![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > srg1zr | Structured version Visualization version GIF version |
Description: The only semiring with a base set consisting of one element is the zero ring (at least if its operations are internal binary operations). (Contributed by FL, 13-Feb-2010.) (Revised by AV, 25-Jan-2020.) |
Ref | Expression |
---|---|
srg1zr.b | ⊢ 𝐵 = (Base‘𝑅) |
srg1zr.p | ⊢ + = (+g‘𝑅) |
srg1zr.t | ⊢ ∗ = (.r‘𝑅) |
Ref | Expression |
---|---|
srg1zr | ⊢ (((𝑅 ∈ SRing ∧ + Fn (𝐵 × 𝐵) ∧ ∗ Fn (𝐵 × 𝐵)) ∧ 𝑍 ∈ 𝐵) → (𝐵 = {𝑍} ↔ ( + = {〈〈𝑍, 𝑍〉, 𝑍〉} ∧ ∗ = {〈〈𝑍, 𝑍〉, 𝑍〉}))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm4.24 556 | . 2 ⊢ (𝐵 = {𝑍} ↔ (𝐵 = {𝑍} ∧ 𝐵 = {𝑍})) | |
2 | srgmnd 18982 | . . . . . . 7 ⊢ (𝑅 ∈ SRing → 𝑅 ∈ Mnd) | |
3 | 2 | 3ad2ant1 1113 | . . . . . 6 ⊢ ((𝑅 ∈ SRing ∧ + Fn (𝐵 × 𝐵) ∧ ∗ Fn (𝐵 × 𝐵)) → 𝑅 ∈ Mnd) |
4 | 3 | adantr 473 | . . . . 5 ⊢ (((𝑅 ∈ SRing ∧ + Fn (𝐵 × 𝐵) ∧ ∗ Fn (𝐵 × 𝐵)) ∧ 𝑍 ∈ 𝐵) → 𝑅 ∈ Mnd) |
5 | mndmgm 17768 | . . . . 5 ⊢ (𝑅 ∈ Mnd → 𝑅 ∈ Mgm) | |
6 | 4, 5 | syl 17 | . . . 4 ⊢ (((𝑅 ∈ SRing ∧ + Fn (𝐵 × 𝐵) ∧ ∗ Fn (𝐵 × 𝐵)) ∧ 𝑍 ∈ 𝐵) → 𝑅 ∈ Mgm) |
7 | simpr 477 | . . . 4 ⊢ (((𝑅 ∈ SRing ∧ + Fn (𝐵 × 𝐵) ∧ ∗ Fn (𝐵 × 𝐵)) ∧ 𝑍 ∈ 𝐵) → 𝑍 ∈ 𝐵) | |
8 | simpl2 1172 | . . . 4 ⊢ (((𝑅 ∈ SRing ∧ + Fn (𝐵 × 𝐵) ∧ ∗ Fn (𝐵 × 𝐵)) ∧ 𝑍 ∈ 𝐵) → + Fn (𝐵 × 𝐵)) | |
9 | srg1zr.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑅) | |
10 | srg1zr.p | . . . . 5 ⊢ + = (+g‘𝑅) | |
11 | 9, 10 | mgmb1mgm1 17722 | . . . 4 ⊢ ((𝑅 ∈ Mgm ∧ 𝑍 ∈ 𝐵 ∧ + Fn (𝐵 × 𝐵)) → (𝐵 = {𝑍} ↔ + = {〈〈𝑍, 𝑍〉, 𝑍〉})) |
12 | 6, 7, 8, 11 | syl3anc 1351 | . . 3 ⊢ (((𝑅 ∈ SRing ∧ + Fn (𝐵 × 𝐵) ∧ ∗ Fn (𝐵 × 𝐵)) ∧ 𝑍 ∈ 𝐵) → (𝐵 = {𝑍} ↔ + = {〈〈𝑍, 𝑍〉, 𝑍〉})) |
13 | simpl1 1171 | . . . . . 6 ⊢ (((𝑅 ∈ SRing ∧ + Fn (𝐵 × 𝐵) ∧ ∗ Fn (𝐵 × 𝐵)) ∧ 𝑍 ∈ 𝐵) → 𝑅 ∈ SRing) | |
14 | eqid 2779 | . . . . . . 7 ⊢ (mulGrp‘𝑅) = (mulGrp‘𝑅) | |
15 | 14 | srgmgp 18983 | . . . . . 6 ⊢ (𝑅 ∈ SRing → (mulGrp‘𝑅) ∈ Mnd) |
16 | mndmgm 17768 | . . . . . 6 ⊢ ((mulGrp‘𝑅) ∈ Mnd → (mulGrp‘𝑅) ∈ Mgm) | |
17 | 13, 15, 16 | 3syl 18 | . . . . 5 ⊢ (((𝑅 ∈ SRing ∧ + Fn (𝐵 × 𝐵) ∧ ∗ Fn (𝐵 × 𝐵)) ∧ 𝑍 ∈ 𝐵) → (mulGrp‘𝑅) ∈ Mgm) |
18 | srg1zr.t | . . . . . . . . . 10 ⊢ ∗ = (.r‘𝑅) | |
19 | 14, 18 | mgpplusg 18966 | . . . . . . . . 9 ⊢ ∗ = (+g‘(mulGrp‘𝑅)) |
20 | 19 | fneq1i 6283 | . . . . . . . 8 ⊢ ( ∗ Fn (𝐵 × 𝐵) ↔ (+g‘(mulGrp‘𝑅)) Fn (𝐵 × 𝐵)) |
21 | 20 | biimpi 208 | . . . . . . 7 ⊢ ( ∗ Fn (𝐵 × 𝐵) → (+g‘(mulGrp‘𝑅)) Fn (𝐵 × 𝐵)) |
22 | 21 | 3ad2ant3 1115 | . . . . . 6 ⊢ ((𝑅 ∈ SRing ∧ + Fn (𝐵 × 𝐵) ∧ ∗ Fn (𝐵 × 𝐵)) → (+g‘(mulGrp‘𝑅)) Fn (𝐵 × 𝐵)) |
23 | 22 | adantr 473 | . . . . 5 ⊢ (((𝑅 ∈ SRing ∧ + Fn (𝐵 × 𝐵) ∧ ∗ Fn (𝐵 × 𝐵)) ∧ 𝑍 ∈ 𝐵) → (+g‘(mulGrp‘𝑅)) Fn (𝐵 × 𝐵)) |
24 | 14, 9 | mgpbas 18968 | . . . . . 6 ⊢ 𝐵 = (Base‘(mulGrp‘𝑅)) |
25 | eqid 2779 | . . . . . 6 ⊢ (+g‘(mulGrp‘𝑅)) = (+g‘(mulGrp‘𝑅)) | |
26 | 24, 25 | mgmb1mgm1 17722 | . . . . 5 ⊢ (((mulGrp‘𝑅) ∈ Mgm ∧ 𝑍 ∈ 𝐵 ∧ (+g‘(mulGrp‘𝑅)) Fn (𝐵 × 𝐵)) → (𝐵 = {𝑍} ↔ (+g‘(mulGrp‘𝑅)) = {〈〈𝑍, 𝑍〉, 𝑍〉})) |
27 | 17, 7, 23, 26 | syl3anc 1351 | . . . 4 ⊢ (((𝑅 ∈ SRing ∧ + Fn (𝐵 × 𝐵) ∧ ∗ Fn (𝐵 × 𝐵)) ∧ 𝑍 ∈ 𝐵) → (𝐵 = {𝑍} ↔ (+g‘(mulGrp‘𝑅)) = {〈〈𝑍, 𝑍〉, 𝑍〉})) |
28 | 19 | eqcomi 2788 | . . . . . 6 ⊢ (+g‘(mulGrp‘𝑅)) = ∗ |
29 | 28 | a1i 11 | . . . . 5 ⊢ (((𝑅 ∈ SRing ∧ + Fn (𝐵 × 𝐵) ∧ ∗ Fn (𝐵 × 𝐵)) ∧ 𝑍 ∈ 𝐵) → (+g‘(mulGrp‘𝑅)) = ∗ ) |
30 | 29 | eqeq1d 2781 | . . . 4 ⊢ (((𝑅 ∈ SRing ∧ + Fn (𝐵 × 𝐵) ∧ ∗ Fn (𝐵 × 𝐵)) ∧ 𝑍 ∈ 𝐵) → ((+g‘(mulGrp‘𝑅)) = {〈〈𝑍, 𝑍〉, 𝑍〉} ↔ ∗ = {〈〈𝑍, 𝑍〉, 𝑍〉})) |
31 | 27, 30 | bitrd 271 | . . 3 ⊢ (((𝑅 ∈ SRing ∧ + Fn (𝐵 × 𝐵) ∧ ∗ Fn (𝐵 × 𝐵)) ∧ 𝑍 ∈ 𝐵) → (𝐵 = {𝑍} ↔ ∗ = {〈〈𝑍, 𝑍〉, 𝑍〉})) |
32 | 12, 31 | anbi12d 621 | . 2 ⊢ (((𝑅 ∈ SRing ∧ + Fn (𝐵 × 𝐵) ∧ ∗ Fn (𝐵 × 𝐵)) ∧ 𝑍 ∈ 𝐵) → ((𝐵 = {𝑍} ∧ 𝐵 = {𝑍}) ↔ ( + = {〈〈𝑍, 𝑍〉, 𝑍〉} ∧ ∗ = {〈〈𝑍, 𝑍〉, 𝑍〉}))) |
