MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dom2lem Structured version   Visualization version   GIF version

Theorem dom2lem 8932
Description: A mapping (first hypothesis) that is one-to-one (second hypothesis) implies its domain is dominated by its codomain. (Contributed by NM, 24-Jul-2004.)
Hypotheses
Ref Expression
dom2d.1 (𝜑 → (𝑥𝐴𝐶𝐵))
dom2d.2 (𝜑 → ((𝑥𝐴𝑦𝐴) → (𝐶 = 𝐷𝑥 = 𝑦)))
Assertion
Ref Expression
dom2lem (𝜑 → (𝑥𝐴𝐶):𝐴1-1𝐵)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑦,𝐶   𝑥,𝐷   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐶(𝑥)   𝐷(𝑦)

Proof of Theorem dom2lem
StepHypRef Expression
1 dom2d.1 . . . 4 (𝜑 → (𝑥𝐴𝐶𝐵))
21ralrimiv 3142 . . 3 (𝜑 → ∀𝑥𝐴 𝐶𝐵)
3 eqid 2736 . . . 4 (𝑥𝐴𝐶) = (𝑥𝐴𝐶)
43fmpt 7058 . . 3 (∀𝑥𝐴 𝐶𝐵 ↔ (𝑥𝐴𝐶):𝐴𝐵)
52, 4sylib 217 . 2 (𝜑 → (𝑥𝐴𝐶):𝐴𝐵)
61imp 407 . . . . . . 7 ((𝜑𝑥𝐴) → 𝐶𝐵)
73fvmpt2 6959 . . . . . . . 8 ((𝑥𝐴𝐶𝐵) → ((𝑥𝐴𝐶)‘𝑥) = 𝐶)
87adantll 712 . . . . . . 7 (((𝜑𝑥𝐴) ∧ 𝐶𝐵) → ((𝑥𝐴𝐶)‘𝑥) = 𝐶)
96, 8mpdan 685 . . . . . 6 ((𝜑𝑥𝐴) → ((𝑥𝐴𝐶)‘𝑥) = 𝐶)
109adantrr 715 . . . . 5 ((𝜑 ∧ (𝑥𝐴𝑦𝐴)) → ((𝑥𝐴𝐶)‘𝑥) = 𝐶)
11 nfv 1917 . . . . . . . 8 𝑥(𝜑𝑦𝐴)
12 nffvmpt1 6853 . . . . . . . . 9 𝑥((𝑥𝐴𝐶)‘𝑦)
1312nfeq1 2922 . . . . . . . 8 𝑥((𝑥𝐴𝐶)‘𝑦) = 𝐷
1411, 13nfim 1899 . . . . . . 7 𝑥((𝜑𝑦𝐴) → ((𝑥𝐴𝐶)‘𝑦) = 𝐷)
15 eleq1w 2820 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
1615anbi2d 629 . . . . . . . . 9 (𝑥 = 𝑦 → ((𝜑𝑥𝐴) ↔ (𝜑𝑦𝐴)))
1716imbi1d 341 . . . . . . . 8 (𝑥 = 𝑦 → (((𝜑𝑥𝐴) → ((𝑥𝐴𝐶)‘𝑥) = 𝐶) ↔ ((𝜑𝑦𝐴) → ((𝑥𝐴𝐶)‘𝑥) = 𝐶)))
1815anbi1d 630 . . . . . . . . . . . 12 (𝑥 = 𝑦 → ((𝑥𝐴𝑦𝐴) ↔ (𝑦𝐴𝑦𝐴)))
19 anidm 565 . . . . . . . . . . . 12 ((𝑦𝐴𝑦𝐴) ↔ 𝑦𝐴)
2018, 19bitrdi 286 . . . . . . . . . . 11 (𝑥 = 𝑦 → ((𝑥𝐴𝑦𝐴) ↔ 𝑦𝐴))
2120anbi2d 629 . . . . . . . . . 10 (𝑥 = 𝑦 → ((𝜑 ∧ (𝑥𝐴𝑦𝐴)) ↔ (𝜑𝑦𝐴)))
22 fveq2 6842 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → ((𝑥𝐴𝐶)‘𝑥) = ((𝑥𝐴𝐶)‘𝑦))
2322adantr 481 . . . . . . . . . . . 12 ((𝑥 = 𝑦 ∧ (𝜑 ∧ (𝑥𝐴𝑦𝐴))) → ((𝑥𝐴𝐶)‘𝑥) = ((𝑥𝐴𝐶)‘𝑦))
24 dom2d.2 . . . . . . . . . . . . . 14 (𝜑 → ((𝑥𝐴𝑦𝐴) → (𝐶 = 𝐷𝑥 = 𝑦)))
