MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cncls2 Structured version   Visualization version   GIF version

Theorem cncls2 23160
Description: Continuity in terms of closure. (Contributed by Mario Carneiro, 25-Aug-2015.)
Assertion
Ref Expression
cncls2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑥 ∈ 𝒫 𝑌((cls‘𝐽)‘(𝐹𝑥)) ⊆ (𝐹 “ ((cls‘𝐾)‘𝑥)))))
Distinct variable groups:   𝑥,𝐹   𝑥,𝐽   𝑥,𝐾   𝑥,𝑋   𝑥,𝑌

Proof of Theorem cncls2
StepHypRef Expression
1 cnf2 23136 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹:𝑋𝑌)
213expia 1121 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹:𝑋𝑌))
3 elpwi 4570 . . . . . . 7 (𝑥 ∈ 𝒫 𝑌𝑥𝑌)
43adantl 481 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑥 ∈ 𝒫 𝑌) → 𝑥𝑌)
5 toponuni 22801 . . . . . . 7 (𝐾 ∈ (TopOn‘𝑌) → 𝑌 = 𝐾)
65ad2antlr 727 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑥 ∈ 𝒫 𝑌) → 𝑌 = 𝐾)
74, 6sseqtrd 3983 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑥 ∈ 𝒫 𝑌) → 𝑥 𝐾)
8 eqid 2729 . . . . . . 7 𝐾 = 𝐾
98cncls2i 23157 . . . . . 6 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑥 𝐾) → ((cls‘𝐽)‘(𝐹𝑥)) ⊆ (𝐹 “ ((cls‘𝐾)‘𝑥)))
109expcom 413 . . . . 5 (𝑥 𝐾 → (𝐹 ∈ (𝐽 Cn 𝐾) → ((cls‘𝐽)‘(𝐹𝑥)) ⊆ (𝐹 “ ((cls‘𝐾)‘𝑥))))
117, 10syl 17 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑥 ∈ 𝒫 𝑌) → (𝐹 ∈ (𝐽 Cn 𝐾) → ((cls‘𝐽)‘(𝐹𝑥)) ⊆ (𝐹 “ ((cls‘𝐾)‘𝑥))))
1211ralrimdva 3133 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) → ∀𝑥 ∈ 𝒫 𝑌((cls‘𝐽)‘(𝐹𝑥)) ⊆ (𝐹 “ ((cls‘𝐾)‘𝑥))))
132, 12jcad 512 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) → (𝐹:𝑋𝑌 ∧ ∀𝑥 ∈ 𝒫 𝑌((cls‘𝐽)‘(𝐹𝑥)) ⊆ (𝐹 “ ((cls‘𝐾)‘𝑥)))))
148cldss2 22917 . . . . . . . . 9 (Clsd‘𝐾) ⊆ 𝒫 𝐾
155ad2antlr 727 . . . . . . . . . 10 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) → 𝑌 = 𝐾)
1615pweqd 4580 . . . . . . . . 9 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) → 𝒫 𝑌 = 𝒫 𝐾)
1714, 16sseqtrrid 3990 . . . . . . . 8 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) → (Clsd‘𝐾) ⊆ 𝒫 𝑌)
1817sseld 3945 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) → (𝑥 ∈ (Clsd‘𝐾) → 𝑥 ∈ 𝒫 𝑌))
1918imim1d 82 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) → ((𝑥 ∈ 𝒫 𝑌 → ((cls‘𝐽)‘(𝐹𝑥)) ⊆ (𝐹 “ ((cls‘𝐾)‘𝑥))) → (𝑥 ∈ (Clsd‘𝐾) → ((cls‘𝐽)‘(𝐹𝑥)) ⊆ (𝐹 “ ((cls‘𝐾)‘𝑥)))))
20 cldcls 22929 . . . . . . . . . . . 12 (𝑥 ∈ (Clsd‘𝐾) → ((cls‘𝐾)‘𝑥) = 𝑥)
2120ad2antll 729 . . . . . . . . . . 11 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐹:𝑋𝑌𝑥 ∈ (Clsd‘𝐾))) → ((cls‘𝐾)‘𝑥) = 𝑥)
2221imaeq2d 6031 . . . . . . . . . 10 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐹:𝑋𝑌𝑥 ∈ (Clsd‘𝐾))) → (𝐹 “ ((cls‘𝐾)‘𝑥)) = (𝐹𝑥))
2322sseq2d 3979 . . . . . . . . 9 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐹:𝑋𝑌𝑥 ∈ (Clsd‘𝐾))) → (((cls‘𝐽)‘(𝐹𝑥)) ⊆ (𝐹 “ ((cls‘𝐾)‘𝑥)) ↔ ((cls‘𝐽)‘(𝐹𝑥)) ⊆ (𝐹𝑥)))
24 topontop 22800 . . . . . . . . . . 11 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
2524ad2antrr 726 . . . . . . . . . 10 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐹:𝑋𝑌𝑥 ∈ (Clsd‘𝐾))) → 𝐽 ∈ Top)
