| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mp3an13 | Structured version Visualization version GIF version | ||
| Description: An inference based on modus ponens. (Contributed by NM, 14-Jul-2005.) |
| Ref | Expression |
|---|---|
| mp3an13.1 | ⊢ 𝜑 |
| mp3an13.2 | ⊢ 𝜒 |
| mp3an13.3 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| mp3an13 | ⊢ (𝜓 → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mp3an13.1 | . 2 ⊢ 𝜑 | |
| 2 | mp3an13.2 | . . 3 ⊢ 𝜒 | |
| 3 | mp3an13.3 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
| 4 | 2, 3 | mp3an3 1452 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
| 5 | 1, 4 | mpan 690 | 1 ⊢ (𝜓 → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: predeq2 6280 wrecseq2 8298 oeoalem 8563 mulrid 11179 addltmul 12425 eluzaddiOLD 12832 fz01en 13520 fznatpl1 13546 expubnd 14150 bernneq 14201 bernneq2 14202 faclbnd4lem1 14265 hashfun 14409 bpoly2 16030 bpoly3 16031 fsumcube 16033 efi4p 16112 efival 16127 cos2tsin 16154 cos01bnd 16161 cos01gt0 16166 dvds0 16248 odd2np1 16318 opoe 16340 divalglem0 16370 gcdid 16504 pythagtriplem4 16797 ressid 17221 fvpr0o 17529 fvpr1o 17530 zringcyg 21386 lecldbas 23113 blssioo 24690 tgioo 24691 rerest 24699 xrrest 24703 zdis 24712 reconnlem2 24723 metdscn2 24753 negcncf 24822 negcncfOLD 24823 iihalf2 24835 cncmet 25229 rrxmvallem 25311 rrxmval 25312 ovolunlem1a 25404 ismbf3d 25562 c1lip2 25910 pilem2 26369 pilem3 26370 sinperlem 26396 sincosq1sgn 26414 sincosq2sgn 26415 sinq12gt0 26423 cosq14gt0 26426 cosq14ge0 26427 coseq1 26441 sinord 26450 zetacvg 26932 1sgmprm 27117 ppiub 27122 chtublem 27129 chtub 27130 bcp1ctr 27197 bpos1lem 27200 bposlem2 27203 bposlem3 27204 bposlem4 27205 bposlem5 27206 bposlem6 27207 bposlem7 27208 bposlem9 27210 nnsge1 28242 pw2gt0divsd 28335 pw2ge0divsd 28336 pw2cut 28342 zs12bday 28350 axlowdim 28895 ipidsq 30646 ipasslem1 30767 ipasslem2 30768 ipasslem4 30770 ipasslem5 30771 ipasslem8 30773 ipasslem9 30774 ipasslem11 30776 pjoc1i 31367 h1de2bi 31490 h1de2ctlem 31491 spanunsni 31515 opsqrlem1 32076 opsqrlem6 32081 chrelati 32300 chrelat2i 32301 cvexchlem 32304 pnfinf 33144 1fldgenq 33279 rrhre 34018 erdszelem5 35189 wsuceq2 35811 taupilem1 37316 finxpreclem2 37385 sin2h 37611 cos2h 37612 tan2h 37613 poimirlem27 37648 poimirlem30 37651 broucube 37655 mblfinlem1 37658 heiborlem6 37817 lcmineqlem19 42042 onexomgt 43237 omabs2 43328 icccncfext 45892 dirkertrigeq 46106 pgnbgreunbgrlem4 48113 zlmodzxzel 48347 dignn0flhalflem1 48608 2arymaptfo 48647 fv1prop 48692 fv2prop 48693 line2x 48747 onetansqsecsq 49754 cotsqcscsq 49755 |
| Copyright terms: Public domain | W3C validator |