33 | 1, 32 | syl5bb 275 | 1 ⊢ (((𝑅 ∈ SRing ∧ + Fn (𝐵 × 𝐵) ∧ ∗ Fn (𝐵 × 𝐵)) ∧ 𝑍 ∈ 𝐵) → (𝐵 = {𝑍} ↔ ( + = {〈〈𝑍, 𝑍〉, 𝑍〉} ∧ ∗ = {〈〈𝑍, 𝑍〉, 𝑍〉}))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 387 ∧ w3a 1068 = wceq 1507 ∈ wcel 2050 {csn 4441 〈cop 4447 × cxp 5405 Fn wfn 6183 ‘cfv 6188 Basecbs 16339 +gcplusg 16421 .rcmulr 16422 Mgmcmgm 17708 Mndcmnd 17762 mulGrpcmgp 18962 SRingcsrg 18978 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2751 ax-sep 5060 ax-nul 5067 ax-pow 5119 ax-pr 5186 ax-un 7279 ax-cnex 10391 ax-resscn 10392 ax-1cn 10393 ax-icn 10394 ax-addcl 10395 ax-addrcl 10396 ax-mulcl 10397 ax-mulrcl 10398 ax-mulcom 10399 ax-addass 10400 ax-mulass 10401 ax-distr 10402 ax-i2m1 10403 ax-1ne0 10404 ax-1rid 10405 ax-rnegex 10406 ax-rrecex 10407 ax-cnre 10408 ax-pre-lttri 10409 ax-pre-lttrn 10410 ax-pre-ltadd 10411 ax-pre-mulgt0 10412 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2760 df-cleq 2772 df-clel 2847 df-nfc 2919 df-ne 2969 df-nel 3075 df-ral 3094 df-rex 3095 df-reu 3096 df-rab 3098 df-v 3418 df-sbc 3683 df-csb 3788 df-dif 3833 df-un 3835 df-in 3837 df-ss 3844 df-pss 3846 df-nul 4180 df-if 4351 df-pw 4424 df-sn 4442 df-pr 4444 df-tp 4446 df-op 4448 df-uni 4713 df-iun 4794 df-br 4930 df-opab 4992 df-mpt 5009 df-tr 5031 df-id 5312 df-eprel 5317 df-po 5326 df-so 5327 df-fr 5366 df-we 5368 df-xp 5413 df-rel 5414 df-cnv 5415 df-co 5416 df-dm 5417 df-rn 5418 df-res 5419 df-ima 5420 df-pred 5986 df-ord 6032 df-on 6033 df-lim 6034 df-suc 6035 df-iota 6152 df-fun 6190 df-fn 6191 df-f 6192 df-f1 6193 df-fo 6194 df-f1o 6195 df-fv 6196 df-riota 6937 df-ov 6979 df-oprab 6980 df-mpo 6981 df-om 7397 df-1st 7501 df-2nd 7502 df-wrecs 7750 df-recs 7812 df-rdg 7850 df-er 8089 df-en 8307 df-dom 8308 df-sdom 8309 df-pnf 10476 df-mnf 10477 df-xr 10478 df-ltxr 10479 df-le 10480 df-sub 10672 df-neg 10673 df-nn 11440 df-2 11503 df-ndx 16342 df-slot 16343 df-base 16345 df-sets 16346 df-plusg 16434 df-plusf 17709 df-mgm 17710 df-sgrp 17752 df-mnd 17763 df-cmn 18668 df-mgp 18963 df-srg 18979 |
This theorem is referenced by: srgen1zr 19003 ring1zr 19769 |
Copyright terms: Public domain | W3C validator |