26 cnvimass 6053 . . . . . . . . . . 11 (𝐹𝑥) ⊆ dom 𝐹
27 fdm 6697 . . . . . . . . . . . . 13 (𝐹:𝑋𝑌 → dom 𝐹 = 𝑋)
2827ad2antrl 728 . . . . . . . . . . . 12 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐹:𝑋𝑌𝑥 ∈ (Clsd‘𝐾))) → dom 𝐹 = 𝑋)
29 toponuni 22801 . . . . . . . . . . . . 13 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
3029ad2antrr 726 . . . . . . . . . . . 12 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐹:𝑋𝑌𝑥 ∈ (Clsd‘𝐾))) → 𝑋 = 𝐽)
3128, 30eqtrd 2764 . . . . . . . . . . 11 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐹:𝑋𝑌𝑥 ∈ (Clsd‘𝐾))) → dom 𝐹 = 𝐽)
3226, 31sseqtrid 3989 . . . . . . . . . 10 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐹:𝑋𝑌𝑥 ∈ (Clsd‘𝐾))) → (𝐹𝑥) ⊆ 𝐽)
33 eqid 2729 . . . . . . . . . . 11 𝐽 = 𝐽
3433iscld4 22952 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ (𝐹𝑥) ⊆ 𝐽) → ((𝐹𝑥) ∈ (Clsd‘𝐽) ↔ ((cls‘𝐽)‘(𝐹𝑥)) ⊆ (𝐹𝑥)))
3525, 32, 34syl2anc 584 . . . . . . . . 9 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐹:𝑋𝑌𝑥 ∈ (Clsd‘𝐾))) → ((𝐹𝑥) ∈ (Clsd‘𝐽) ↔ ((cls‘𝐽)‘(𝐹𝑥)) ⊆ (𝐹𝑥)))
3623, 35bitr4d 282 . . . . . . . 8 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐹:𝑋𝑌𝑥 ∈ (Clsd‘𝐾))) → (((cls‘𝐽)‘(𝐹𝑥)) ⊆ (𝐹 “ ((cls‘𝐾)‘𝑥)) ↔ (𝐹𝑥) ∈ (Clsd‘𝐽)))
3736expr 456 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) → (𝑥 ∈ (Clsd‘𝐾) → (((cls‘𝐽)‘(𝐹𝑥)) ⊆ (𝐹 “ ((cls‘𝐾)‘𝑥)) ↔ (𝐹𝑥) ∈ (Clsd‘𝐽))))
3837pm5.74d 273 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) → ((𝑥 ∈ (Clsd‘𝐾) → ((cls‘𝐽)‘(𝐹𝑥)) ⊆ (𝐹 “ ((cls‘𝐾)‘𝑥))) ↔ (𝑥 ∈ (Clsd‘𝐾) → (𝐹𝑥) ∈ (Clsd‘𝐽))))
3919, 38sylibd 239 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) → ((𝑥 ∈ 𝒫 𝑌 → ((cls‘𝐽)‘(𝐹𝑥)) ⊆ (𝐹 “ ((cls‘𝐾)‘𝑥))) → (𝑥 ∈ (Clsd‘𝐾) → (𝐹𝑥) ∈ (Clsd‘𝐽))))
4039ralimdv2 3142 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) → (∀𝑥 ∈ 𝒫 𝑌((cls‘𝐽)‘(𝐹𝑥)) ⊆ (𝐹 “ ((cls‘𝐾)‘𝑥)) → ∀𝑥 ∈ (Clsd‘𝐾)(𝐹𝑥) ∈ (Clsd‘𝐽)))
4140imdistanda 571 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → ((𝐹:𝑋𝑌 ∧ ∀𝑥 ∈ 𝒫 𝑌((cls‘𝐽)‘(𝐹𝑥)) ⊆ (𝐹 “ ((cls‘𝐾)‘𝑥))) → (𝐹:𝑋𝑌 ∧ ∀𝑥 ∈ (Clsd‘𝐾)(𝐹𝑥) ∈ (Clsd‘𝐽))))
42 iscncl 23156 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑥 ∈ (Clsd‘𝐾)(𝐹𝑥) ∈ (Clsd‘𝐽))))
4341, 42sylibrd 259 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → ((𝐹:𝑋𝑌 ∧ ∀𝑥 ∈ 𝒫 𝑌((cls‘𝐽)‘(𝐹𝑥)) ⊆ (𝐹 “ ((cls‘𝐾)‘𝑥))) → 𝐹 ∈ (𝐽 Cn 𝐾)))
4413, 43impbid 212 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑥 ∈ 𝒫 𝑌((cls‘𝐽)‘(𝐹𝑥)) ⊆ (𝐹 “ ((cls‘𝐾)‘𝑥)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  wss 3914  𝒫 cpw 4563   cuni 4871  ccnv 5637  dom cdm 5638  cima 5641  wf 6507  cfv 6511  (class class class)co 7387  Topctop 22780  TopOnctopon 22797  Clsdccld 22903  clsccl 22905   Cn ccn 23111
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-map 8801  df-top 22781  df-topon 22798  df-cld 22906  df-cls 22908  df-cn 23114
This theorem is referenced by:  cncls  23161
  Copyright terms: Public domain W3C validator