2524imp 407 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥𝐴𝑦𝐴)) → (𝐶 = 𝐷𝑥 = 𝑦))
2625biimparc 480 . . . . . . . . . . . 12 ((𝑥 = 𝑦 ∧ (𝜑 ∧ (𝑥𝐴𝑦𝐴))) → 𝐶 = 𝐷)
2723, 26eqeq12d 2752 . . . . . . . . . . 11 ((𝑥 = 𝑦 ∧ (𝜑 ∧ (𝑥𝐴𝑦𝐴))) → (((𝑥𝐴𝐶)‘𝑥) = 𝐶 ↔ ((𝑥𝐴𝐶)‘𝑦) = 𝐷))
2827ex 413 . . . . . . . . . 10 (𝑥 = 𝑦 → ((𝜑 ∧ (𝑥𝐴𝑦𝐴)) → (((𝑥𝐴𝐶)‘𝑥) = 𝐶 ↔ ((𝑥𝐴𝐶)‘𝑦) = 𝐷)))
2921, 28sylbird 259 . . . . . . . . 9 (𝑥 = 𝑦 → ((𝜑𝑦𝐴) → (((𝑥𝐴𝐶)‘𝑥) = 𝐶 ↔ ((𝑥𝐴𝐶)‘𝑦) = 𝐷)))
3029pm5.74d 272 . . . . . . . 8 (𝑥 = 𝑦 → (((𝜑𝑦𝐴) → ((𝑥𝐴𝐶)‘𝑥) = 𝐶) ↔ ((𝜑𝑦𝐴) → ((𝑥𝐴𝐶)‘𝑦) = 𝐷)))
3117, 30bitrd 278 . . . . . . 7 (𝑥 = 𝑦 → (((𝜑𝑥𝐴) → ((𝑥𝐴𝐶)‘𝑥) = 𝐶) ↔ ((𝜑𝑦𝐴) → ((𝑥𝐴𝐶)‘𝑦) = 𝐷)))
3214, 31, 9chvarfv 2233 . . . . . 6 ((𝜑𝑦𝐴) → ((𝑥𝐴𝐶)‘𝑦) = 𝐷)
3332adantrl 714 . . . . 5 ((𝜑 ∧ (𝑥𝐴𝑦𝐴)) → ((𝑥𝐴𝐶)‘𝑦) = 𝐷)
3410, 33eqeq12d 2752 . . . 4 ((𝜑 ∧ (𝑥𝐴𝑦𝐴)) → (((𝑥𝐴𝐶)‘𝑥) = ((𝑥𝐴𝐶)‘𝑦) ↔ 𝐶 = 𝐷))
3525biimpd 228 . . . 4 ((𝜑 ∧ (𝑥𝐴𝑦𝐴)) → (𝐶 = 𝐷𝑥 = 𝑦))
3634, 35sylbid 239 . . 3 ((𝜑 ∧ (𝑥𝐴𝑦𝐴)) → (((𝑥𝐴𝐶)‘𝑥) = ((𝑥𝐴𝐶)‘𝑦) → 𝑥 = 𝑦))
3736ralrimivva 3197 . 2 (𝜑 → ∀𝑥𝐴𝑦𝐴 (((𝑥𝐴𝐶)‘𝑥) = ((𝑥𝐴𝐶)‘𝑦) → 𝑥 = 𝑦))
38 nfmpt1 5213 . . 3 𝑥(𝑥𝐴𝐶)
39 nfcv 2907 . . 3 𝑦(𝑥𝐴𝐶)
4038, 39dff13f 7203 . 2 ((𝑥𝐴𝐶):𝐴1-1𝐵 ↔ ((𝑥𝐴𝐶):𝐴𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (((𝑥𝐴𝐶)‘𝑥) = ((𝑥𝐴𝐶)‘𝑦) → 𝑥 = 𝑦)))
415, 37, 40sylanbrc 583 1 (𝜑 → (𝑥𝐴𝐶):𝐴1-1𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wral 3064  cmpt 5188  wf 6492  1-1wf1 6493  cfv 6496
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pr 5384
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4283  df-if 4487  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-br 5106  df-opab 5168  df-mpt 5189  df-id 5531  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fv 6504
This theorem is referenced by:  dom2d  8933  dom3d  8934  ixpfi2  9294  infxpenc2lem1  9955  dfac12lem2  10080  4sqlem11  16827  odf1o1  19354  odf1o2  19355  dis2ndc  22811  hauspwpwf1  23338  itg1addlem4  25063  itg1addlem4OLD  25064  basellem3  26432  fsumvma  26561  dchrisum0fno1  26859
  Copyright terms: Public domain W3C validator