Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  opabbrfexd Structured version   Visualization version   GIF version

Theorem opabbrfexd 47402
Description: A collection of ordered pairs, the second component being a function, is a set. (Contributed by AV, 15-Jan-2021.)
Hypotheses
Ref Expression
opabresexd.x ((𝜑𝑥𝑅𝑦) → 𝑥𝐶)
opabresexd.y ((𝜑𝑥𝑅𝑦) → 𝑦:𝐴𝐵)
opabresexd.a ((𝜑𝑥𝐶) → 𝐴𝑈)
opabresexd.b ((𝜑𝑥𝐶) → 𝐵𝑉)
opabresexd.c (𝜑𝐶𝑊)
Assertion
Ref Expression
opabbrfexd (𝜑 → {⟨𝑥, 𝑦⟩ ∣ 𝑥𝑅𝑦} ∈ V)
Distinct variable groups:   𝑦,𝐴   𝑦,𝐵   𝑥,𝐶,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝑅(𝑥,𝑦)   𝑈(𝑥,𝑦)   𝑉(𝑥,𝑦)   𝑊(𝑥,𝑦)

Proof of Theorem opabbrfexd
StepHypRef Expression
1 pm4.24 563 . . 3 (𝑥𝑅𝑦 ↔ (𝑥𝑅𝑦𝑥𝑅𝑦))
21opabbii 5162 . 2 {⟨𝑥, 𝑦⟩ ∣ 𝑥𝑅𝑦} = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝑅𝑦𝑥𝑅𝑦)}
3 opabresexd.x . . 3 ((𝜑𝑥𝑅𝑦) → 𝑥𝐶)
4 opabresexd.y . . 3 ((𝜑𝑥𝑅𝑦) → 𝑦:𝐴𝐵)
5 opabresexd.a . . 3 ((𝜑𝑥𝐶) → 𝐴𝑈)
6 opabresexd.b . . 3 ((𝜑𝑥𝐶) → 𝐵𝑉)
7 opabresexd.c . . 3 (𝜑𝐶𝑊)
83, 4, 5, 6, 7opabresexd 47401 . 2 (𝜑 → {⟨𝑥, 𝑦⟩ ∣ (𝑥𝑅𝑦𝑥𝑅𝑦)} ∈ V)
92, 8eqeltrid 2837 1 (𝜑 → {⟨𝑥, 𝑦⟩ ∣ 𝑥𝑅𝑦} ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2113  Vcvv 3438   class class class wbr 5095  {copab 5157  wf 6485
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-clab 2712  df-cleq 2725  df-clel 2808  df-ral 3050  df-rex 3059  df-rab 3398  df-v 3440  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-xp 5627  df-rel 5628  df-cnv 5629  df-dm 5631  df-rn 5632  df-fun 6491  df-fn 6492  df-f 6493
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator