MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cncls2 Structured version   Visualization version   GIF version

Theorem cncls2 22769
Description: Continuity in terms of closure. (Contributed by Mario Carneiro, 25-Aug-2015.)
Assertion
Ref Expression
cncls2 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ)) β†’ (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:π‘‹βŸΆπ‘Œ ∧ βˆ€π‘₯ ∈ 𝒫 π‘Œ((clsβ€˜π½)β€˜(◑𝐹 β€œ π‘₯)) βŠ† (◑𝐹 β€œ ((clsβ€˜πΎ)β€˜π‘₯)))))
Distinct variable groups:   π‘₯,𝐹   π‘₯,𝐽   π‘₯,𝐾   π‘₯,𝑋   π‘₯,π‘Œ

Proof of Theorem cncls2
StepHypRef Expression
1 cnf2 22745 . . . 4 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) β†’ 𝐹:π‘‹βŸΆπ‘Œ)
213expia 1122 . . 3 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ)) β†’ (𝐹 ∈ (𝐽 Cn 𝐾) β†’ 𝐹:π‘‹βŸΆπ‘Œ))
3 elpwi 4609 . . . . . . 7 (π‘₯ ∈ 𝒫 π‘Œ β†’ π‘₯ βŠ† π‘Œ)
43adantl 483 . . . . . 6 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ)) ∧ π‘₯ ∈ 𝒫 π‘Œ) β†’ π‘₯ βŠ† π‘Œ)
5 toponuni 22408 . . . . . . 7 (𝐾 ∈ (TopOnβ€˜π‘Œ) β†’ π‘Œ = βˆͺ 𝐾)
65ad2antlr 726 . . . . . 6 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ)) ∧ π‘₯ ∈ 𝒫 π‘Œ) β†’ π‘Œ = βˆͺ 𝐾)
74, 6sseqtrd 4022 . . . . 5 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ)) ∧ π‘₯ ∈ 𝒫 π‘Œ) β†’ π‘₯ βŠ† βˆͺ 𝐾)
8 eqid 2733 . . . . . . 7 βˆͺ 𝐾 = βˆͺ 𝐾
98cncls2i 22766 . . . . . 6 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ π‘₯ βŠ† βˆͺ 𝐾) β†’ ((clsβ€˜π½)β€˜(◑𝐹 β€œ π‘₯)) βŠ† (◑𝐹 β€œ ((clsβ€˜πΎ)β€˜π‘₯)))
109expcom 415 . . . . 5 (π‘₯ βŠ† βˆͺ 𝐾 β†’ (𝐹 ∈ (𝐽 Cn 𝐾) β†’ ((clsβ€˜π½)β€˜(◑𝐹 β€œ π‘₯)) βŠ† (◑𝐹 β€œ ((clsβ€˜πΎ)β€˜π‘₯))))
117, 10syl 17 . . . 4 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ)) ∧ π‘₯ ∈ 𝒫 π‘Œ) β†’ (𝐹 ∈ (𝐽 Cn 𝐾) β†’ ((clsβ€˜π½)β€˜(◑𝐹 β€œ π‘₯)) βŠ† (◑𝐹 β€œ ((clsβ€˜πΎ)β€˜π‘₯))))
1211ralrimdva 3155 . . 3 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ)) β†’ (𝐹 ∈ (𝐽 Cn 𝐾) β†’ βˆ€π‘₯ ∈ 𝒫 π‘Œ((clsβ€˜π½)β€˜(◑𝐹 β€œ π‘₯)) βŠ† (◑𝐹 β€œ ((clsβ€˜πΎ)β€˜π‘₯))))
132, 12jcad 514 . 2 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ)) β†’ (𝐹 ∈ (𝐽 Cn 𝐾) β†’ (𝐹:π‘‹βŸΆπ‘Œ ∧ βˆ€π‘₯ ∈ 𝒫 π‘Œ((clsβ€˜π½)β€˜(◑𝐹 β€œ π‘₯)) βŠ† (◑𝐹 β€œ ((clsβ€˜πΎ)β€˜π‘₯)))))
148cldss2 22526 . . . . . . . . 9 (Clsdβ€˜πΎ) βŠ† 𝒫 βˆͺ 𝐾
155ad2antlr 726 . . . . . . . . . 10 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ)) ∧ 𝐹:π‘‹βŸΆπ‘Œ) β†’ π‘Œ = βˆͺ 𝐾)
1615pweqd 4619 . . . . . . . . 9 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ)) ∧ 𝐹:π‘‹βŸΆπ‘Œ) β†’ 𝒫 π‘Œ = 𝒫 βˆͺ 𝐾)
1714, 16sseqtrrid 4035 . . . . . . . 8 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ)) ∧ 𝐹:π‘‹βŸΆπ‘Œ) β†’ (Clsdβ€˜πΎ) βŠ† 𝒫 π‘Œ)
1817sseld 3981 . . . . . . 7 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ)) ∧ 𝐹:π‘‹βŸΆπ‘Œ) β†’ (π‘₯ ∈ (Clsdβ€˜πΎ) β†’ π‘₯ ∈ 𝒫 π‘Œ))
1918imim1d 82 . . . . . 6 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ)) ∧ 𝐹:π‘‹βŸΆπ‘Œ) β†’ ((π‘₯ ∈ 𝒫 π‘Œ β†’ ((clsβ€˜π½)β€˜(◑𝐹 β€œ π‘₯)) βŠ† (◑𝐹 β€œ ((clsβ€˜πΎ)β€˜π‘₯))) β†’ (π‘₯ ∈ (Clsdβ€˜πΎ) β†’ ((clsβ€˜π½)β€˜(◑𝐹 β€œ π‘₯)) βŠ† (◑𝐹 β€œ ((clsβ€˜πΎ)β€˜π‘₯)))))
20 cldcls 22538 . . . . . . . . . . . 12 (π‘₯ ∈ (Clsdβ€˜πΎ) β†’ ((clsβ€˜πΎ)β€˜π‘₯) = π‘₯)
2120ad2antll 728 . . . . . . . . . . 11 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ)) ∧ (𝐹:π‘‹βŸΆπ‘Œ ∧ π‘₯ ∈ (Clsdβ€˜πΎ))) β†’ ((clsβ€˜πΎ)β€˜π‘₯) = π‘₯)
2221imaeq2d 6058 . . . . . . . . . 10 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ)) ∧ (𝐹:π‘‹βŸΆπ‘Œ ∧ π‘₯ ∈ (Clsdβ€˜πΎ))) β†’ (◑𝐹 β€œ ((clsβ€˜πΎ)β€˜π‘₯)) = (◑𝐹 β€œ π‘₯))
2322sseq2d 4014 . . . . . . . . 9 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ)) ∧ (𝐹:π‘‹βŸΆπ‘Œ ∧ π‘₯ ∈ (Clsdβ€˜πΎ))) β†’ (((clsβ€˜π½)β€˜(◑𝐹 β€œ π‘₯)) βŠ† (◑𝐹 β€œ ((clsβ€˜πΎ)β€˜π‘₯)) ↔ ((clsβ€˜π½)β€˜(◑𝐹 β€œ π‘₯)) βŠ† (◑𝐹 β€œ π‘₯)))
24 topontop 22407 . . . . . . . . . . 11 (𝐽 ∈ (TopOnβ€˜π‘‹) β†’ 𝐽 ∈ Top)
2524ad2antrr 725 . . . . . . . . . 10 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ)) ∧ (𝐹:π‘‹βŸΆπ‘Œ ∧ π‘₯ ∈ (Clsdβ€˜πΎ))) β†’ 𝐽 ∈ Top)
26 cnvimass 6078 . . . . . . . . . . 11 (◑𝐹 β€œ π‘₯) βŠ† dom 𝐹
27 fdm 6724 . . . . . . . . . . . . 13 (𝐹:π‘‹βŸΆπ‘Œ β†’ dom 𝐹 = 𝑋)
2827ad2antrl 727 . . . . . . . . . . . 12 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ)) ∧ (𝐹:π‘‹βŸΆπ‘Œ ∧ π‘₯ ∈ (Clsdβ€˜πΎ))) β†’ dom 𝐹 = 𝑋)
29 toponuni 22408 . . . . . . . . . . . . 13 (𝐽 ∈ (TopOnβ€˜π‘‹) β†’ 𝑋 = βˆͺ 𝐽)
3029ad2antrr 725 . . . . . . . . . . . 12 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ)) ∧ (𝐹:π‘‹βŸΆπ‘Œ ∧ π‘₯ ∈ (Clsdβ€˜πΎ))) β†’ 𝑋 = βˆͺ 𝐽)
3128, 30eqtrd 2773 . . . . . . . . . . 11 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ)) ∧ (𝐹:π‘‹βŸΆπ‘Œ ∧ π‘₯ ∈ (Clsdβ€˜πΎ))) β†’ dom 𝐹 = βˆͺ 𝐽)
3226, 31sseqtrid 4034 . . . . . . . . . 10 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ)) ∧ (𝐹:π‘‹βŸΆπ‘Œ ∧ π‘₯ ∈ (Clsdβ€˜πΎ))) β†’ (◑𝐹 β€œ π‘₯) βŠ† βˆͺ 𝐽)
33 eqid 2733 . . . . . . . . . . 11 βˆͺ 𝐽 = βˆͺ 𝐽
3433iscld4 22561 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ (◑𝐹 β€œ π‘₯) βŠ† βˆͺ 𝐽) β†’ ((◑𝐹 β€œ π‘₯) ∈ (Clsdβ€˜π½) ↔ ((clsβ€˜π½)β€˜(◑𝐹 β€œ π‘₯)) βŠ† (◑𝐹 β€œ π‘₯)))
3525, 32, 34syl2anc 585 . . . . . . . . 9 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ)) ∧ (𝐹:π‘‹βŸΆπ‘Œ ∧ π‘₯ ∈ (Clsdβ€˜πΎ))) β†’ ((◑𝐹 β€œ π‘₯) ∈ (Clsdβ€˜π½) ↔ ((clsβ€˜π½)β€˜(◑𝐹 β€œ π‘₯)) βŠ† (◑𝐹 β€œ π‘₯)))
3623, 35bitr4d 282 . . . . . . . 8 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ)) ∧ (𝐹:π‘‹βŸΆπ‘Œ ∧ π‘₯ ∈ (Clsdβ€˜πΎ))) β†’ (((clsβ€˜π½)β€˜(◑𝐹 β€œ π‘₯)) βŠ† (◑𝐹 β€œ ((clsβ€˜πΎ)β€˜π‘₯)) ↔ (◑𝐹 β€œ π‘₯) ∈ (Clsdβ€˜π½)))
3736expr 458 . . . . . . 7 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ)) ∧ 𝐹:π‘‹βŸΆπ‘Œ) β†’ (π‘₯ ∈ (Clsdβ€˜πΎ) β†’ (((clsβ€˜π½)β€˜(◑𝐹 β€œ π‘₯)) βŠ† (◑𝐹 β€œ ((clsβ€˜πΎ)β€˜π‘₯)) ↔ (◑𝐹 β€œ π‘₯) ∈ (Clsdβ€˜π½))))
3837pm5.74d 273 . . . . . 6 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ)) ∧ 𝐹:π‘‹βŸΆπ‘Œ) β†’ ((π‘₯ ∈ (Clsdβ€˜πΎ) β†’ ((clsβ€˜π½)β€˜(◑𝐹 β€œ π‘₯)) βŠ† (◑𝐹 β€œ ((clsβ€˜πΎ)β€˜π‘₯))) ↔ (π‘₯ ∈ (Clsdβ€˜πΎ) β†’ (◑𝐹 β€œ π‘₯) ∈ (Clsdβ€˜π½))))
3919, 38sylibd 238 . . . . 5 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ)) ∧ 𝐹:π‘‹βŸΆπ‘Œ) β†’ ((π‘₯ ∈ 𝒫 π‘Œ β†’ ((clsβ€˜π½)β€˜(◑𝐹 β€œ π‘₯)) βŠ† (◑𝐹 β€œ ((clsβ€˜πΎ)β€˜π‘₯))) β†’ (π‘₯ ∈ (Clsdβ€˜πΎ) β†’ (◑𝐹 β€œ π‘₯) ∈ (Clsdβ€˜π½))))
4039ralimdv2 3164 . . . 4 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ)) ∧ 𝐹:π‘‹βŸΆπ‘Œ) β†’ (βˆ€π‘₯ ∈ 𝒫 π‘Œ((clsβ€˜π½)β€˜(◑𝐹 β€œ π‘₯)) βŠ† (◑𝐹 β€œ ((clsβ€˜πΎ)β€˜π‘₯)) β†’ βˆ€π‘₯ ∈ (Clsdβ€˜πΎ)(◑𝐹 β€œ π‘₯) ∈ (Clsdβ€˜π½)))
4140imdistanda 573 . . 3 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ)) β†’ ((𝐹:π‘‹βŸΆπ‘Œ ∧ βˆ€π‘₯ ∈ 𝒫 π‘Œ((clsβ€˜π½)β€˜(◑𝐹 β€œ π‘₯)) βŠ† (◑𝐹 β€œ ((clsβ€˜πΎ)β€˜π‘₯))) β†’ (𝐹:π‘‹βŸΆπ‘Œ ∧ βˆ€π‘₯ ∈ (Clsdβ€˜πΎ)(◑𝐹 β€œ π‘₯) ∈ (Clsdβ€˜π½))))
42 iscncl 22765 . . 3 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ)) β†’ (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:π‘‹βŸΆπ‘Œ ∧ βˆ€π‘₯ ∈ (Clsdβ€˜πΎ)(◑𝐹 β€œ π‘₯) ∈ (Clsdβ€˜π½))))
4341, 42sylibrd 259 . 2 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ)) β†’ ((𝐹:π‘‹βŸΆπ‘Œ ∧ βˆ€π‘₯ ∈ 𝒫 π‘Œ((clsβ€˜π½)β€˜(◑𝐹 β€œ π‘₯)) βŠ† (◑𝐹 β€œ ((clsβ€˜πΎ)β€˜π‘₯))) β†’ 𝐹 ∈ (𝐽 Cn 𝐾)))
4413, 43impbid 211 1 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ)) β†’ (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:π‘‹βŸΆπ‘Œ ∧ βˆ€π‘₯ ∈ 𝒫 π‘Œ((clsβ€˜π½)β€˜(◑𝐹 β€œ π‘₯)) βŠ† (◑𝐹 β€œ ((clsβ€˜πΎ)β€˜π‘₯)))))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 397   = wceq 1542   ∈ wcel 2107  βˆ€wral 3062   βŠ† wss 3948  π’« cpw 4602  βˆͺ cuni 4908  β—‘ccnv 5675  dom cdm 5676   β€œ cima 5679  βŸΆwf 6537  β€˜cfv 6541  (class class class)co 7406  Topctop 22387  TopOnctopon 22404  Clsdccld 22512  clsccl 22514   Cn ccn 22720
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7722
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-iin 5000  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6493  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-ov 7409  df-oprab 7410  df-mpo 7411  df-map 8819  df-top 22388  df-topon 22405  df-cld 22515  df-cls 22517  df-cn 22723
This theorem is referenced by:  cncls  22770
  Copyright terms: Public domain W3C validator