MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cncls2 Structured version   Visualization version   GIF version

Theorem cncls2 21883
Description: Continuity in terms of closure. (Contributed by Mario Carneiro, 25-Aug-2015.)
Assertion
Ref Expression
cncls2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑥 ∈ 𝒫 𝑌((cls‘𝐽)‘(𝐹𝑥)) ⊆ (𝐹 “ ((cls‘𝐾)‘𝑥)))))
Distinct variable groups:   𝑥,𝐹   𝑥,𝐽   𝑥,𝐾   𝑥,𝑋   𝑥,𝑌

Proof of Theorem cncls2
StepHypRef Expression
1 cnf2 21859 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹:𝑋𝑌)
213expia 1117 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹:𝑋𝑌))
3 elpwi 4550 . . . . . . 7 (𝑥 ∈ 𝒫 𝑌𝑥𝑌)
43adantl 484 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑥 ∈ 𝒫 𝑌) → 𝑥𝑌)
5 toponuni 21524 . . . . . . 7 (𝐾 ∈ (TopOn‘𝑌) → 𝑌 = 𝐾)
65ad2antlr 725 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑥 ∈ 𝒫 𝑌) → 𝑌 = 𝐾)
74, 6sseqtrd 4009 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑥 ∈ 𝒫 𝑌) → 𝑥 𝐾)
8 eqid 2823 . . . . . . 7 𝐾 = 𝐾
98cncls2i 21880 . . . . . 6 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑥 𝐾) → ((cls‘𝐽)‘(𝐹𝑥)) ⊆ (𝐹 “ ((cls‘𝐾)‘𝑥)))
109expcom 416 . . . . 5 (𝑥 𝐾 → (𝐹 ∈ (𝐽 Cn 𝐾) → ((cls‘𝐽)‘(𝐹𝑥)) ⊆ (𝐹 “ ((cls‘𝐾)‘𝑥))))
117, 10syl 17 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑥 ∈ 𝒫 𝑌) → (𝐹 ∈ (𝐽 Cn 𝐾) → ((cls‘𝐽)‘(𝐹𝑥)) ⊆ (𝐹 “ ((cls‘𝐾)‘𝑥))))
1211ralrimdva 3191 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) → ∀𝑥 ∈ 𝒫 𝑌((cls‘𝐽)‘(𝐹𝑥)) ⊆ (𝐹 “ ((cls‘𝐾)‘𝑥))))
132, 12jcad 515 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) → (𝐹:𝑋𝑌 ∧ ∀𝑥 ∈ 𝒫 𝑌((cls‘𝐽)‘(𝐹𝑥)) ⊆ (𝐹 “ ((cls‘𝐾)‘𝑥)))))
148cldss2 21640 . . . . . . . . 9 (Clsd‘𝐾) ⊆ 𝒫 𝐾
155ad2antlr 725 . . . . . . . . . 10 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) → 𝑌 = 𝐾)
1615pweqd 4560 . . . . . . . . 9 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) → 𝒫 𝑌 = 𝒫 𝐾)
1714, 16sseqtrrid 4022 . . . . . . . 8 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) → (Clsd‘𝐾) ⊆ 𝒫 𝑌)
1817sseld 3968 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) → (𝑥 ∈ (Clsd‘𝐾) → 𝑥 ∈ 𝒫 𝑌))
1918imim1d 82 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) → ((𝑥 ∈ 𝒫 𝑌 → ((cls‘𝐽)‘(𝐹𝑥)) ⊆ (𝐹 “ ((cls‘𝐾)‘𝑥))) → (𝑥 ∈ (Clsd‘𝐾) → ((cls‘𝐽)‘(𝐹𝑥)) ⊆ (𝐹 “ ((cls‘𝐾)‘𝑥)))))
20 cldcls 21652 . . . . . . . . . . . 12 (𝑥 ∈ (Clsd‘𝐾) → ((cls‘𝐾)‘𝑥) = 𝑥)
2120ad2antll 727 . . . . . . . . . . 11 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐹:𝑋𝑌𝑥 ∈ (Clsd‘𝐾))) → ((cls‘𝐾)‘𝑥) = 𝑥)
2221imaeq2d 5931 . . . . . . . . . 10 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐹:𝑋𝑌𝑥 ∈ (Clsd‘𝐾))) → (𝐹 “ ((cls‘𝐾)‘𝑥)) = (𝐹𝑥))
2322sseq2d 4001 . . . . . . . . 9 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐹:𝑋𝑌𝑥 ∈ (Clsd‘𝐾))) → (((cls‘𝐽)‘(𝐹𝑥)) ⊆ (𝐹 “ ((cls‘𝐾)‘𝑥)) ↔ ((cls‘𝐽)‘(𝐹𝑥)) ⊆ (𝐹𝑥)))
24 topontop 21523 . . . . . . . . . . 11 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
2524ad2antrr 724 . . . . . . . . . 10 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐹:𝑋𝑌𝑥 ∈ (Clsd‘𝐾))) → 𝐽 ∈ Top)
26 cnvimass 5951 . . . . . . . . . . 11 (𝐹𝑥) ⊆ dom 𝐹
27 fdm 6524 . . . . . . . . . . . . 13 (𝐹:𝑋𝑌 → dom 𝐹 = 𝑋)
2827ad2antrl 726 . . . . . . . . . . . 12 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐹:𝑋𝑌𝑥 ∈ (Clsd‘𝐾))) → dom 𝐹 = 𝑋)
29 toponuni 21524 . . . . . . . . . . . . 13 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
3029ad2antrr 724 . . . . . . . . . . . 12 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐹:𝑋𝑌𝑥 ∈ (Clsd‘𝐾))) → 𝑋 = 𝐽)
3128, 30eqtrd 2858 . . . . . . . . . . 11 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐹:𝑋𝑌𝑥 ∈ (Clsd‘𝐾))) → dom 𝐹 = 𝐽)
3226, 31sseqtrid 4021 . . . . . . . . . 10 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐹:𝑋𝑌𝑥 ∈ (Clsd‘𝐾))) → (𝐹𝑥) ⊆ 𝐽)
33 eqid 2823 . . . . . . . . . . 11 𝐽 = 𝐽
3433iscld4 21675 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ (𝐹𝑥) ⊆ 𝐽) → ((𝐹𝑥) ∈ (Clsd‘𝐽) ↔ ((cls‘𝐽)‘(𝐹𝑥)) ⊆ (𝐹𝑥)))
3525, 32, 34syl2anc 586 . . . . . . . . 9 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐹:𝑋𝑌𝑥 ∈ (Clsd‘𝐾))) → ((𝐹𝑥) ∈ (Clsd‘𝐽) ↔ ((cls‘𝐽)‘(𝐹𝑥)) ⊆ (𝐹𝑥)))
3623, 35bitr4d 284 . . . . . . . 8 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐹:𝑋𝑌𝑥 ∈ (Clsd‘𝐾))) → (((cls‘𝐽)‘(𝐹𝑥)) ⊆ (𝐹 “ ((cls‘𝐾)‘𝑥)) ↔ (𝐹𝑥) ∈ (Clsd‘𝐽)))
3736expr 459 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) → (𝑥 ∈ (Clsd‘𝐾) → (((cls‘𝐽)‘(𝐹𝑥)) ⊆ (𝐹 “ ((cls‘𝐾)‘𝑥)) ↔ (𝐹𝑥) ∈ (Clsd‘𝐽))))
3837pm5.74d 275 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) → ((𝑥 ∈ (Clsd‘𝐾) → ((cls‘𝐽)‘(𝐹𝑥)) ⊆ (𝐹 “ ((cls‘𝐾)‘𝑥))) ↔ (𝑥 ∈ (Clsd‘𝐾) → (𝐹𝑥) ∈ (Clsd‘𝐽))))
3919, 38sylibd 241 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) → ((𝑥 ∈ 𝒫 𝑌 → ((cls‘𝐽)‘(𝐹𝑥)) ⊆ (𝐹 “ ((cls‘𝐾)‘𝑥))) → (𝑥 ∈ (Clsd‘𝐾) → (𝐹𝑥) ∈ (Clsd‘𝐽))))
4039ralimdv2 3178 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) → (∀𝑥 ∈ 𝒫 𝑌((cls‘𝐽)‘(𝐹𝑥)) ⊆ (𝐹 “ ((cls‘𝐾)‘𝑥)) → ∀𝑥 ∈ (Clsd‘𝐾)(𝐹𝑥) ∈ (Clsd‘𝐽)))
4140imdistanda 574 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → ((𝐹:𝑋𝑌 ∧ ∀𝑥 ∈ 𝒫 𝑌((cls‘𝐽)‘(𝐹𝑥)) ⊆ (𝐹 “ ((cls‘𝐾)‘𝑥))) → (𝐹:𝑋𝑌 ∧ ∀𝑥 ∈ (Clsd‘𝐾)(𝐹𝑥) ∈ (Clsd‘𝐽))))
42 iscncl 21879 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑥 ∈ (Clsd‘𝐾)(𝐹𝑥) ∈ (Clsd‘𝐽))))
4341, 42sylibrd 261 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → ((𝐹:𝑋𝑌 ∧ ∀𝑥 ∈ 𝒫 𝑌((cls‘𝐽)‘(𝐹𝑥)) ⊆ (𝐹 “ ((cls‘𝐾)‘𝑥))) → 𝐹 ∈ (𝐽 Cn 𝐾)))
4413, 43impbid 214 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑥 ∈ 𝒫 𝑌((cls‘𝐽)‘(𝐹𝑥)) ⊆ (𝐹 “ ((cls‘𝐾)‘𝑥)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wral 3140  wss 3938  𝒫 cpw 4541   cuni 4840  ccnv 5556  dom cdm 5557  cima 5560  wf 6353  cfv 6357  (class class class)co 7158  Topctop 21503  TopOnctopon 21520  Clsdccld 21626  clsccl 21628   Cn ccn 21834
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-iin 4924  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-ov 7161  df-oprab 7162  df-mpo 7163  df-map 8410  df-top 21504  df-topon 21521  df-cld 21629  df-cls 21631  df-cn 21837
This theorem is referenced by:  cncls  21884
  Copyright terms: Public domain W3C validator