Proof of Theorem cncls2
Step | Hyp | Ref
| Expression |
1 | | cnf2 22400 |
. . . 4
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹:𝑋⟶𝑌) |
2 | 1 | 3expia 1120 |
. . 3
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹:𝑋⟶𝑌)) |
3 | | elpwi 4542 |
. . . . . . 7
⊢ (𝑥 ∈ 𝒫 𝑌 → 𝑥 ⊆ 𝑌) |
4 | 3 | adantl 482 |
. . . . . 6
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑥 ∈ 𝒫 𝑌) → 𝑥 ⊆ 𝑌) |
5 | | toponuni 22063 |
. . . . . . 7
⊢ (𝐾 ∈ (TopOn‘𝑌) → 𝑌 = ∪ 𝐾) |
6 | 5 | ad2antlr 724 |
. . . . . 6
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑥 ∈ 𝒫 𝑌) → 𝑌 = ∪ 𝐾) |
7 | 4, 6 | sseqtrd 3961 |
. . . . 5
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑥 ∈ 𝒫 𝑌) → 𝑥 ⊆ ∪ 𝐾) |
8 | | eqid 2738 |
. . . . . . 7
⊢ ∪ 𝐾 =
∪ 𝐾 |
9 | 8 | cncls2i 22421 |
. . . . . 6
⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑥 ⊆ ∪ 𝐾) → ((cls‘𝐽)‘(◡𝐹 “ 𝑥)) ⊆ (◡𝐹 “ ((cls‘𝐾)‘𝑥))) |
10 | 9 | expcom 414 |
. . . . 5
⊢ (𝑥 ⊆ ∪ 𝐾
→ (𝐹 ∈ (𝐽 Cn 𝐾) → ((cls‘𝐽)‘(◡𝐹 “ 𝑥)) ⊆ (◡𝐹 “ ((cls‘𝐾)‘𝑥)))) |
11 | 7, 10 | syl 17 |
. . . 4
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑥 ∈ 𝒫 𝑌) → (𝐹 ∈ (𝐽 Cn 𝐾) → ((cls‘𝐽)‘(◡𝐹 “ 𝑥)) ⊆ (◡𝐹 “ ((cls‘𝐾)‘𝑥)))) |
12 | 11 | ralrimdva 3106 |
. . 3
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) → ∀𝑥 ∈ 𝒫 𝑌((cls‘𝐽)‘(◡𝐹 “ 𝑥)) ⊆ (◡𝐹 “ ((cls‘𝐾)‘𝑥)))) |
13 | 2, 12 | jcad 513 |
. 2
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) → (𝐹:𝑋⟶𝑌 ∧ ∀𝑥 ∈ 𝒫 𝑌((cls‘𝐽)‘(◡𝐹 “ 𝑥)) ⊆ (◡𝐹 “ ((cls‘𝐾)‘𝑥))))) |
14 | 8 | cldss2 22181 |
. . . . . . . . 9
⊢
(Clsd‘𝐾)
⊆ 𝒫 ∪ 𝐾 |
15 | 5 | ad2antlr 724 |
. . . . . . . . . 10
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) → 𝑌 = ∪ 𝐾) |
16 | 15 | pweqd 4552 |
. . . . . . . . 9
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) → 𝒫 𝑌 = 𝒫 ∪
𝐾) |
17 | 14, 16 | sseqtrrid 3974 |
. . . . . . . 8
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) → (Clsd‘𝐾) ⊆ 𝒫 𝑌) |
18 | 17 | sseld 3920 |
. . . . . . 7
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) → (𝑥 ∈ (Clsd‘𝐾) → 𝑥 ∈ 𝒫 𝑌)) |
19 | 18 | imim1d 82 |
. . . . . 6
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) → ((𝑥 ∈ 𝒫 𝑌 → ((cls‘𝐽)‘(◡𝐹 “ 𝑥)) ⊆ (◡𝐹 “ ((cls‘𝐾)‘𝑥))) → (𝑥 ∈ (Clsd‘𝐾) → ((cls‘𝐽)‘(◡𝐹 “ 𝑥)) ⊆ (◡𝐹 “ ((cls‘𝐾)‘𝑥))))) |
20 | | cldcls 22193 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ (Clsd‘𝐾) → ((cls‘𝐾)‘𝑥) = 𝑥) |
21 | 20 | ad2antll 726 |
. . . . . . . . . . 11
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐹:𝑋⟶𝑌 ∧ 𝑥 ∈ (Clsd‘𝐾))) → ((cls‘𝐾)‘𝑥) = 𝑥) |
22 | 21 | imaeq2d 5969 |
. . . . . . . . . 10
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐹:𝑋⟶𝑌 ∧ 𝑥 ∈ (Clsd‘𝐾))) → (◡𝐹 “ ((cls‘𝐾)‘𝑥)) = (◡𝐹 “ 𝑥)) |
23 | 22 | sseq2d 3953 |
. . . . . . . . 9
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐹:𝑋⟶𝑌 ∧ 𝑥 ∈ (Clsd‘𝐾))) → (((cls‘𝐽)‘(◡𝐹 “ 𝑥)) ⊆ (◡𝐹 “ ((cls‘𝐾)‘𝑥)) ↔ ((cls‘𝐽)‘(◡𝐹 “ 𝑥)) ⊆ (◡𝐹 “ 𝑥))) |
24 | | topontop 22062 |
. . . . . . . . . . 11
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top) |
25 | 24 | ad2antrr 723 |
. . . . . . . . . 10
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐹:𝑋⟶𝑌 ∧ 𝑥 ∈ (Clsd‘𝐾))) → 𝐽 ∈ Top) |
26 | | cnvimass 5989 |
. . . . . . . . . . 11
⊢ (◡𝐹 “ 𝑥) ⊆ dom 𝐹 |
27 | | fdm 6609 |
. . . . . . . . . . . . 13
⊢ (𝐹:𝑋⟶𝑌 → dom 𝐹 = 𝑋) |
28 | 27 | ad2antrl 725 |
. . . . . . . . . . . 12
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐹:𝑋⟶𝑌 ∧ 𝑥 ∈ (Clsd‘𝐾))) → dom 𝐹 = 𝑋) |
29 | | toponuni 22063 |
. . . . . . . . . . . . 13
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = ∪ 𝐽) |
30 | 29 | ad2antrr 723 |
. . . . . . . . . . . 12
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐹:𝑋⟶𝑌 ∧ 𝑥 ∈ (Clsd‘𝐾))) → 𝑋 = ∪ 𝐽) |
31 | 28, 30 | eqtrd 2778 |
. . . . . . . . . . 11
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐹:𝑋⟶𝑌 ∧ 𝑥 ∈ (Clsd‘𝐾))) → dom 𝐹 = ∪ 𝐽) |
32 | 26, 31 | sseqtrid 3973 |
. . . . . . . . . 10
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐹:𝑋⟶𝑌 ∧ 𝑥 ∈ (Clsd‘𝐾))) → (◡𝐹 “ 𝑥) ⊆ ∪ 𝐽) |
