Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  opabbrfexd Structured version   Visualization version   GIF version

Theorem opabbrfexd 47266
Description: A collection of ordered pairs, the second component being a function, is a set. (Contributed by AV, 15-Jan-2021.)
Hypotheses
Ref Expression
opabresexd.x ((𝜑𝑥𝑅𝑦) → 𝑥𝐶)
opabresexd.y ((𝜑𝑥𝑅𝑦) → 𝑦:𝐴𝐵)
opabresexd.a ((𝜑𝑥𝐶) → 𝐴𝑈)
opabresexd.b ((𝜑𝑥𝐶) → 𝐵𝑉)
opabresexd.c (𝜑𝐶𝑊)
Assertion
Ref Expression
opabbrfexd (𝜑 → {⟨𝑥, 𝑦⟩ ∣ 𝑥𝑅𝑦} ∈ V)
Distinct variable groups:   𝑦,𝐴   𝑦,𝐵   𝑥,𝐶,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝑅(𝑥,𝑦)   𝑈(𝑥,𝑦)   𝑉(𝑥,𝑦)   𝑊(𝑥,𝑦)

Proof of Theorem opabbrfexd
StepHypRef Expression
1 pm4.24 563 . . 3 (𝑥𝑅𝑦 ↔ (𝑥𝑅𝑦𝑥𝑅𝑦))
21opabbii 5218 . 2 {⟨𝑥, 𝑦⟩ ∣ 𝑥𝑅𝑦} = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝑅𝑦𝑥𝑅𝑦)}
3 opabresexd.x . . 3 ((𝜑𝑥𝑅𝑦) → 𝑥𝐶)
4 opabresexd.y . . 3 ((𝜑𝑥𝑅𝑦) → 𝑦:𝐴𝐵)
5 opabresexd.a . . 3 ((𝜑𝑥𝐶) → 𝐴𝑈)
6 opabresexd.b . . 3 ((𝜑𝑥𝐶) → 𝐵𝑉)
7 opabresexd.c . . 3 (𝜑𝐶𝑊)
83, 4, 5, 6, 7opabresexd 47265 . 2 (𝜑 → {⟨𝑥, 𝑦⟩ ∣ (𝑥𝑅𝑦𝑥𝑅𝑦)} ∈ V)
92, 8eqeltrid 2845 1 (𝜑 → {⟨𝑥, 𝑦⟩ ∣ 𝑥𝑅𝑦} ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2108  Vcvv 3481   class class class wbr 5151  {copab 5213  wf 6565
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5288  ax-sep 5305  ax-nul 5315  ax-pow 5374  ax-pr 5441  ax-un 7761
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2540  df-clab 2715  df-cleq 2729  df-clel 2816  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3483  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-nul 4343  df-if 4535  df-pw 4610  df-sn 4635  df-pr 4637  df-op 4641  df-uni 4916  df-iun 5001  df-br 5152  df-opab 5214  df-xp 5699  df-rel 5700  df-cnv 5701  df-dm 5703  df-rn 5704  df-fun 6571  df-fn 6572  df-f 6573
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator