Step | Hyp | Ref
| Expression |
1 | | cnf2 22745 |
. . . 4
β’ ((π½ β (TopOnβπ) β§ πΎ β (TopOnβπ) β§ πΉ β (π½ Cn πΎ)) β πΉ:πβΆπ) |
2 | 1 | 3expia 1122 |
. . 3
β’ ((π½ β (TopOnβπ) β§ πΎ β (TopOnβπ)) β (πΉ β (π½ Cn πΎ) β πΉ:πβΆπ)) |
3 | | elpwi 4609 |
. . . . . . 7
β’ (π₯ β π« π β π₯ β π) |
4 | 3 | adantl 483 |
. . . . . 6
β’ (((π½ β (TopOnβπ) β§ πΎ β (TopOnβπ)) β§ π₯ β π« π) β π₯ β π) |
5 | | toponuni 22408 |
. . . . . . 7
β’ (πΎ β (TopOnβπ) β π = βͺ πΎ) |
6 | 5 | ad2antlr 726 |
. . . . . 6
β’ (((π½ β (TopOnβπ) β§ πΎ β (TopOnβπ)) β§ π₯ β π« π) β π = βͺ πΎ) |
7 | 4, 6 | sseqtrd 4022 |
. . . . 5
β’ (((π½ β (TopOnβπ) β§ πΎ β (TopOnβπ)) β§ π₯ β π« π) β π₯ β βͺ πΎ) |
8 | | eqid 2733 |
. . . . . . 7
β’ βͺ πΎ =
βͺ πΎ |
9 | 8 | cncls2i 22766 |
. . . . . 6
β’ ((πΉ β (π½ Cn πΎ) β§ π₯ β βͺ πΎ) β ((clsβπ½)β(β‘πΉ β π₯)) β (β‘πΉ β ((clsβπΎ)βπ₯))) |
10 | 9 | expcom 415 |
. . . . 5
β’ (π₯ β βͺ πΎ
β (πΉ β (π½ Cn πΎ) β ((clsβπ½)β(β‘πΉ β π₯)) β (β‘πΉ β ((clsβπΎ)βπ₯)))) |
11 | 7, 10 | syl 17 |
. . . 4
β’ (((π½ β (TopOnβπ) β§ πΎ β (TopOnβπ)) β§ π₯ β π« π) β (πΉ β (π½ Cn πΎ) β ((clsβπ½)β(β‘πΉ β π₯)) β (β‘πΉ β ((clsβπΎ)βπ₯)))) |
12 | 11 | ralrimdva 3155 |
. . 3
β’ ((π½ β (TopOnβπ) β§ πΎ β (TopOnβπ)) β (πΉ β (π½ Cn πΎ) β βπ₯ β π« π((clsβπ½)β(β‘πΉ β π₯)) β (β‘πΉ β ((clsβπΎ)βπ₯)))) |
13 | 2, 12 | jcad 514 |
. 2
β’ ((π½ β (TopOnβπ) β§ πΎ β (TopOnβπ)) β (πΉ β (π½ Cn πΎ) β (πΉ:πβΆπ β§ βπ₯ β π« π((clsβπ½)β(β‘πΉ β π₯)) β (β‘πΉ β ((clsβπΎ)βπ₯))))) |
14 | 8 | cldss2 22526 |
. . . . . . . . 9
β’
(ClsdβπΎ)
β π« βͺ πΎ |
15 | 5 | ad2antlr 726 |
. . . . . . . . . 10
β’ (((π½ β (TopOnβπ) β§ πΎ β (TopOnβπ)) β§ πΉ:πβΆπ) β π = βͺ πΎ) |
16 | 15 | pweqd 4619 |
. . . . . . . . 9
β’ (((π½ β (TopOnβπ) β§ πΎ β (TopOnβπ)) β§ πΉ:πβΆπ) β π« π = π« βͺ
πΎ) |
17 | 14, 16 | sseqtrrid 4035 |
. . . . . . . 8
β’ (((π½ β (TopOnβπ) β§ πΎ β (TopOnβπ)) β§ πΉ:πβΆπ) β (ClsdβπΎ) β π« π) |
18 | 17 | sseld 3981 |
. . . . . . 7
β’ (((π½ β (TopOnβπ) β§ πΎ β (TopOnβπ)) β§ πΉ:πβΆπ) β (π₯ β (ClsdβπΎ) β π₯ β π« π)) |
