Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > srg1zr | Structured version Visualization version GIF version |
Description: The only semiring with a base set consisting of one element is the zero ring (at least if its operations are internal binary operations). (Contributed by FL, 13-Feb-2010.) (Revised by AV, 25-Jan-2020.) |
Ref | Expression |
---|---|
srg1zr.b | ⊢ 𝐵 = (Base‘𝑅) |
srg1zr.p | ⊢ + = (+g‘𝑅) |
srg1zr.t | ⊢ ∗ = (.r‘𝑅) |
Ref | Expression |
---|---|
srg1zr | ⊢ (((𝑅 ∈ SRing ∧ + Fn (𝐵 × 𝐵) ∧ ∗ Fn (𝐵 × 𝐵)) ∧ 𝑍 ∈ 𝐵) → (𝐵 = {𝑍} ↔ ( + = {〈〈𝑍, 𝑍〉, 𝑍〉} ∧ ∗ = {〈〈𝑍, 𝑍〉, 𝑍〉}))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm4.24 563 | . 2 ⊢ (𝐵 = {𝑍} ↔ (𝐵 = {𝑍} ∧ 𝐵 = {𝑍})) | |
2 | srgmnd 19660 | . . . . . . 7 ⊢ (𝑅 ∈ SRing → 𝑅 ∈ Mnd) | |
3 | 2 | 3ad2ant1 1131 | . . . . . 6 ⊢ ((𝑅 ∈ SRing ∧ + Fn (𝐵 × 𝐵) ∧ ∗ Fn (𝐵 × 𝐵)) → 𝑅 ∈ Mnd) |
4 | 3 | adantr 480 | . . . . 5 ⊢ (((𝑅 ∈ SRing ∧ + Fn (𝐵 × 𝐵) ∧ ∗ Fn (𝐵 × 𝐵)) ∧ 𝑍 ∈ 𝐵) → 𝑅 ∈ Mnd) |
5 | mndmgm 18307 | . . . . 5 ⊢ (𝑅 ∈ Mnd → 𝑅 ∈ Mgm) | |
6 | 4, 5 | syl 17 | . . . 4 ⊢ (((𝑅 ∈ SRing ∧ + Fn (𝐵 × 𝐵) ∧ ∗ Fn (𝐵 × 𝐵)) ∧ 𝑍 ∈ 𝐵) → 𝑅 ∈ Mgm) |
7 | simpr 484 | . . . 4 ⊢ (((𝑅 ∈ SRing ∧ + Fn (𝐵 × 𝐵) ∧ ∗ Fn (𝐵 × 𝐵)) ∧ 𝑍 ∈ 𝐵) → 𝑍 ∈ 𝐵) | |
8 | simpl2 1190 | . . . 4 ⊢ (((𝑅 ∈ SRing ∧ + Fn (𝐵 × 𝐵) ∧ ∗ Fn (𝐵 × 𝐵)) ∧ 𝑍 ∈ 𝐵) → + Fn (𝐵 × 𝐵)) | |
9 | srg1zr.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑅) | |
10 | srg1zr.p | . . . . 5 ⊢ + = (+g‘𝑅) | |
11 | 9, 10 | mgmb1mgm1 18254 | . . . 4 ⊢ ((𝑅 ∈ Mgm ∧ 𝑍 ∈ 𝐵 ∧ + Fn (𝐵 × 𝐵)) → (𝐵 = {𝑍} ↔ + = {〈〈𝑍, 𝑍〉, 𝑍〉})) |
12 | 6, 7, 8, 11 | syl3anc 1369 | . . 3 ⊢ (((𝑅 ∈ SRing ∧ + Fn (𝐵 × 𝐵) ∧ ∗ Fn (𝐵 × 𝐵)) ∧ 𝑍 ∈ 𝐵) → (𝐵 = {𝑍} ↔ + = {〈〈𝑍, 𝑍〉, 𝑍〉})) |
13 | simpl1 1189 | . . . . . 6 ⊢ (((𝑅 ∈ SRing ∧ + Fn (𝐵 × 𝐵) ∧ ∗ Fn (𝐵 × 𝐵)) ∧ 𝑍 ∈ 𝐵) → 𝑅 ∈ SRing) | |
14 | eqid 2738 | . . . . . . 7 ⊢ (mulGrp‘𝑅) = (mulGrp‘𝑅) | |
15 | 14 | srgmgp 19661 | . . . . . 6 ⊢ (𝑅 ∈ SRing → (mulGrp‘𝑅) ∈ Mnd) |
16 | mndmgm 18307 | . . . . . 6 ⊢ ((mulGrp‘𝑅) ∈ Mnd → (mulGrp‘𝑅) ∈ Mgm) | |
17 | 13, 15, 16 | 3syl 18 | . . . . 5 ⊢ (((𝑅 ∈ SRing ∧ + Fn (𝐵 × 𝐵) ∧ ∗ Fn (𝐵 × 𝐵)) ∧ 𝑍 ∈ 𝐵) → (mulGrp‘𝑅) ∈ Mgm) |
18 | srg1zr.t | . . . . . . . . . 10 ⊢ ∗ = (.r‘𝑅) | |
