![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mp3an13 | Structured version Visualization version GIF version |
Description: An inference based on modus ponens. (Contributed by NM, 14-Jul-2005.) |
Ref | Expression |
---|---|
mp3an13.1 | ⊢ 𝜑 |
mp3an13.2 | ⊢ 𝜒 |
mp3an13.3 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
mp3an13 | ⊢ (𝜓 → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mp3an13.1 | . 2 ⊢ 𝜑 | |
2 | mp3an13.2 | . . 3 ⊢ 𝜒 | |
3 | mp3an13.3 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
4 | 2, 3 | mp3an3 1450 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
5 | 1, 4 | mpan 689 | 1 ⊢ (𝜓 → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 |
This theorem is referenced by: predeq2 6335 wrecseq2 8360 oeoalem 8652 mulrid 11288 addltmul 12529 eluzaddiOLD 12935 fz01en 13612 fznatpl1 13638 expubnd 14227 bernneq 14278 bernneq2 14279 faclbnd4lem1 14342 hashfun 14486 bpoly2 16105 bpoly3 16106 fsumcube 16108 efi4p 16185 efival 16200 cos2tsin 16227 cos01bnd 16234 cos01gt0 16239 dvds0 16320 odd2np1 16389 opoe 16411 divalglem0 16441 gcdid 16573 pythagtriplem4 16866 ressid 17303 fvpr0o 17619 fvpr1o 17620 zringcyg 21503 lecldbas 23248 blssioo 24836 tgioo 24837 rerest 24845 xrrest 24848 zdis 24857 reconnlem2 24868 metdscn2 24898 negcncf 24967 negcncfOLD 24968 iihalf2 24980 cncmet 25375 rrxmvallem 25457 rrxmval 25458 ovolunlem1a 25550 ismbf3d 25708 c1lip2 26057 pilem2 26514 pilem3 26515 sinperlem 26540 sincosq1sgn 26558 sincosq2sgn 26559 sinq12gt0 26567 cosq14gt0 26570 cosq14ge0 26571 coseq1 26585 sinord 26594 zetacvg 27076 1sgmprm 27261 ppiub 27266 chtublem 27273 chtub 27274 bcp1ctr 27341 bpos1lem 27344 bposlem2 27347 bposlem3 27348 bposlem4 27349 bposlem5 27350 bposlem6 27351 bposlem7 27352 bposlem9 27354 nnsge1 28364 cutpw2 28435 pw2bday 28436 pw2cut 28438 zs12bday 28442 axlowdim 28994 ipidsq 30742 ipasslem1 30863 ipasslem2 30864 ipasslem4 30866 ipasslem5 30867 ipasslem8 30869 ipasslem9 30870 ipasslem11 30872 pjoc1i 31463 h1de2bi 31586 h1de2ctlem 31587 spanunsni 31611 opsqrlem1 32172 opsqrlem6 32177 chrelati 32396 chrelat2i 32397 cvexchlem 32400 pnfinf 33163 1fldgenq 33289 rrhre 33967 erdszelem5 35163 wsuceq2 35780 taupilem1 37287 finxpreclem2 37356 sin2h 37570 cos2h 37571 tan2h 37572 poimirlem27 37607 poimirlem30 37610 broucube 37614 mblfinlem1 37617 heiborlem6 37776 lcmineqlem19 42004 2xp3dxp2ge1d 42198 onexomgt 43202 omabs2 43294 icccncfext 45808 dirkertrigeq 46022 zlmodzxzel 48080 dignn0flhalflem1 48349 2arymaptfo 48388 fv1prop 48433 fv2prop 48434 line2x 48488 onetansqsecsq 48853 cotsqcscsq 48854 |
Copyright terms: Public domain | W3C validator |