MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cncls2 Structured version   Visualization version   GIF version

Theorem cncls2 23211
Description: Continuity in terms of closure. (Contributed by Mario Carneiro, 25-Aug-2015.)
Assertion
Ref Expression
cncls2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑥 ∈ 𝒫 𝑌((cls‘𝐽)‘(𝐹𝑥)) ⊆ (𝐹 “ ((cls‘𝐾)‘𝑥)))))
Distinct variable groups:   𝑥,𝐹   𝑥,𝐽   𝑥,𝐾   𝑥,𝑋   𝑥,𝑌

Proof of Theorem cncls2
StepHypRef Expression
1 cnf2 23187 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹:𝑋𝑌)
213expia 1121 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹:𝑋𝑌))
3 elpwi 4582 . . . . . . 7 (𝑥 ∈ 𝒫 𝑌𝑥𝑌)
43adantl 481 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑥 ∈ 𝒫 𝑌) → 𝑥𝑌)
5 toponuni 22852 . . . . . . 7 (𝐾 ∈ (TopOn‘𝑌) → 𝑌 = 𝐾)
65ad2antlr 727 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑥 ∈ 𝒫 𝑌) → 𝑌 = 𝐾)
74, 6sseqtrd 3995 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑥 ∈ 𝒫 𝑌) → 𝑥 𝐾)
8 eqid 2735 . . . . . . 7 𝐾 = 𝐾
98cncls2i 23208 . . . . . 6 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑥 𝐾) → ((cls‘𝐽)‘(𝐹𝑥)) ⊆ (𝐹 “ ((cls‘𝐾)‘𝑥)))
109expcom 413 . . . . 5 (𝑥 𝐾 → (𝐹 ∈ (𝐽 Cn 𝐾) → ((cls‘𝐽)‘(𝐹𝑥)) ⊆ (𝐹 “ ((cls‘𝐾)‘𝑥))))
117, 10syl 17 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑥 ∈ 𝒫 𝑌) → (𝐹 ∈ (𝐽 Cn 𝐾) → ((cls‘𝐽)‘(𝐹𝑥)) ⊆ (𝐹 “ ((cls‘𝐾)‘𝑥))))
1211ralrimdva 3140 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) → ∀𝑥 ∈ 𝒫 𝑌((cls‘𝐽)‘(𝐹𝑥)) ⊆ (𝐹 “ ((cls‘𝐾)‘𝑥))))
132, 12jcad 512 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) → (𝐹:𝑋𝑌 ∧ ∀𝑥 ∈ 𝒫 𝑌((cls‘𝐽)‘(𝐹𝑥)) ⊆ (𝐹 “ ((cls‘𝐾)‘𝑥)))))
148cldss2 22968 . . . . . . . . 9 (Clsd‘𝐾) ⊆ 𝒫 𝐾
155ad2antlr 727 . . . . . . . . . 10 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) → 𝑌 = 𝐾)
1615pweqd 4592 . . . . . . . . 9 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) → 𝒫 𝑌 = 𝒫 𝐾)
1714, 16sseqtrrid 4002 . . . . . . . 8 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) → (Clsd‘𝐾) ⊆ 𝒫 𝑌)
1817sseld 3957 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) → (𝑥 ∈ (Clsd‘𝐾) → 𝑥 ∈ 𝒫 𝑌))
1918imim1d 82 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) → ((𝑥 ∈ 𝒫 𝑌 → ((cls‘𝐽)‘(𝐹𝑥)) ⊆ (𝐹 “ ((cls‘𝐾)‘𝑥))) → (𝑥 ∈ (Clsd‘𝐾) → ((cls‘𝐽)‘(𝐹𝑥)) ⊆ (𝐹 “ ((cls‘𝐾)‘𝑥)))))
20 cldcls 22980 . . . . . . . . . . . 12 (𝑥 ∈ (Clsd‘𝐾) → ((cls‘𝐾)‘𝑥) = 𝑥)
2120ad2antll 729 . . . . . . . . . . 11 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐹:𝑋𝑌𝑥 ∈ (Clsd‘𝐾))) → ((cls‘𝐾)‘𝑥) = 𝑥)
2221imaeq2d 6047 . . . . . . . . . 10 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐹:𝑋𝑌𝑥 ∈ (Clsd‘𝐾))) → (𝐹 “ ((cls‘𝐾)‘𝑥)) = (𝐹𝑥))
2322sseq2d 3991 . . . . . . . . 9 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐹:𝑋𝑌𝑥 ∈ (Clsd‘𝐾))) → (((cls‘𝐽)‘(𝐹𝑥)) ⊆ (𝐹 “ ((cls‘𝐾)‘𝑥)) ↔ ((cls‘𝐽)‘(𝐹𝑥)) ⊆ (𝐹𝑥)))
24 topontop 22851 . . . . . . . . . . 11 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
2524ad2antrr 726 . . . . . . . . . 10 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐹:𝑋𝑌𝑥 ∈ (Clsd‘𝐾))) → 𝐽 ∈ Top)
26 cnvimass 6069 . . . . . . . . . . 11 (𝐹𝑥) ⊆ dom 𝐹
27 fdm 6715 . . . . . . . . . . . . 13 (𝐹:𝑋𝑌 → dom 𝐹 = 𝑋)
2827ad2antrl 728 . . . . . . . . . . . 12 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐹:𝑋𝑌𝑥 ∈ (Clsd‘𝐾))) → dom 𝐹 = 𝑋)
29 toponuni 22852 . . . . . . . . . . . . 13 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
3029ad2antrr 726 . . . . . . . . . . . 12 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐹:𝑋𝑌𝑥 ∈ (Clsd‘𝐾))) → 𝑋 = 𝐽)
3128, 30eqtrd 2770 . . . . . . . . . . 11 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐹:𝑋𝑌𝑥 ∈ (Clsd‘𝐾))) → dom 𝐹 = 𝐽)
3226, 31sseqtrid 4001 . . . . . . . . . 10 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐹:𝑋𝑌𝑥 ∈ (Clsd‘𝐾))) → (𝐹𝑥) ⊆ 𝐽)
33 eqid 2735 . . . . . . . . . . 11 𝐽 = 𝐽
3433iscld4 23003 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ (𝐹𝑥) ⊆ 𝐽) → ((𝐹𝑥) ∈ (Clsd‘𝐽) ↔ ((cls‘𝐽)‘(𝐹𝑥)) ⊆ (𝐹𝑥)))
3525, 32, 34syl2anc 584 . . . . . . . . 9 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐹:𝑋𝑌𝑥 ∈ (Clsd‘𝐾))) → ((𝐹𝑥) ∈ (Clsd‘𝐽) ↔ ((cls‘𝐽)‘(𝐹𝑥)) ⊆ (𝐹𝑥)))
3623, 35bitr4d 282 . . . . . . . 8 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐹:𝑋𝑌𝑥 ∈ (Clsd‘𝐾))) → (((cls‘𝐽)‘(𝐹𝑥)) ⊆ (𝐹 “ ((cls‘𝐾)‘𝑥)) ↔ (𝐹𝑥) ∈ (Clsd‘𝐽)))
3736expr 456 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) → (𝑥 ∈ (Clsd‘𝐾) → (((cls‘𝐽)‘(𝐹𝑥)) ⊆ (𝐹 “ ((cls‘𝐾)‘𝑥)) ↔ (𝐹𝑥) ∈ (Clsd‘𝐽))))
3837pm5.74d 273 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) → ((𝑥 ∈ (Clsd‘𝐾) → ((cls‘𝐽)‘(𝐹𝑥)) ⊆ (𝐹 “ ((cls‘𝐾)‘𝑥))) ↔ (𝑥 ∈ (Clsd‘𝐾) → (𝐹𝑥) ∈ (Clsd‘𝐽))))
3919, 38sylibd 239 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) → ((𝑥 ∈ 𝒫 𝑌 → ((cls‘𝐽)‘(𝐹𝑥)) ⊆ (𝐹 “ ((cls‘𝐾)‘𝑥))) → (𝑥 ∈ (Clsd‘𝐾) → (𝐹𝑥) ∈ (Clsd‘𝐽))))
4039ralimdv2 3149 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝐹:𝑋𝑌) → (∀𝑥 ∈ 𝒫 𝑌((cls‘𝐽)‘(𝐹𝑥)) ⊆ (𝐹 “ ((cls‘𝐾)‘𝑥)) → ∀𝑥 ∈ (Clsd‘𝐾)(𝐹𝑥) ∈ (Clsd‘𝐽)))
4140imdistanda 571 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → ((𝐹:𝑋𝑌 ∧ ∀𝑥 ∈ 𝒫 𝑌((cls‘𝐽)‘(𝐹𝑥)) ⊆ (𝐹 “ ((cls‘𝐾)‘𝑥))) → (𝐹:𝑋𝑌 ∧ ∀𝑥 ∈ (Clsd‘𝐾)(𝐹𝑥) ∈ (Clsd‘𝐽))))
42 iscncl 23207 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑥 ∈ (Clsd‘𝐾)(𝐹𝑥) ∈ (Clsd‘𝐽))))
4341, 42sylibrd 259 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → ((𝐹:𝑋𝑌 ∧ ∀𝑥 ∈ 𝒫 𝑌((cls‘𝐽)‘(𝐹𝑥)) ⊆ (𝐹 “ ((cls‘𝐾)‘𝑥))) → 𝐹 ∈ (𝐽 Cn 𝐾)))
4413, 43impbid 212 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑥 ∈ 𝒫 𝑌((cls‘𝐽)‘(𝐹𝑥)) ⊆ (𝐹 “ ((cls‘𝐾)‘𝑥)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wral 3051  wss 3926  𝒫 cpw 4575   cuni 4883  ccnv 5653  dom cdm 5654  cima 5657  wf 6527  cfv 6531  (class class class)co 7405  Topctop 22831  TopOnctopon 22848  Clsdccld 22954  clsccl 22956   Cn ccn 23162
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-map 8842  df-top 22832  df-topon 22849  df-cld 22957  df-cls 22959  df-cn 23165
This theorem is referenced by:  cncls  23212
  Copyright terms: Public domain W3C validator