19 | 18 | imim1d 82 |
. . . . . 6
β’ (((π½ β (TopOnβπ) β§ πΎ β (TopOnβπ)) β§ πΉ:πβΆπ) β ((π₯ β π« π β ((clsβπ½)β(β‘πΉ β π₯)) β (β‘πΉ β ((clsβπΎ)βπ₯))) β (π₯ β (ClsdβπΎ) β ((clsβπ½)β(β‘πΉ β π₯)) β (β‘πΉ β ((clsβπΎ)βπ₯))))) |
20 | | cldcls 22538 |
. . . . . . . . . . . 12
β’ (π₯ β (ClsdβπΎ) β ((clsβπΎ)βπ₯) = π₯) |
21 | 20 | ad2antll 728 |
. . . . . . . . . . 11
β’ (((π½ β (TopOnβπ) β§ πΎ β (TopOnβπ)) β§ (πΉ:πβΆπ β§ π₯ β (ClsdβπΎ))) β ((clsβπΎ)βπ₯) = π₯) |
22 | 21 | imaeq2d 6058 |
. . . . . . . . . 10
β’ (((π½ β (TopOnβπ) β§ πΎ β (TopOnβπ)) β§ (πΉ:πβΆπ β§ π₯ β (ClsdβπΎ))) β (β‘πΉ β ((clsβπΎ)βπ₯)) = (β‘πΉ β π₯)) |
23 | 22 | sseq2d 4014 |
. . . . . . . . 9
β’ (((π½ β (TopOnβπ) β§ πΎ β (TopOnβπ)) β§ (πΉ:πβΆπ β§ π₯ β (ClsdβπΎ))) β (((clsβπ½)β(β‘πΉ β π₯)) β (β‘πΉ β ((clsβπΎ)βπ₯)) β ((clsβπ½)β(β‘πΉ β π₯)) β (β‘πΉ β π₯))) |
24 | | topontop 22407 |
. . . . . . . . . . 11
β’ (π½ β (TopOnβπ) β π½ β Top) |
25 | 24 | ad2antrr 725 |
. . . . . . . . . 10
β’ (((π½ β (TopOnβπ) β§ πΎ β (TopOnβπ)) β§ (πΉ:πβΆπ β§ π₯ β (ClsdβπΎ))) β π½ β Top) |
26 | | cnvimass 6078 |
. . . . . . . . . . 11
β’ (β‘πΉ β π₯) β dom πΉ |
27 | | fdm 6724 |
. . . . . . . . . . . . 13
β’ (πΉ:πβΆπ β dom πΉ = π) |
28 | 27 | ad2antrl 727 |
. . . . . . . . . . . 12
β’ (((π½ β (TopOnβπ) β§ πΎ β (TopOnβπ)) β§ (πΉ:πβΆπ β§ π₯ β (ClsdβπΎ))) β dom πΉ = π) |
29 | | toponuni 22408 |
. . . . . . . . . . . . 13
β’ (π½ β (TopOnβπ) β π = βͺ π½) |
30 | 29 | ad2antrr 725 |
. . . . . . . . . . . 12
β’ (((π½ β (TopOnβπ) β§ πΎ β (TopOnβπ)) β§ (πΉ:πβΆπ β§ π₯ β (ClsdβπΎ))) β π = βͺ π½) |
31 | 28, 30 | eqtrd 2773 |
. . . . . . . . . . 11
β’ (((π½ β (TopOnβπ) β§ πΎ β (TopOnβπ)) β§ (πΉ:πβΆπ β§ π₯ β (ClsdβπΎ))) β dom πΉ = βͺ π½) |
32 | 26, 31 | sseqtrid 4034 |
. . . . . . . . . 10
β’ (((π½ β (TopOnβπ) β§ πΎ β (TopOnβπ)) β§ (πΉ:πβΆπ β§ π₯ β (ClsdβπΎ))) β (β‘πΉ β π₯) β βͺ π½) |
33 | | eqid 2733 |
. . . . . . . . . . 11
β’ βͺ π½ =
βͺ π½ |
34 | 33 | iscld4 22561 |
. . . . . . . . . 10
β’ ((π½ β Top β§ (β‘πΉ β π₯) β βͺ π½) β ((β‘πΉ β π₯) β (Clsdβπ½) β ((clsβπ½)β(β‘πΉ β π₯)) β (β‘πΉ β π₯))) |
35 | 25, 32, 34 | syl2anc 585 |
. . . . . . . . 9
β’ (((π½ β (TopOnβπ) β§ πΎ β (TopOnβπ)) β§ (πΉ:πβΆπ β§ π₯ β (ClsdβπΎ))) β ((β‘πΉ β π₯) β (Clsdβπ½) β ((clsβπ½)β(β‘πΉ β π₯)) β (β‘πΉ β π₯))) |
36 | 23, 35 | bitr4d 282 |
. . . . . . . 8
β’ (((π½ β (TopOnβπ) β§ πΎ β (TopOnβπ)) β§ (πΉ:πβΆπ β§ π₯ β (ClsdβπΎ))) β (((clsβπ½)β(β‘πΉ β π₯)) β (β‘πΉ β ((clsβπΎ)βπ₯)) β (β‘πΉ β π₯) β (Clsdβπ½))) |
37 | 36 | expr 458 |
. . . . . . 7
β’ (((π½ β (TopOnβπ) β§ πΎ β (TopOnβπ)) β§ πΉ:πβΆπ) β (π₯ β (ClsdβπΎ) β (((clsβπ½)β(β‘πΉ β π₯)) β (β‘πΉ β ((clsβπΎ)βπ₯)) β (β‘πΉ β π₯) β (Clsdβπ½)))) |
38 | 37 | pm5.74d 273 |
. . . . . 6
β’ (((π½ β (TopOnβπ) β§ πΎ β (TopOnβπ)) β§ πΉ:πβΆπ) β ((π₯ β (ClsdβπΎ) β ((clsβπ½)β(β‘πΉ β π₯)) β (β‘πΉ β ((clsβπΎ)βπ₯))) β (π₯ β (ClsdβπΎ) β (β‘πΉ β π₯) β (Clsdβπ½)))) |
39 | 19, 38 | sylibd 238 |
. . . . 5
β’ (((π½ β (TopOnβπ) β§ πΎ β (TopOnβπ)) β§ πΉ:πβΆπ) β ((π₯ β π« π β ((clsβπ½)β(β‘πΉ β π₯)) β (β‘πΉ β ((clsβπΎ)βπ₯))) β (π₯ β (ClsdβπΎ) β (β‘πΉ β π₯) β (Clsdβπ½)))) |
40 | 39 | ralimdv2 3164 |
. . . 4
β’ (((π½ β (TopOnβπ) β§ πΎ β (TopOnβπ)) β§ πΉ:πβΆπ) β (βπ₯ β π« π((clsβπ½)β(β‘πΉ β π₯)) β (β‘πΉ β ((clsβπΎ)βπ₯)) β βπ₯ β (ClsdβπΎ)(β‘πΉ β π₯) β (Clsdβπ½))) |
41 | 40 | imdistanda 573 |
. . 3
β’ ((π½ β (TopOnβπ) β§ πΎ β (TopOnβπ)) β ((πΉ:πβΆπ β§ βπ₯ β π« π((clsβπ½)β(β‘πΉ β π₯)) β (β‘πΉ β ((clsβπΎ)βπ₯))) β (πΉ:πβΆπ β§ βπ₯ β (ClsdβπΎ)(β‘πΉ β π₯) β (Clsdβπ½)))) |
42 | | iscncl 22765 |
. . 3
β’ ((π½ β (TopOnβπ) β§ πΎ β (TopOnβπ)) β (πΉ β (π½ Cn πΎ) β (πΉ:πβΆπ β§ βπ₯ β (ClsdβπΎ)(β‘πΉ β π₯) β (Clsdβπ½)))) |
43 | 41, 42 | sylibrd 259 |
. 2
β’ ((π½ β (TopOnβπ) β§ πΎ β (TopOnβπ)) β ((πΉ:πβΆπ β§ βπ₯ β π« π((clsβπ½)β(β‘πΉ β π₯)) β (β‘πΉ β ((clsβπΎ)βπ₯))) β πΉ β (π½ Cn πΎ))) |
44 | 13, 43 | impbid 211 |
1
β’ ((π½ β (TopOnβπ) β§ πΎ β (TopOnβπ)) β (πΉ β (π½ Cn πΎ) β (πΉ:πβΆπ β§ βπ₯ β π« π((clsβπ½)β(β‘πΉ β π₯)) β (β‘πΉ β ((clsβπΎ)βπ₯))))) |