (𝐵 × 𝐵) ∧ Fn (𝐵 × 𝐵)) ∧ 𝑍𝐵) → (𝐵 = {𝑍} ↔ (+g‘(mulGrp‘𝑅)) = {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}))
2819eqcomi 2745 . . . . . 6 (+g‘(mulGrp‘𝑅)) =
2928a1i 11 . . . . 5 (((𝑅 ∈ SRing ∧ + Fn (𝐵 × 𝐵) ∧ Fn (𝐵 × 𝐵)) ∧ 𝑍𝐵) → (+g‘(mulGrp‘𝑅)) = )
3029eqeq1d 2738 . . . 4 (((𝑅 ∈ SRing ∧ + Fn (𝐵 × 𝐵) ∧ Fn (𝐵 × 𝐵)) ∧ 𝑍𝐵) → ((+g‘(mulGrp‘𝑅)) = {⟨⟨𝑍, 𝑍⟩, 𝑍⟩} ↔ = {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}))
3127, 30bitrd 278 . . 3 (((𝑅 ∈ SRing ∧ + Fn (𝐵 × 𝐵) ∧ Fn (𝐵 × 𝐵)) ∧ 𝑍𝐵) → (𝐵 = {𝑍} ↔ = {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}))
3212, 31anbi12d 631 . 2 (((𝑅 ∈ SRing ∧ + Fn (𝐵 × 𝐵) ∧ Fn (𝐵 × 𝐵)) ∧ 𝑍𝐵) → ((𝐵 = {𝑍} ∧ 𝐵 = {𝑍}) ↔ ( + = {⟨⟨𝑍, 𝑍⟩, 𝑍⟩} ∧ = {⟨⟨𝑍, 𝑍⟩, 𝑍⟩})))
331, 32bitrid 282 1 (((𝑅 ∈ SRing ∧ + Fn (𝐵 × 𝐵) ∧ Fn (𝐵 × 𝐵)) ∧ 𝑍𝐵) → (𝐵 = {𝑍} ↔ ( + = {⟨⟨𝑍, 𝑍⟩, 𝑍⟩} ∧ = {⟨⟨𝑍, 𝑍⟩, 𝑍⟩})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  {csn 4586  cop 4592   × cxp 5631   Fn wfn 6491  cfv 6496  Basecbs 17083  +gcplusg 17133  .rcmulr 17134  Mgmcmgm 18495  Mndcmnd 18556  mulGrpcmgp 19896  SRingcsrg 19917
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-plusg 17146  df-plusf 18496  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-cmn 19564  df-mgp 19897  df-srg 19918
This theorem is referenced by:  srgen1zr  19947  ring1zr  20745
  Copyright terms: Public domain W3C validator