![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > srg1zr | Structured version Visualization version GIF version |
Description: The only semiring with a base set consisting of one element is the zero ring (at least if its operations are internal binary operations). (Contributed by FL, 13-Feb-2010.) (Revised by AV, 25-Jan-2020.) |
Ref | Expression |
---|---|
srg1zr.b | ⊢ 𝐵 = (Base‘𝑅) |
srg1zr.p | ⊢ + = (+g‘𝑅) |
srg1zr.t | ⊢ ∗ = (.r‘𝑅) |
Ref | Expression |
---|---|
srg1zr | ⊢ (((𝑅 ∈ SRing ∧ + Fn (𝐵 × 𝐵) ∧ ∗ Fn (𝐵 × 𝐵)) ∧ 𝑍 ∈ 𝐵) → (𝐵 = {𝑍} ↔ ( + = {〈〈𝑍, 𝑍〉, 𝑍〉} ∧ ∗ = {〈〈𝑍, 𝑍〉, 𝑍〉}))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm4.24 564 | . 2 ⊢ (𝐵 = {𝑍} ↔ (𝐵 = {𝑍} ∧ 𝐵 = {𝑍})) | |
2 | srgmnd 19921 | . . . . . . 7 ⊢ (𝑅 ∈ SRing → 𝑅 ∈ Mnd) | |
3 | 2 | 3ad2ant1 1133 | . . . . . 6 ⊢ ((𝑅 ∈ SRing ∧ + Fn (𝐵 × 𝐵) ∧ ∗ Fn (𝐵 × 𝐵)) → 𝑅 ∈ Mnd) |
4 | 3 | adantr 481 | . . . . 5 ⊢ (((𝑅 ∈ SRing ∧ + Fn (𝐵 × 𝐵) ∧ ∗ Fn (𝐵 × 𝐵)) ∧ 𝑍 ∈ 𝐵) → 𝑅 ∈ Mnd) |
5 | mndmgm 18563 | . . . . 5 ⊢ (𝑅 ∈ Mnd → 𝑅 ∈ Mgm) | |
6 | 4, 5 | syl 17 | . . . 4 ⊢ (((𝑅 ∈ SRing ∧ + Fn (𝐵 × 𝐵) ∧ ∗ Fn (𝐵 × 𝐵)) ∧ 𝑍 ∈ 𝐵) → 𝑅 ∈ Mgm) |
7 | simpr 485 | . . . 4 ⊢ (((𝑅 ∈ SRing ∧ + Fn (𝐵 × 𝐵) ∧ ∗ Fn (𝐵 × 𝐵)) ∧ 𝑍 ∈ 𝐵) → 𝑍 ∈ 𝐵) | |
8 | simpl2 1192 | . . . 4 ⊢ (((𝑅 ∈ SRing ∧ + Fn (𝐵 × 𝐵) ∧ ∗ Fn (𝐵 × 𝐵)) ∧ 𝑍 ∈ 𝐵) → + Fn (𝐵 × 𝐵)) | |
9 | srg1zr.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑅) | |
10 | srg1zr.p | . . . . 5 ⊢ + = (+g‘𝑅) | |
11 | 9, 10 | mgmb1mgm1 18510 | . . . 4 ⊢ ((𝑅 ∈ Mgm ∧ 𝑍 ∈ 𝐵 ∧ + Fn (𝐵 × 𝐵)) → (𝐵 = {𝑍} ↔ + = {〈〈𝑍, 𝑍〉, 𝑍〉})) |
12 | 6, 7, 8, 11 | syl3anc 1371 | . . 3 ⊢ (((𝑅 ∈ SRing ∧ + Fn (𝐵 × 𝐵) ∧ ∗ Fn (𝐵 × 𝐵)) ∧ 𝑍 ∈ 𝐵) → (𝐵 = {𝑍} ↔ + = {〈〈𝑍, 𝑍〉, 𝑍〉})) |
13 | simpl1 1191 | . . . . . 6 ⊢ (((𝑅 ∈ SRing ∧ + Fn (𝐵 × 𝐵) ∧ ∗ Fn (𝐵 × 𝐵)) ∧ 𝑍 ∈ 𝐵) → 𝑅 ∈ SRing) | |
14 | eqid 2736 | . . . . . . 7 ⊢ (mulGrp‘𝑅) = (mulGrp‘𝑅) | |
15 | 14 | srgmgp 19922 | . . . . . 6 ⊢ (𝑅 ∈ SRing → (mulGrp‘𝑅) ∈ Mnd) |
16 | mndmgm 18563 | . . . . . 6 ⊢ ((mulGrp‘𝑅) ∈ Mnd → (mulGrp‘𝑅) ∈ Mgm) | |
17 | 13, 15, 16 | 3syl 18 | . . . . 5 ⊢ (((𝑅 ∈ SRing ∧ + Fn (𝐵 × 𝐵) ∧ ∗ Fn (𝐵 × 𝐵)) ∧ 𝑍 ∈ 𝐵) → (mulGrp‘𝑅) ∈ Mgm) |
18 | srg1zr.t | . . . . . . . . . 10 ⊢ ∗ = (.r‘𝑅) | |
19 | 14, 18 | mgpplusg 19900 | . . . . . . . . 9 ⊢ ∗ = (+g‘(mulGrp‘𝑅)) |
20 | 19 | fneq1i 6599 | . . . . . . . 8 ⊢ ( ∗ Fn (𝐵 × 𝐵) ↔ (+g‘(mulGrp‘𝑅)) Fn (𝐵 × 𝐵)) |
21 | 20 | biimpi 215 | . . . . . . 7 ⊢ ( ∗ Fn (𝐵 × 𝐵) → (+g‘(mulGrp‘𝑅)) Fn (𝐵 × 𝐵)) |
22 | 21 | 3ad2ant3 1135 | . . . . . 6 ⊢ ((𝑅 ∈ SRing ∧ + Fn (𝐵 × 𝐵) ∧ ∗ Fn (𝐵 × 𝐵)) → (+g‘(mulGrp‘𝑅)) Fn (𝐵 × 𝐵)) |
23 | 22 | adantr 481 | . . . . 5 ⊢ (((𝑅 ∈ SRing ∧ + Fn (𝐵 × 𝐵) ∧ ∗ Fn (𝐵 × 𝐵)) ∧ 𝑍 ∈ 𝐵) → (+g‘(mulGrp‘𝑅)) Fn (𝐵 × 𝐵)) |
24 | 14, 9 | mgpbas 19902 | . . . . . 6 ⊢ 𝐵 = (Base‘(mulGrp‘𝑅)) |
25 | eqid 2736 | . . . . . 6 ⊢ (+g‘(mulGrp‘𝑅)) = (+g‘(mulGrp‘𝑅)) | |
26 | 24, 25 | mgmb1mgm1 18510 | . . . . 5 ⊢ (((mulGrp‘𝑅) ∈ Mgm ∧ 𝑍 ∈ 𝐵 ∧ (+g‘(mulGrp‘𝑅)) Fn (𝐵 × 𝐵)) → (𝐵 = {𝑍} ↔ (+g‘(mulGrp‘𝑅)) = {〈〈𝑍, 𝑍〉, 𝑍〉})) |
27 | 17, 7, 23, 26 | syl3anc 1371 | . . . 4 ⊢ (((𝑅 ∈ SRing ∧ + Fn (𝐵 × 𝐵) ∧ ∗ Fn (𝐵 × 𝐵)) ∧ 𝑍 ∈ 𝐵) → (𝐵 = {𝑍} ↔ (+g‘(mulGrp‘𝑅)) = {〈〈𝑍, 𝑍〉, 𝑍〉})) |
28 | 19 | eqcomi 2745 | . . . . . 6 ⊢ (+g‘(mulGrp‘𝑅)) = ∗ |
29 | 28 | a1i 11 | . . . . 5 ⊢ (((𝑅 ∈ SRing ∧ + Fn (𝐵 × 𝐵) ∧ ∗ Fn (𝐵 × 𝐵)) ∧ 𝑍 ∈ 𝐵) → (+g‘(mulGrp‘𝑅)) = ∗ ) |
30 | 29 | eqeq1d 2738 | . . . 4 ⊢ (((𝑅 ∈ SRing ∧ + Fn (𝐵 × 𝐵) ∧ ∗ Fn (𝐵 × 𝐵)) ∧ 𝑍 ∈ 𝐵) → ((+g‘(mulGrp‘𝑅)) = {〈〈𝑍, 𝑍〉, 𝑍〉} ↔ ∗ = {〈〈𝑍, 𝑍〉, 𝑍〉})) |
31 | 27, 30 | bitrd 278 | . . 3 ⊢ (((𝑅 ∈ SRing ∧ + Fn (𝐵 × 𝐵) ∧ ∗ Fn (𝐵 × 𝐵)) ∧ 𝑍 ∈ 𝐵) → (𝐵 = {𝑍} ↔ ∗ = {〈〈𝑍, 𝑍〉, 𝑍〉})) |
32 | 12, 31 | anbi12d 631 | . 2 ⊢ (((𝑅 ∈ SRing ∧ + Fn (𝐵 × 𝐵) ∧ ∗ Fn (𝐵 × 𝐵)) ∧ 𝑍 ∈ 𝐵) → ((𝐵 = {𝑍} ∧ 𝐵 = {𝑍}) ↔ ( + = {〈〈𝑍, 𝑍〉, 𝑍〉} ∧ ∗ = {〈〈𝑍, 𝑍〉, 𝑍〉}))) |
