MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  srg1zr Structured version   Visualization version   GIF version

Theorem srg1zr 19270
Description: The only semiring with a base set consisting of one element is the zero ring (at least if its operations are internal binary operations). (Contributed by FL, 13-Feb-2010.) (Revised by AV, 25-Jan-2020.)
Hypotheses
Ref Expression
srg1zr.b 𝐵 = (Base‘𝑅)
srg1zr.p + = (+g𝑅)
srg1zr.t = (.r𝑅)
Assertion
Ref Expression
srg1zr (((𝑅 ∈ SRing ∧ + Fn (𝐵 × 𝐵) ∧ Fn (𝐵 × 𝐵)) ∧ 𝑍𝐵) → (𝐵 = {𝑍} ↔ ( + = {⟨⟨𝑍, 𝑍⟩, 𝑍⟩} ∧ = {⟨⟨𝑍, 𝑍⟩, 𝑍⟩})))

Proof of Theorem srg1zr
StepHypRef Expression
1 pm4.24 567 . 2 (𝐵 = {𝑍} ↔ (𝐵 = {𝑍} ∧ 𝐵 = {𝑍}))
2 srgmnd 19250 . . . . . . 7 (𝑅 ∈ SRing → 𝑅 ∈ Mnd)
323ad2ant1 1130 . . . . . 6 ((𝑅 ∈ SRing ∧ + Fn (𝐵 × 𝐵) ∧ Fn (𝐵 × 𝐵)) → 𝑅 ∈ Mnd)
43adantr 484 . . . . 5 (((𝑅 ∈ SRing ∧ + Fn (𝐵 × 𝐵) ∧ Fn (𝐵 × 𝐵)) ∧ 𝑍𝐵) → 𝑅 ∈ Mnd)
5 mndmgm 17909 . . . . 5 (𝑅 ∈ Mnd → 𝑅 ∈ Mgm)
64, 5syl 17 . . . 4 (((𝑅 ∈ SRing ∧ + Fn (𝐵 × 𝐵) ∧ Fn (𝐵 × 𝐵)) ∧ 𝑍𝐵) → 𝑅 ∈ Mgm)
7 simpr 488 . . . 4 (((𝑅 ∈ SRing ∧ + Fn (𝐵 × 𝐵) ∧ Fn (𝐵 × 𝐵)) ∧ 𝑍𝐵) → 𝑍𝐵)
8 simpl2 1189 . . . 4 (((𝑅 ∈ SRing ∧ + Fn (𝐵 × 𝐵) ∧ Fn (𝐵 × 𝐵)) ∧ 𝑍𝐵) → + Fn (𝐵 × 𝐵))
9 srg1zr.b . . . . 5 𝐵 = (Base‘𝑅)
10 srg1zr.p . . . . 5 + = (+g𝑅)
119, 10mgmb1mgm1 17856 . . . 4 ((𝑅 ∈ Mgm ∧ 𝑍𝐵+ Fn (𝐵 × 𝐵)) → (𝐵 = {𝑍} ↔ + = {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}))
126, 7, 8, 11syl3anc 1368 . . 3 (((𝑅 ∈ SRing ∧ + Fn (𝐵 × 𝐵) ∧ Fn (𝐵 × 𝐵)) ∧ 𝑍𝐵) → (𝐵 = {𝑍} ↔ + = {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}))
13 simpl1 1188 . . . . . 6 (((𝑅 ∈ SRing ∧ + Fn (𝐵 × 𝐵) ∧ Fn (𝐵 × 𝐵)) ∧ 𝑍𝐵) → 𝑅 ∈ SRing)
14 eqid 2822 . . . . . . 7 (mulGrp‘𝑅) = (mulGrp‘𝑅)
1514srgmgp 19251 . . . . . 6 (𝑅 ∈ SRing → (mulGrp‘𝑅) ∈ Mnd)
16 mndmgm 17909 . . . . . 6 ((mulGrp‘𝑅) ∈ Mnd → (mulGrp‘𝑅) ∈ Mgm)
1713, 15, 163syl 18 . . . . 5 (((𝑅 ∈ SRing ∧ + Fn (𝐵 × 𝐵) ∧ Fn (𝐵 × 𝐵)) ∧ 𝑍𝐵) → (mulGrp‘𝑅) ∈ Mgm)
18 srg1zr.t . . . . . . . . . 10 = (.r𝑅)
1914, 18mgpplusg 19234 . . . . . . . . 9 = (+g‘(mulGrp‘𝑅))
2019fneq1i 6429 . . . . . . . 8 ( Fn (𝐵 × 𝐵) ↔ (+g‘(mulGrp‘𝑅)) Fn (𝐵 × 𝐵))
2120biimpi 219 . . . . . . 7 ( Fn (𝐵 × 𝐵) → (+g‘(mulGrp‘𝑅)) Fn (𝐵 × 𝐵))
22213ad2ant3 1132 . . . . . 6 ((𝑅 ∈ SRing ∧ + Fn (𝐵 × 𝐵) ∧ Fn (𝐵 × 𝐵)) → (+g‘(mulGrp‘𝑅)) Fn (𝐵 × 𝐵))
2322adantr 484 . . . . 5 (((𝑅 ∈ SRing ∧ + Fn (𝐵 × 𝐵) ∧ Fn (𝐵 × 𝐵)) ∧ 𝑍𝐵) → (+g‘(mulGrp‘𝑅)) Fn (𝐵 × 𝐵))
2414, 9mgpbas 19236 . . . . . 6 𝐵 = (Base‘(mulGrp‘𝑅))
25 eqid 2822 . . . . . 6 (+g‘(mulGrp‘𝑅)) = (+g‘(mulGrp‘𝑅))
2624, 25mgmb1mgm1 17856 . . . . 5 (((mulGrp‘𝑅) ∈ Mgm ∧ 𝑍𝐵 ∧ (+g‘(mulGrp‘𝑅)) Fn (𝐵 × 𝐵)) → (𝐵 = {𝑍} ↔ (+g‘(mulGrp‘𝑅)) = {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}))
2717, 7, 23, 26syl3anc 1368 . . . 4 (((𝑅 ∈ SRing ∧ + Fn (𝐵 × 𝐵) ∧ Fn (𝐵 × 𝐵)) ∧ 𝑍𝐵) → (𝐵 = {𝑍} ↔ (+g‘(mulGrp‘𝑅)) = {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}))
2819eqcomi 2831 . . . . . 6 (+g‘(mulGrp‘𝑅)) =
2928a1i 11 . . . . 5 (((𝑅 ∈ SRing ∧ + Fn (𝐵 × 𝐵) ∧ Fn (𝐵 × 𝐵)) ∧ 𝑍𝐵) → (+g‘(mulGrp‘𝑅)) = )
3029eqeq1d 2824 . . . 4 (((𝑅 ∈ SRing ∧ + Fn (𝐵 × 𝐵) ∧ Fn (𝐵 × 𝐵)) ∧ 𝑍𝐵) → ((+g‘(mulGrp‘𝑅)) = {⟨⟨𝑍, 𝑍⟩, 𝑍⟩} ↔ = {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}))
3127, 30bitrd 282 . . 3 (((𝑅 ∈ SRing ∧ + Fn (𝐵 × 𝐵) ∧ Fn (𝐵 × 𝐵)) ∧ 𝑍𝐵) → (𝐵 = {𝑍} ↔ = {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}))
3212, 31anbi12d 633 . 2 (((𝑅 ∈ SRing ∧ + Fn (𝐵 × 𝐵) ∧ Fn (𝐵 × 𝐵)) ∧ 𝑍𝐵) → ((𝐵 = {𝑍} ∧ 𝐵 = {𝑍}) ↔ ( + = {⟨⟨𝑍, 𝑍⟩, 𝑍⟩} ∧ = {⟨⟨𝑍, 𝑍⟩, 𝑍⟩})))
331, 32syl5bb 286 1 (((𝑅 ∈ SRing ∧ + Fn (𝐵 × 𝐵) ∧ Fn (𝐵 × 𝐵)) ∧ 𝑍𝐵) → (𝐵 = {𝑍} ↔ ( + = {⟨⟨𝑍, 𝑍⟩, 𝑍⟩} ∧ = {⟨⟨𝑍, 𝑍⟩, 𝑍⟩})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2114  {csn 4539  cop 4545   × cxp 5530   Fn wfn 6329  cfv 6334  Basecbs 16474  +gcplusg 16556  .rcmulr 16557  Mgmcmgm 17841  Mndcmnd 17902  mulGrpcmgp 19230  SRingcsrg 19246
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-sep 5179  ax-nul 5186  ax-pow 5243  ax-pr 5307  ax-un 7446  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ne 3012  df-nel 3116  df-ral 3135  df-rex 3136  df-reu 3137  df-rab 3139  df-v 3471  df-sbc 3748  df-csb 3856  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-tp 4544  df-op 4546  df-uni 4814  df-iun 4896  df-br 5043  df-opab 5105  df-mpt 5123  df-tr 5149  df-id 5437  df-eprel 5442  df-po 5451  df-so 5452  df-fr 5491  df-we 5493  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-rn 5543  df-res 5544  df-ima 5545  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6293  df-fun 6336  df-fn 6337  df-f 6338  df-f1 6339  df-fo 6340  df-f1o 6341  df-fv 6342  df-riota 7098  df-ov 7143  df-oprab 7144  df-mpo 7145  df-om 7566  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-ndx 16477  df-slot 16478  df-base 16480  df-sets 16481  df-plusg 16569  df-plusf 17842  df-mgm 17843  df-sgrp 17892  df-mnd 17903  df-cmn 18899  df-mgp 19231  df-srg 19247
This theorem is referenced by:  srgen1zr  19271  ring1zr  20039
  Copyright terms: Public domain W3C validator