| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > srg1zr | Structured version Visualization version GIF version | ||
| Description: The only semiring with a base set consisting of one element is the zero ring (at least if its operations are internal binary operations). (Contributed by FL, 13-Feb-2010.) (Revised by AV, 25-Jan-2020.) |
| Ref | Expression |
|---|---|
| srg1zr.b | ⊢ 𝐵 = (Base‘𝑅) |
| srg1zr.p | ⊢ + = (+g‘𝑅) |
| srg1zr.t | ⊢ ∗ = (.r‘𝑅) |
| Ref | Expression |
|---|---|
| srg1zr | ⊢ (((𝑅 ∈ SRing ∧ + Fn (𝐵 × 𝐵) ∧ ∗ Fn (𝐵 × 𝐵)) ∧ 𝑍 ∈ 𝐵) → (𝐵 = {𝑍} ↔ ( + = {〈〈𝑍, 𝑍〉, 𝑍〉} ∧ ∗ = {〈〈𝑍, 𝑍〉, 𝑍〉}))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm4.24 563 | . 2 ⊢ (𝐵 = {𝑍} ↔ (𝐵 = {𝑍} ∧ 𝐵 = {𝑍})) | |
| 2 | srgmnd 20108 | . . . . . . 7 ⊢ (𝑅 ∈ SRing → 𝑅 ∈ Mnd) | |
| 3 | 2 | 3ad2ant1 1133 | . . . . . 6 ⊢ ((𝑅 ∈ SRing ∧ + Fn (𝐵 × 𝐵) ∧ ∗ Fn (𝐵 × 𝐵)) → 𝑅 ∈ Mnd) |
| 4 | 3 | adantr 480 | . . . . 5 ⊢ (((𝑅 ∈ SRing ∧ + Fn (𝐵 × 𝐵) ∧ ∗ Fn (𝐵 × 𝐵)) ∧ 𝑍 ∈ 𝐵) → 𝑅 ∈ Mnd) |
| 5 | mndmgm 18649 | . . . . 5 ⊢ (𝑅 ∈ Mnd → 𝑅 ∈ Mgm) | |
| 6 | 4, 5 | syl 17 | . . . 4 ⊢ (((𝑅 ∈ SRing ∧ + Fn (𝐵 × 𝐵) ∧ ∗ Fn (𝐵 × 𝐵)) ∧ 𝑍 ∈ 𝐵) → 𝑅 ∈ Mgm) |
| 7 | simpr 484 | . . . 4 ⊢ (((𝑅 ∈ SRing ∧ + Fn (𝐵 × 𝐵) ∧ ∗ Fn (𝐵 × 𝐵)) ∧ 𝑍 ∈ 𝐵) → 𝑍 ∈ 𝐵) | |
| 8 | simpl2 1193 | . . . 4 ⊢ (((𝑅 ∈ SRing ∧ + Fn (𝐵 × 𝐵) ∧ ∗ Fn (𝐵 × 𝐵)) ∧ 𝑍 ∈ 𝐵) → + Fn (𝐵 × 𝐵)) | |
| 9 | srg1zr.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑅) | |
| 10 | srg1zr.p | . . . . 5 ⊢ + = (+g‘𝑅) | |
| 11 | 9, 10 | mgmb1mgm1 18563 | . . . 4 ⊢ ((𝑅 ∈ Mgm ∧ 𝑍 ∈ 𝐵 ∧ + Fn (𝐵 × 𝐵)) → (𝐵 = {𝑍} ↔ + = {〈〈𝑍, 𝑍〉, 𝑍〉})) |
| 12 | 6, 7, 8, 11 | syl3anc 1373 | . . 3 ⊢ (((𝑅 ∈ SRing ∧ + Fn (𝐵 × 𝐵) ∧ ∗ Fn (𝐵 × 𝐵)) ∧ 𝑍 ∈ 𝐵) → (𝐵 = {𝑍} ↔ + = {〈〈𝑍, 𝑍〉, 𝑍〉})) |
| 13 | simpl1 1192 | . . . . . 6 ⊢ (((𝑅 ∈ SRing ∧ + Fn (𝐵 × 𝐵) ∧ ∗ Fn (𝐵 × 𝐵)) ∧ 𝑍 ∈ 𝐵) → 𝑅 ∈ SRing) | |
| 14 | eqid 2731 | . . . . . . 7 ⊢ (mulGrp‘𝑅) = (mulGrp‘𝑅) | |
| 15 | 14 | srgmgp 20109 | . . . . . 6 ⊢ (𝑅 ∈ SRing → (mulGrp‘𝑅) ∈ Mnd) |
| 16 | mndmgm 18649 | . . . . . 6 ⊢ ((mulGrp‘𝑅) ∈ Mnd → (mulGrp‘𝑅) ∈ Mgm) | |
| 17 | 13, 15, 16 | 3syl 18 | . . . . 5 ⊢ (((𝑅 ∈ SRing ∧ + Fn (𝐵 × 𝐵) ∧ ∗ Fn (𝐵 × 𝐵)) ∧ 𝑍 ∈ 𝐵) → (mulGrp‘𝑅) ∈ Mgm) |
| 18 | srg1zr.t | . . . . . . . . . 10 ⊢ ∗ = (.r‘𝑅) | |
| 19 | 14, 18 | mgpplusg 20062 | . . . . . . . . 9 ⊢ ∗ = (+g‘(mulGrp‘𝑅)) |
| 20 | 19 | fneq1i 6578 | . . . . . . . 8 ⊢ ( ∗ Fn (𝐵 × 𝐵) ↔ (+g‘(mulGrp‘𝑅)) Fn (𝐵 × 𝐵)) |
| 21 | 20 | biimpi 216 | . . . . . . 7 ⊢ ( ∗ Fn (𝐵 × 𝐵) → (+g‘(mulGrp‘𝑅)) Fn (𝐵 × 𝐵)) |
| 22 | 21 | 3ad2ant3 1135 | . . . . . 6 ⊢ ((𝑅 ∈ SRing ∧ + Fn (𝐵 × 𝐵) ∧ ∗ Fn (𝐵 × 𝐵)) → (+g‘(mulGrp‘𝑅)) Fn (𝐵 × 𝐵)) |
| 23 | 22 | adantr 480 | . . . . 5 ⊢ (((𝑅 ∈ SRing ∧ + Fn (𝐵 × 𝐵) ∧ ∗ Fn (𝐵 × 𝐵)) ∧ 𝑍 ∈ 𝐵) → (+g‘(mulGrp‘𝑅)) Fn (𝐵 × 𝐵)) |
| 24 | 14, 9 | mgpbas 20063 | . . . . . 6 ⊢ 𝐵 = (Base‘(mulGrp‘𝑅)) |
| 25 | eqid 2731 | . . . . . 6 ⊢ (+g‘(mulGrp‘𝑅)) = (+g‘(mulGrp‘𝑅)) | |
| 26 | 24, 25 | mgmb1mgm1 18563 | . . . . 5 ⊢ (((mulGrp‘𝑅) ∈ Mgm ∧ 𝑍 ∈ 𝐵 ∧ (+g‘(mulGrp‘𝑅)) Fn (𝐵 × 𝐵)) → (𝐵 = {𝑍} ↔ (+g‘(mulGrp‘𝑅)) = {〈〈𝑍, 𝑍〉, 𝑍〉})) |
| 27 | 17, 7, 23, 26 | syl3anc 1373 | . . . 4 ⊢ (((𝑅 ∈ SRing ∧ + Fn (𝐵 × 𝐵) ∧ ∗ Fn (𝐵 × 𝐵)) ∧ 𝑍 ∈ 𝐵) → (𝐵 = {𝑍} ↔ (+g‘(mulGrp‘𝑅)) = {〈〈𝑍, 𝑍〉, 𝑍〉})) |
| 28 | 19 | eqcomi 2740 | . . . . . 6 ⊢ (+g‘(mulGrp‘𝑅)) = ∗ |
| 29 | 28 | a1i 11 | . . . . 5 ⊢ (((𝑅 ∈ SRing ∧ + Fn (𝐵 × 𝐵) ∧ ∗ Fn (𝐵 × 𝐵)) ∧ 𝑍 ∈ 𝐵) → (+g‘(mulGrp‘𝑅)) = ∗ ) |
| 30 | 29 | eqeq1d 2733 | . . . 4 ⊢ (((𝑅 ∈ SRing ∧ + Fn (𝐵 × 𝐵) ∧ ∗ Fn (𝐵 × 𝐵)) ∧ 𝑍 ∈ 𝐵) → ((+g‘(mulGrp‘𝑅)) = {〈〈𝑍, 𝑍〉, 𝑍〉} ↔ ∗ = {〈〈𝑍, 𝑍〉, 𝑍〉})) |
| 31 | 27, 30 | bitrd 279 | . . 3 ⊢ (((𝑅 ∈ SRing ∧ + Fn (𝐵 × 𝐵) ∧ ∗ Fn (𝐵 × 𝐵)) ∧ 𝑍 ∈ 𝐵) → (𝐵 = {𝑍} ↔ ∗ = {〈〈𝑍, 𝑍〉, 𝑍〉})) |
| 32 | 12, 31 | anbi12d 632 | . 2 ⊢ (((𝑅 ∈ SRing ∧ + Fn (𝐵 × 𝐵) ∧ ∗ Fn (𝐵 × 𝐵)) ∧ 𝑍 ∈ 𝐵) → ((𝐵 = {𝑍} ∧ 𝐵 = {𝑍}) ↔ ( + = {〈〈𝑍, 𝑍〉, 𝑍〉} ∧ ∗ = {〈〈𝑍, 𝑍〉, 𝑍〉}))) |
| 33 | 1, 32 | bitrid 283 | 1 ⊢ (((𝑅 ∈ SRing ∧ + Fn (𝐵 × 𝐵) ∧ ∗ Fn (𝐵 × 𝐵)) ∧ 𝑍 ∈ 𝐵) → (𝐵 = {𝑍} ↔ ( + = {〈〈𝑍, 𝑍〉, 𝑍〉} ∧ ∗ = {〈〈𝑍, 𝑍〉, 𝑍〉}))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 {csn 4573 〈cop 4579 × cxp 5612 Fn wfn 6476 ‘cfv 6481 Basecbs 17120 +gcplusg 17161 .rcmulr 17162 Mgmcmgm 18546 Mndcmnd 18642 mulGrpcmgp 20058 SRingcsrg 20104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-plusg 17174 df-plusf 18547 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-cmn 19694 df-mgp 20059 df-srg 20105 |
| This theorem is referenced by: srgen1zr 20134 ring1zr 20691 |
| Copyright terms: Public domain | W3C validator |