33 | | eqid 2738 |
. . . . . . . . . . 11
⊢ ∪ 𝐽 =
∪ 𝐽 |
34 | 33 | iscld4 22216 |
. . . . . . . . . 10
⊢ ((𝐽 ∈ Top ∧ (◡𝐹 “ 𝑥) ⊆ ∪ 𝐽) → ((◡𝐹 “ 𝑥) ∈ (Clsd‘𝐽) ↔ ((cls‘𝐽)‘(◡𝐹 “ 𝑥)) ⊆ (◡𝐹 “ 𝑥))) |
35 | 25, 32, 34 | syl2anc 584 |
. . . . . . . . 9
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐹:𝑋⟶𝑌 ∧ 𝑥 ∈ (Clsd‘𝐾))) → ((◡𝐹 “ 𝑥) ∈ (Clsd‘𝐽) ↔ ((cls‘𝐽)‘(◡𝐹 “ 𝑥)) ⊆ (◡𝐹 “ 𝑥))) |
36 | 23, 35 | bitr4d 281 |
. . . . . . . 8
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐹:𝑋⟶𝑌 ∧ 𝑥 ∈ (Clsd‘𝐾))) → (((cls‘𝐽)‘(◡𝐹 “ 𝑥)) ⊆ (◡𝐹 “ ((cls‘𝐾)‘𝑥)) ↔ (◡𝐹 “ 𝑥) ∈ (Clsd‘𝐽))) |
37 | 36 | expr 457 |
. . . . . . 7
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) → (𝑥 ∈ (Clsd‘𝐾) → (((cls‘𝐽)‘(◡𝐹 “ 𝑥)) ⊆ (◡𝐹 “ ((cls‘𝐾)‘𝑥)) ↔ (◡𝐹 “ 𝑥) ∈ (Clsd‘𝐽)))) |
38 | 37 | pm5.74d 272 |
. . . . . 6
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) → ((𝑥 ∈ (Clsd‘𝐾) → ((cls‘𝐽)‘(◡𝐹 “ 𝑥)) ⊆ (◡𝐹 “ ((cls‘𝐾)‘𝑥))) ↔ (𝑥 ∈ (Clsd‘𝐾) → (◡𝐹 “ 𝑥) ∈ (Clsd‘𝐽)))) |
39 | 19, 38 | sylibd 238 |
. . . . 5
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) → ((𝑥 ∈ 𝒫 𝑌 → ((cls‘𝐽)‘(◡𝐹 “ 𝑥)) ⊆ (◡𝐹 “ ((cls‘𝐾)‘𝑥))) → (𝑥 ∈ (Clsd‘𝐾) → (◡𝐹 “ 𝑥) ∈ (Clsd‘𝐽)))) |
40 | 39 | ralimdv2 3107 |
. . . 4
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋⟶𝑌) → (∀𝑥 ∈ 𝒫 𝑌((cls‘𝐽)‘(◡𝐹 “ 𝑥)) ⊆ (◡𝐹 “ ((cls‘𝐾)‘𝑥)) → ∀𝑥 ∈ (Clsd‘𝐾)(◡𝐹 “ 𝑥) ∈ (Clsd‘𝐽))) |
41 | 40 | imdistanda 572 |
. . 3
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → ((𝐹:𝑋⟶𝑌 ∧ ∀𝑥 ∈ 𝒫 𝑌((cls‘𝐽)‘(◡𝐹 “ 𝑥)) ⊆ (◡𝐹 “ ((cls‘𝐾)‘𝑥))) → (𝐹:𝑋⟶𝑌 ∧ ∀𝑥 ∈ (Clsd‘𝐾)(◡𝐹 “ 𝑥) ∈ (Clsd‘𝐽)))) |
42 | | iscncl 22420 |
. . 3
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑥 ∈ (Clsd‘𝐾)(◡𝐹 “ 𝑥) ∈ (Clsd‘𝐽)))) |
43 | 41, 42 | sylibrd 258 |
. 2
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → ((𝐹:𝑋⟶𝑌 ∧ ∀𝑥 ∈ 𝒫 𝑌((cls‘𝐽)‘(◡𝐹 “ 𝑥)) ⊆ (◡𝐹 “ ((cls‘𝐾)‘𝑥))) → 𝐹 ∈ (𝐽 Cn 𝐾))) |
44 | 13, 43 | impbid 211 |
1
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑥 ∈ 𝒫 𝑌((cls‘𝐽)‘(◡𝐹 “ 𝑥)) ⊆ (◡𝐹 “ ((cls‘𝐾)‘𝑥))))) |