Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ismbl2 Structured version   Visualization version   GIF version

Theorem ismbl2 24134
 Description: From ovolun 24106, it suffices to show that the measure of 𝑥 is at least the sum of the measures of 𝑥 ∩ 𝐴 and 𝑥 ∖ 𝐴. (Contributed by Mario Carneiro, 15-Jun-2014.)
Assertion
Ref Expression
ismbl2 (𝐴 ∈ dom vol ↔ (𝐴 ⊆ ℝ ∧ ∀𝑥 ∈ 𝒫 ℝ((vol*‘𝑥) ∈ ℝ → ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴))) ≤ (vol*‘𝑥))))
Distinct variable group:   𝑥,𝐴

Proof of Theorem ismbl2
StepHypRef Expression
1 ismbl 24133 . 2 (𝐴 ∈ dom vol ↔ (𝐴 ⊆ ℝ ∧ ∀𝑥 ∈ 𝒫 ℝ((vol*‘𝑥) ∈ ℝ → (vol*‘𝑥) = ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴))))))
2 elpwi 4509 . . . . 5 (𝑥 ∈ 𝒫 ℝ → 𝑥 ⊆ ℝ)
3 inundif 4388 . . . . . . . . . 10 ((𝑥𝐴) ∪ (𝑥𝐴)) = 𝑥
43fveq2i 6652 . . . . . . . . 9 (vol*‘((𝑥𝐴) ∪ (𝑥𝐴))) = (vol*‘𝑥)
5 inss1 4158 . . . . . . . . . . 11 (𝑥𝐴) ⊆ 𝑥
6 simprl 770 . . . . . . . . . . 11 ((𝐴 ⊆ ℝ ∧ (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ)) → 𝑥 ⊆ ℝ)
75, 6sstrid 3929 . . . . . . . . . 10 ((𝐴 ⊆ ℝ ∧ (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ)) → (𝑥𝐴) ⊆ ℝ)
8 ovolsscl 24093 . . . . . . . . . . . 12 (((𝑥𝐴) ⊆ 𝑥𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘(𝑥𝐴)) ∈ ℝ)
95, 8mp3an1 1445 . . . . . . . . . . 11 ((𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘(𝑥𝐴)) ∈ ℝ)
109adantl 485 . . . . . . . . . 10 ((𝐴 ⊆ ℝ ∧ (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ)) → (vol*‘(𝑥𝐴)) ∈ ℝ)
11 difss 4062 . . . . . . . . . . 11 (𝑥𝐴) ⊆ 𝑥
1211, 6sstrid 3929 . . . . . . . . . 10 ((𝐴 ⊆ ℝ ∧ (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ)) → (𝑥𝐴) ⊆ ℝ)
13 ovolsscl 24093 . . . . . . . . . . . 12 (((𝑥𝐴) ⊆ 𝑥𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘(𝑥𝐴)) ∈ ℝ)
1411, 13mp3an1 1445 . . . . . . . . . . 11 ((𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘(𝑥𝐴)) ∈ ℝ)
1514adantl 485 . . . . . . . . . 10 ((𝐴 ⊆ ℝ ∧ (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ)) → (vol*‘(𝑥𝐴)) ∈ ℝ)
16 ovolun 24106 . . . . . . . . . 10 ((((𝑥𝐴) ⊆ ℝ ∧ (vol*‘(𝑥𝐴)) ∈ ℝ) ∧ ((𝑥𝐴) ⊆ ℝ ∧ (vol*‘(𝑥𝐴)) ∈ ℝ)) → (vol*‘((𝑥𝐴) ∪ (𝑥𝐴))) ≤ ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴))))
177, 10, 12, 15, 16syl22anc 837 . . . . . . . . 9 ((𝐴 ⊆ ℝ ∧ (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ)) → (vol*‘((𝑥𝐴) ∪ (𝑥𝐴))) ≤ ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴))))
184, 17eqbrtrrid 5069 . . . . . . . 8 ((𝐴 ⊆ ℝ ∧ (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ)) → (vol*‘𝑥) ≤ ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴))))
19 simprr 772 . . . . . . . . 9 ((𝐴 ⊆ ℝ ∧ (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ)) → (vol*‘𝑥) ∈ ℝ)
2010, 15readdcld 10663 . . . . . . . . 9 ((𝐴 ⊆ ℝ ∧ (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ)) → ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴))) ∈ ℝ)
