MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cncls2 Structured version   Visualization version   GIF version

Theorem cncls2 23167
Description: Continuity in terms of closure. (Contributed by Mario Carneiro, 25-Aug-2015.)
Assertion
Ref Expression
cncls2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑥 ∈ 𝒫 𝑌((cls‘𝐽)‘(𝐹𝑥)) ⊆ (𝐹 “ ((cls‘𝐾)‘𝑥)))))
Distinct variable groups:   𝑥,𝐹   𝑥,𝐽   𝑥,𝐾   𝑥,𝑋   𝑥,𝑌

Proof of Theorem cncls2
StepHypRef Expression
1 cnf2 23143 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹:𝑋𝑌)
213expia 1121 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹:𝑋𝑌))
3 elpwi 4573 . . . . . . 7 (𝑥 ∈ 𝒫 𝑌𝑥𝑌)
43adantl 481 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑥 ∈ 𝒫 𝑌) → 𝑥𝑌)
5 toponuni 22808 . . . . . . 7 (𝐾 ∈ (TopOn‘𝑌) → 𝑌 = 𝐾)
65ad2antlr 727 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑥 ∈ 𝒫 𝑌) → 𝑌 = 𝐾)
74, 6sseqtrd 3986 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑥 ∈ 𝒫 𝑌) → 𝑥 𝐾)
8 eqid 2730 . . . . . . 7 𝐾 = 𝐾
98cncls2i 23164 . . . . . 6 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑥 𝐾) → ((cls‘𝐽)‘(𝐹𝑥)) ⊆ (𝐹 “ ((cls‘𝐾)‘𝑥)))
109expcom 413 . . . . 5 (𝑥 𝐾 → (𝐹 ∈ (𝐽 Cn 𝐾) → ((cls‘𝐽)‘(𝐹𝑥)) ⊆ (𝐹 “ ((cls‘𝐾)‘𝑥))))
117, 10syl 17 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑥 ∈ 𝒫 𝑌) → (𝐹 ∈ (𝐽 Cn 𝐾) → ((cls‘𝐽)‘(𝐹𝑥)) ⊆ (𝐹 “ ((cls‘𝐾)‘𝑥))))
1211ralrimdva 3134 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) → ∀𝑥 ∈ 𝒫 𝑌((cls‘𝐽)‘(𝐹𝑥)) ⊆ (𝐹 “ ((cls‘𝐾)‘𝑥))))
132, 12jcad 512 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) → (𝐹:𝑋𝑌 ∧ ∀𝑥 ∈ 𝒫 𝑌((cls‘𝐽)‘(𝐹𝑥)) ⊆ (𝐹 “ ((cls‘𝐾)‘𝑥)))))
148cldss2 22924 . . . . . . . . 9 (Clsd‘𝐾) ⊆ 𝒫 𝐾
155ad2antlr 727 . . . . . . . . . 10 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) → 𝑌 = 𝐾)
1615pweqd 4583 . . . . . . . . 9 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) → 𝒫 𝑌 = 𝒫 𝐾)
1714, 16sseqtrrid 3993 . . . . . . . 8 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) → (Clsd‘𝐾) ⊆ 𝒫 𝑌)
1817sseld 3948 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) → (𝑥 ∈ (Clsd‘𝐾) → 𝑥 ∈ 𝒫 𝑌))
1918imim1d 82 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) → ((𝑥 ∈ 𝒫 𝑌 → ((cls‘𝐽)‘(𝐹𝑥)) ⊆ (𝐹 “ ((cls‘𝐾)‘𝑥))) → (𝑥 ∈ (Clsd‘𝐾) → ((cls‘𝐽)‘(𝐹𝑥)) ⊆ (𝐹 “ ((cls‘𝐾)‘𝑥)))))
20 cldcls 22936 . . . . . . . . . . . 12 (𝑥 ∈ (Clsd‘𝐾) → ((cls‘𝐾)‘𝑥) = 𝑥)
2120ad2antll 729 . . . . . . . . . . 11 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐹:𝑋𝑌𝑥 ∈ (Clsd‘𝐾))) → ((cls‘𝐾)‘𝑥) = 𝑥)
2221imaeq2d 6034 . . . . . . . . . 10 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐹:𝑋𝑌𝑥 ∈ (Clsd‘𝐾))) → (𝐹 “ ((cls‘𝐾)‘𝑥)) = (𝐹𝑥))
2322sseq2d 3982 . . . . . . . . 9 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐹:𝑋𝑌𝑥 ∈ (Clsd‘𝐾))) → (((cls‘𝐽)‘(𝐹𝑥)) ⊆ (𝐹 “ ((cls‘𝐾)‘𝑥)) ↔ ((cls‘𝐽)‘(𝐹𝑥)) ⊆ (𝐹𝑥)))
24 topontop 22807 . . . . . . . . . . 11 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
2524ad2antrr 726 . . . . . . . . . 10 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐹:𝑋𝑌𝑥 ∈ (Clsd‘𝐾))) → 𝐽 ∈ Top)
26 cnvimass 6056 . . . . . . . . . . 11 (𝐹𝑥) ⊆ dom 𝐹
27 fdm 6700 . . . . . . . . . . . . 13 (𝐹:𝑋𝑌 → dom 𝐹 = 𝑋)
2827ad2antrl 728 . . . . . . . . . . . 12 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐹:𝑋𝑌𝑥 ∈ (Clsd‘𝐾))) → dom 𝐹 = 𝑋)
29 toponuni 22808 . . . . . . . . . . . . 13 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
3029ad2antrr 726 . . . . . . . . . . . 12 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐹:𝑋𝑌𝑥 ∈ (Clsd‘𝐾))) → 𝑋 = 𝐽)
3128, 30eqtrd 2765 . . . . . . . . . . 11 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐹:𝑋𝑌𝑥 ∈ (Clsd‘𝐾))) → dom 𝐹 = 𝐽)
3226, 31sseqtrid 3992 . . . . . . . . . 10 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐹:𝑋𝑌𝑥 ∈ (Clsd‘𝐾))) → (𝐹𝑥) ⊆ 𝐽)
33 eqid 2730 . . . . . . . . . . 11 𝐽 = 𝐽
3433iscld4 22959 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ (𝐹𝑥) ⊆ 𝐽) → ((𝐹𝑥) ∈ (Clsd‘𝐽) ↔ ((cls‘𝐽)‘(𝐹𝑥)) ⊆ (𝐹𝑥)))
3525, 32, 34syl2anc 584 . . . . . . . . 9 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐹:𝑋𝑌𝑥 ∈ (Clsd‘𝐾))) → ((𝐹𝑥) ∈ (Clsd‘𝐽) ↔ ((cls‘𝐽)‘(𝐹𝑥)) ⊆ (𝐹𝑥)))
3623, 35bitr4d 282 . . . . . . . 8 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐹:𝑋𝑌𝑥 ∈ (Clsd‘𝐾))) → (((cls‘𝐽)‘(𝐹𝑥)) ⊆ (𝐹 “ ((cls‘𝐾)‘𝑥)) ↔ (𝐹𝑥) ∈ (Clsd‘𝐽)))
3736expr 456 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) → (𝑥 ∈ (Clsd‘𝐾) → (((cls‘𝐽)‘(𝐹𝑥)) ⊆ (𝐹 “ ((cls‘𝐾)‘𝑥)) ↔ (𝐹𝑥) ∈ (Clsd‘𝐽))))
3837pm5.74d 273 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) → ((𝑥 ∈ (Clsd‘𝐾) → ((cls‘𝐽)‘(𝐹𝑥)) ⊆ (𝐹 “ ((cls‘𝐾)‘𝑥))) ↔ (𝑥 ∈ (Clsd‘𝐾) → (𝐹𝑥) ∈ (Clsd‘𝐽))))
3919, 38sylibd 239 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) → ((𝑥 ∈ 𝒫 𝑌 → ((cls‘𝐽)‘(𝐹𝑥)) ⊆ (𝐹 “ ((cls‘𝐾)‘𝑥))) → (𝑥 ∈ (Clsd‘𝐾) → (𝐹𝑥) ∈ (Clsd‘𝐽))))
4039ralimdv2 3143 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) → (∀𝑥 ∈ 𝒫 𝑌((cls‘𝐽)‘(𝐹𝑥)) ⊆ (𝐹 “ ((cls‘𝐾)‘𝑥)) → ∀𝑥 ∈ (Clsd‘𝐾)(𝐹𝑥) ∈ (Clsd‘𝐽)))
4140imdistanda 571 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → ((𝐹:𝑋𝑌 ∧ ∀𝑥 ∈ 𝒫 𝑌((cls‘𝐽)‘(𝐹𝑥)) ⊆ (𝐹 “ ((cls‘𝐾)‘𝑥))) → (𝐹:𝑋𝑌 ∧ ∀𝑥 ∈ (Clsd‘𝐾)(𝐹𝑥) ∈ (Clsd‘𝐽))))
42 iscncl 23163 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑥 ∈ (Clsd‘𝐾)(𝐹𝑥) ∈ (Clsd‘𝐽))))
4341, 42sylibrd 259 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → ((𝐹:𝑋𝑌 ∧ ∀𝑥 ∈ 𝒫 𝑌((cls‘𝐽)‘(𝐹𝑥)) ⊆ (𝐹 “ ((cls‘𝐾)‘𝑥))) → 𝐹 ∈ (𝐽 Cn 𝐾)))
4413, 43impbid 212 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑥 ∈ 𝒫 𝑌((cls‘𝐽)‘(𝐹𝑥)) ⊆ (𝐹 “ ((cls‘𝐾)‘𝑥)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3045  wss 3917  𝒫 cpw 4566   cuni 4874  ccnv 5640  dom cdm 5641  cima 5644  wf 6510  cfv 6514  (class class class)co 7390  Topctop 22787  TopOnctopon 22804  Clsdccld 22910  clsccl 22912   Cn ccn 23118
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-map 8804  df-top 22788  df-topon 22805  df-cld 22913  df-cls 22915  df-cn 23121
This theorem is referenced by:  cncls  23168
  Copyright terms: Public domain W3C validator