33 | 1, 32 | bitrid 282 | 1 ⊢ (((𝑅 ∈ SRing ∧ + Fn (𝐵 × 𝐵) ∧ ∗ Fn (𝐵 × 𝐵)) ∧ 𝑍 ∈ 𝐵) → (𝐵 = {𝑍} ↔ ( + = {〈〈𝑍, 𝑍〉, 𝑍〉} ∧ ∗ = {〈〈𝑍, 𝑍〉, 𝑍〉}))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 {csn 4586 〈cop 4592 × cxp 5631 Fn wfn 6491 ‘cfv 6496 Basecbs 17083 +gcplusg 17133 .rcmulr 17134 Mgmcmgm 18495 Mndcmnd 18556 mulGrpcmgp 19896 SRingcsrg 19917 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2707 ax-sep 5256 ax-nul 5263 ax-pow 5320 ax-pr 5384 ax-un 7672 ax-cnex 11107 ax-resscn 11108 ax-1cn 11109 ax-icn 11110 ax-addcl 11111 ax-addrcl 11112 ax-mulcl 11113 ax-mulrcl 11114 ax-mulcom 11115 ax-addass 11116 ax-mulass 11117 ax-distr 11118 ax-i2m1 11119 ax-1ne0 11120 ax-1rid 11121 ax-rnegex 11122 ax-rrecex 11123 ax-cnre 11124 ax-pre-lttri 11125 ax-pre-lttrn 11126 ax-pre-ltadd 11127 ax-pre-mulgt0 11128 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3065 df-rex 3074 df-reu 3354 df-rab 3408 df-v 3447 df-sbc 3740 df-csb 3856 df-dif 3913 df-un 3915 df-in 3917 df-ss 3927 df-pss 3929 df-nul 4283 df-if 4487 df-pw 4562 df-sn 4587 df-pr 4589 df-op 4593 df-uni 4866 df-iun 4956 df-br 5106 df-opab 5168 df-mpt 5189 df-tr 5223 df-id 5531 df-eprel 5537 df-po 5545 df-so 5546 df-fr 5588 df-we 5590 df-xp 5639 df-rel 5640 df-cnv 5641 df-co 5642 df-dm 5643 df-rn 5644 df-res 5645 df-ima 5646 df-pred 6253 df-ord 6320 df-on 6321 df-lim 6322 df-suc 6323 df-iota 6448 df-fun 6498 df-fn 6499 df-f 6500 df-f1 6501 df-fo 6502 df-f1o 6503 df-fv 6504 df-riota 7313 df-ov 7360 df-oprab 7361 df-mpo 7362 df-om 7803 df-1st 7921 df-2nd 7922 df-frecs 8212 df-wrecs 8243 df-recs 8317 df-rdg 8356 df-er 8648 df-en 8884 df-dom 8885 df-sdom 8886 df-pnf 11191 df-mnf 11192 df-xr 11193 df-ltxr 11194 df-le 11195 df-sub 11387 df-neg 11388 df-nn 12154 df-2 12216 df-sets 17036 df-slot 17054 df-ndx 17066 df-base 17084 df-plusg 17146 df-plusf 18496 df-mgm 18497 df-sgrp 18546 df-mnd 18557 df-cmn 19564 df-mgp 19897 df-srg 19918 |
This theorem is referenced by: srgen1zr 19947 ring1zr 20745 |
Copyright terms: Public domain | W3C validator |