2119, 20letri3d 10775 . . . . . . . 8 ((𝐴 ⊆ ℝ ∧ (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ)) → ((vol*‘𝑥) = ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴))) ↔ ((vol*‘𝑥) ≤ ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴))) ∧ ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴))) ≤ (vol*‘𝑥))))
2218, 21mpbirand 706 . . . . . . 7 ((𝐴 ⊆ ℝ ∧ (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ)) → ((vol*‘𝑥) = ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴))) ↔ ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴))) ≤ (vol*‘𝑥)))
2322expr 460 . . . . . 6 ((𝐴 ⊆ ℝ ∧ 𝑥 ⊆ ℝ) → ((vol*‘𝑥) ∈ ℝ → ((vol*‘𝑥) = ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴))) ↔ ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴))) ≤ (vol*‘𝑥))))
2423pm5.74d 276 . . . . 5 ((𝐴 ⊆ ℝ ∧ 𝑥 ⊆ ℝ) → (((vol*‘𝑥) ∈ ℝ → (vol*‘𝑥) = ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴)))) ↔ ((vol*‘𝑥) ∈ ℝ → ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴))) ≤ (vol*‘𝑥))))
252, 24sylan2 595 . . . 4 ((𝐴 ⊆ ℝ ∧ 𝑥 ∈ 𝒫 ℝ) → (((vol*‘𝑥) ∈ ℝ → (vol*‘𝑥) = ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴)))) ↔ ((vol*‘𝑥) ∈ ℝ → ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴))) ≤ (vol*‘𝑥))))
2625ralbidva 3164 . . 3 (𝐴 ⊆ ℝ → (∀𝑥 ∈ 𝒫 ℝ((vol*‘𝑥) ∈ ℝ → (vol*‘𝑥) = ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴)))) ↔ ∀𝑥 ∈ 𝒫 ℝ((vol*‘𝑥) ∈ ℝ → ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴))) ≤ (vol*‘𝑥))))
2726pm5.32i 578 . 2 ((𝐴 ⊆ ℝ ∧ ∀𝑥 ∈ 𝒫 ℝ((vol*‘𝑥) ∈ ℝ → (vol*‘𝑥) = ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴))))) ↔ (𝐴 ⊆ ℝ ∧ ∀𝑥 ∈ 𝒫 ℝ((vol*‘𝑥) ∈ ℝ → ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴))) ≤ (vol*‘𝑥))))
281, 27bitri 278 1 (𝐴 ∈ dom vol ↔ (𝐴 ⊆ ℝ ∧ ∀𝑥 ∈ 𝒫 ℝ((vol*‘𝑥) ∈ ℝ → ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴))) ≤ (vol*‘𝑥))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   = wceq 1538   ∈ wcel 2112  ∀wral 3109   ∖ cdif 3881   ∪ cun 3882   ∩ cin 3883   ⊆ wss 3884  𝒫 cpw 4500   class class class wbr 5033  dom cdm 5523  ‘cfv 6328  (class class class)co 7139  ℝcr 10529   + caddc 10533   ≤ cle 10669  vol*covol 24069  volcvol 24070 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607  ax-pre-sup 10608 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-er 8276  df-map 8395  df-en 8497  df-dom 8498  df-sdom 8499  df-sup 8894  df-inf 8895  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-div 11291  df-nn 11630  df-2 11692  df-3 11693  df-n0 11890  df-z 11974  df-uz 12236  df-q 12341  df-rp 12382  df-ioo 12734  df-ico 12736  df-icc 12737  df-fz 12890  df-fl 13161  df-seq 13369  df-exp 13430  df-cj 14453  df-re 14454  df-im 14455  df-sqrt 14589  df-abs 14590  df-ovol 24071  df-vol 24072 This theorem is referenced by:  nulmbl  24142  nulmbl2  24143  unmbl  24144  ioombl1  24169  uniioombl  24196  ismblfin  35091  ismbl3  42615
 Copyright terms: Public domain W3C validator