19 | 14, 18 | mgpplusg 19639 | . . . . . . . . 9 ⊢ ∗ = (+g‘(mulGrp‘𝑅)) |
20 | 19 | fneq1i 6514 | . . . . . . . 8 ⊢ ( ∗ Fn (𝐵 × 𝐵) ↔ (+g‘(mulGrp‘𝑅)) Fn (𝐵 × 𝐵)) |
21 | 20 | biimpi 215 | . . . . . . 7 ⊢ ( ∗ Fn (𝐵 × 𝐵) → (+g‘(mulGrp‘𝑅)) Fn (𝐵 × 𝐵)) |
22 | 21 | 3ad2ant3 1133 | . . . . . 6 ⊢ ((𝑅 ∈ SRing ∧ + Fn (𝐵 × 𝐵) ∧ ∗ Fn (𝐵 × 𝐵)) → (+g‘(mulGrp‘𝑅)) Fn (𝐵 × 𝐵)) |
23 | 22 | adantr 480 | . . . . 5 ⊢ (((𝑅 ∈ SRing ∧ + Fn (𝐵 × 𝐵) ∧ ∗ Fn (𝐵 × 𝐵)) ∧ 𝑍 ∈ 𝐵) → (+g‘(mulGrp‘𝑅)) Fn (𝐵 × 𝐵)) |
24 | 14, 9 | mgpbas 19641 | . . . . . 6 ⊢ 𝐵 = (Base‘(mulGrp‘𝑅)) |
25 | eqid 2738 | . . . . . 6 ⊢ (+g‘(mulGrp‘𝑅)) = (+g‘(mulGrp‘𝑅)) | |
26 | 24, 25 | mgmb1mgm1 18254 | . . . . 5 ⊢ (((mulGrp‘𝑅) ∈ Mgm ∧ 𝑍 ∈ 𝐵 ∧ (+g‘(mulGrp‘𝑅)) Fn (𝐵 × 𝐵)) → (𝐵 = {𝑍} ↔ (+g‘(mulGrp‘𝑅)) = {〈〈𝑍, 𝑍〉, 𝑍〉})) |
27 | 17, 7, 23, 26 | syl3anc 1369 | . . . 4 ⊢ (((𝑅 ∈ SRing ∧ + Fn (𝐵 × 𝐵) ∧ ∗ Fn (𝐵 × 𝐵)) ∧ 𝑍 ∈ 𝐵) → (𝐵 = {𝑍} ↔ (+g‘(mulGrp‘𝑅)) = {〈〈𝑍, 𝑍〉, 𝑍〉})) |
28 | 19 | eqcomi 2747 | . . . . . 6 ⊢ (+g‘(mulGrp‘𝑅)) = ∗ |
29 | 28 | a1i 11 | . . . . 5 ⊢ (((𝑅 ∈ SRing ∧ + Fn (𝐵 × 𝐵) ∧ ∗ Fn (𝐵 × 𝐵)) ∧ 𝑍 ∈ 𝐵) → (+g‘(mulGrp‘𝑅)) = ∗ ) |
30 | 29 | eqeq1d 2740 | . . . 4 ⊢ (((𝑅 ∈ SRing ∧ + Fn (𝐵 × 𝐵) ∧ ∗ Fn (𝐵 × 𝐵)) ∧ 𝑍 ∈ 𝐵) → ((+g‘(mulGrp‘𝑅)) = {〈〈𝑍, 𝑍〉, 𝑍〉} ↔ ∗ = {〈〈𝑍, 𝑍〉, 𝑍〉})) |
31 | 27, 30 | bitrd 278 | . . 3 ⊢ (((𝑅 ∈ SRing ∧ + Fn (𝐵 × 𝐵) ∧ ∗ Fn (𝐵 × 𝐵)) ∧ 𝑍 ∈ 𝐵) → (𝐵 = {𝑍} ↔ ∗ = {〈〈𝑍, 𝑍〉, 𝑍〉})) |
32 | 12, 31 | anbi12d 630 | . 2 ⊢ (((𝑅 ∈ SRing ∧ + Fn (𝐵 × 𝐵) ∧ ∗ Fn (𝐵 × 𝐵)) ∧ 𝑍 ∈ 𝐵) → ((𝐵 = {𝑍} ∧ 𝐵 = {𝑍}) ↔ ( + = {〈〈𝑍, 𝑍〉, 𝑍〉} ∧ ∗ = {〈〈𝑍, 𝑍〉, 𝑍〉}))) |
33 | 1, 32 | syl5bb 282 | 1 ⊢ (((𝑅 ∈ SRing ∧ + Fn (𝐵 × 𝐵) ∧ ∗ Fn (𝐵 × 𝐵)) ∧ 𝑍 ∈ 𝐵) → (𝐵 = {𝑍} ↔ ( + = {〈〈𝑍, 𝑍〉, 𝑍〉} ∧ ∗ = {〈〈𝑍, 𝑍〉, 𝑍〉}))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 {csn 4558 〈cop 4564 × cxp 5578 Fn wfn 6413 ‘cfv 6418 Basecbs 16840 +gcplusg 16888 .rcmulr 16889 Mgmcmgm 18239 Mndcmnd 18300 mulGrpcmgp 19635 SRingcsrg 19656 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-plusg 16901 df-plusf 18240 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-cmn 19303 df-mgp 19636 df-srg 19657 |
This theorem is referenced by: srgen1zr 19681 ring1zr 20459 |
Copyright terms: Public domain | W3C validator |