Proof of Theorem dom2lem
| Step | Hyp | Ref
| Expression |
| 1 | | dom2d.1 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝐶 ∈ 𝐵)) |
| 2 | 1 | ralrimiv 3145 |
. . 3
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝐶 ∈ 𝐵) |
| 3 | | eqid 2737 |
. . . 4
⊢ (𝑥 ∈ 𝐴 ↦ 𝐶) = (𝑥 ∈ 𝐴 ↦ 𝐶) |
| 4 | 3 | fmpt 7130 |
. . 3
⊢
(∀𝑥 ∈
𝐴 𝐶 ∈ 𝐵 ↔ (𝑥 ∈ 𝐴 ↦ 𝐶):𝐴⟶𝐵) |
| 5 | 2, 4 | sylib 218 |
. 2
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶):𝐴⟶𝐵) |
| 6 | 1 | imp 406 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ 𝐵) |
| 7 | 3 | fvmpt2 7027 |
. . . . . . . 8
⊢ ((𝑥 ∈ 𝐴 ∧ 𝐶 ∈ 𝐵) → ((𝑥 ∈ 𝐴 ↦ 𝐶)‘𝑥) = 𝐶) |
| 8 | 7 | adantll 714 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝐶 ∈ 𝐵) → ((𝑥 ∈ 𝐴 ↦ 𝐶)‘𝑥) = 𝐶) |
| 9 | 6, 8 | mpdan 687 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝑥 ∈ 𝐴 ↦ 𝐶)‘𝑥) = 𝐶) |
| 10 | 9 | adantrr 717 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → ((𝑥 ∈ 𝐴 ↦ 𝐶)‘𝑥) = 𝐶) |
| 11 | | nfv 1914 |
. . . . . . . 8
⊢
Ⅎ𝑥(𝜑 ∧ 𝑦 ∈ 𝐴) |
| 12 | | nffvmpt1 6917 |
. . . . . . . . 9
⊢
Ⅎ𝑥((𝑥 ∈ 𝐴 ↦ 𝐶)‘𝑦) |
| 13 | 12 | nfeq1 2921 |
. . . . . . . 8
⊢
Ⅎ𝑥((𝑥 ∈ 𝐴 ↦ 𝐶)‘𝑦) = 𝐷 |
| 14 | 11, 13 | nfim 1896 |
. . . . . . 7
⊢
Ⅎ𝑥((𝜑 ∧ 𝑦 ∈ 𝐴) → ((𝑥 ∈ 𝐴 ↦ 𝐶)‘𝑦) = 𝐷) |
| 15 | | eleq1w 2824 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) |
| 16 | 15 | anbi2d 630 |
. . . . . . . . 9
⊢ (𝑥 = 𝑦 → ((𝜑 ∧ 𝑥 ∈ 𝐴) ↔ (𝜑 ∧ 𝑦 ∈ 𝐴))) |
| 17 | 16 | imbi1d 341 |
. . . . . . . 8
⊢ (𝑥 = 𝑦 → (((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝑥 ∈ 𝐴 ↦ 𝐶)‘𝑥) = 𝐶) ↔ ((𝜑 ∧ 𝑦 ∈ 𝐴) → ((𝑥 ∈ 𝐴 ↦ 𝐶)‘𝑥) = 𝐶))) |
| 18 | 15 | anbi1d 631 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑦 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ↔ (𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴))) |
| 19 | | anidm 564 |
. . . . . . . . . . . 12
⊢ ((𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ↔ 𝑦 ∈ 𝐴) |
| 20 | 18, 19 | bitrdi 287 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑦 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ↔ 𝑦 ∈ 𝐴)) |
| 21 | 20 | anbi2d 630 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑦 → ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) ↔ (𝜑 ∧ 𝑦 ∈ 𝐴))) |
| 22 | | fveq2 6906 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑦 → ((𝑥 ∈ 𝐴 ↦ 𝐶)‘𝑥) = ((𝑥 ∈ 𝐴 ↦ 𝐶)‘𝑦)) |
| 23 | 22 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝑥 = 𝑦 ∧ (𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴))) → ((𝑥 ∈ 𝐴 ↦ 𝐶)‘𝑥) = ((𝑥 ∈ 𝐴 ↦ 𝐶)‘𝑦)) |
| 24 | | dom2d.2 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝐶 = 𝐷 ↔ 𝑥 = 𝑦))) |
| 25 | 24 | imp 406 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → (𝐶 = 𝐷 ↔ 𝑥 = 𝑦)) |
| 26 | 25 | biimparc 479 |
. . . . . . . . . . . 12
⊢ ((𝑥 = 𝑦 ∧ (𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴))) → 𝐶 = 𝐷) |
| 27 | 23, 26 | eqeq12d 2753 |
. . . . . . . . . . 11
⊢ ((𝑥 = 𝑦 ∧ (𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴))) → (((𝑥 ∈ 𝐴 ↦ 𝐶)‘𝑥) = 𝐶 ↔ ((𝑥 ∈ 𝐴 ↦ 𝐶)‘𝑦) = 𝐷)) |
| 28 | 27 | ex 412 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑦 → ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → (((𝑥 ∈ 𝐴 ↦ 𝐶)‘𝑥) = 𝐶 ↔ ((𝑥 ∈ 𝐴 ↦ 𝐶)‘𝑦) = 𝐷))) |
| 29 | 21, 28 | sylbird 260 |
. . . . . . . . 9
⊢ (𝑥 = 𝑦 → ((𝜑 ∧ 𝑦 ∈ 𝐴) → (((𝑥 ∈ 𝐴 ↦ 𝐶)‘𝑥) = 𝐶 ↔ ((𝑥 ∈ 𝐴 ↦ 𝐶)‘𝑦) = 𝐷))) |
| 30 | 29 | pm5.74d 273 |
. . . . . . . 8
⊢ (𝑥 = 𝑦 → (((𝜑 ∧ 𝑦 ∈ 𝐴) → ((𝑥 ∈ 𝐴 ↦ 𝐶)‘𝑥) = 𝐶) ↔ ((𝜑 ∧ 𝑦 ∈ 𝐴) → ((𝑥 ∈ 𝐴 ↦ 𝐶)‘𝑦) = 𝐷))) |
| 31 | 17, 30 | bitrd 279 |
. . . . . . 7
⊢ (𝑥 = 𝑦 → (((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝑥 ∈ 𝐴 ↦ 𝐶)‘𝑥) = 𝐶) ↔ ((𝜑 ∧ 𝑦 ∈ 𝐴) → ((𝑥 ∈ 𝐴 ↦ 𝐶)‘𝑦) = 𝐷))) |
| 32 | 14, 31, 9 | chvarfv 2240 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → ((𝑥 ∈ 𝐴 ↦ 𝐶)‘𝑦) = 𝐷) |
| 33 | 32 | adantrl 716 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → ((𝑥 ∈ 𝐴 ↦ 𝐶)‘𝑦) = 𝐷) |
| 34 | 10, 33 | eqeq12d 2753 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → (((𝑥 ∈ 𝐴 ↦ 𝐶)‘𝑥) = ((𝑥 ∈ 𝐴 ↦ 𝐶)‘𝑦) ↔ 𝐶 = 𝐷)) |
| 35 | 25 | biimpd 229 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → (𝐶 = 𝐷 → 𝑥 = 𝑦)) |
| 36 | 34, 35 | sylbid 240 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → (((𝑥 ∈ 𝐴 ↦ 𝐶)‘𝑥) = ((𝑥 ∈ 𝐴 ↦ 𝐶)‘𝑦) → 𝑥 = 𝑦)) |
| 37 | 36 | ralrimivva 3202 |
. 2
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (((𝑥 ∈ 𝐴 ↦ 𝐶)‘𝑥) = ((𝑥 ∈ 𝐴 ↦ 𝐶)‘𝑦) → 𝑥 = 𝑦)) |
| 38 | | nfmpt1 5250 |
. . 3
⊢
Ⅎ𝑥(𝑥 ∈ 𝐴 ↦ 𝐶) |
| 39 | | nfcv 2905 |
. . 3
⊢
Ⅎ𝑦(𝑥 ∈ 𝐴 ↦ 𝐶) |
| 40 | 38, 39 | dff13f 7276 |
. 2
⊢ ((𝑥 ∈ 𝐴 ↦ 𝐶):𝐴–1-1→𝐵 ↔ ((𝑥 ∈ 𝐴 ↦ 𝐶):𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (((𝑥 ∈ 𝐴 ↦ 𝐶)‘𝑥) = ((𝑥 ∈ 𝐴 ↦ 𝐶)‘𝑦) → 𝑥 = 𝑦))) |
| 41 | 5, 37, 40 | sylanbrc 583 |
1
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶):𝐴–1-1→𝐵) |