| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mp3an13 | Structured version Visualization version GIF version | ||
| Description: An inference based on modus ponens. (Contributed by NM, 14-Jul-2005.) |
| Ref | Expression |
|---|---|
| mp3an13.1 | ⊢ 𝜑 |
| mp3an13.2 | ⊢ 𝜒 |
| mp3an13.3 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| mp3an13 | ⊢ (𝜓 → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mp3an13.1 | . 2 ⊢ 𝜑 | |
| 2 | mp3an13.2 | . . 3 ⊢ 𝜒 | |
| 3 | mp3an13.3 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
| 4 | 2, 3 | mp3an3 1452 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
| 5 | 1, 4 | mpan 690 | 1 ⊢ (𝜓 → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: predeq2 6251 wrecseq2 8246 oeoalem 8511 mulrid 11110 addltmul 12357 eluzaddiOLD 12764 fz01en 13452 fznatpl1 13478 expubnd 14085 bernneq 14136 bernneq2 14137 faclbnd4lem1 14200 hashfun 14344 bpoly2 15964 bpoly3 15965 fsumcube 15967 efi4p 16046 efival 16061 cos2tsin 16088 cos01bnd 16095 cos01gt0 16100 dvds0 16182 odd2np1 16252 opoe 16274 divalglem0 16304 gcdid 16438 pythagtriplem4 16731 ressid 17155 fvpr0o 17463 fvpr1o 17464 zringcyg 21406 lecldbas 23134 blssioo 24710 tgioo 24711 rerest 24719 xrrest 24723 zdis 24732 reconnlem2 24743 metdscn2 24773 negcncf 24842 negcncfOLD 24843 iihalf2 24855 cncmet 25249 rrxmvallem 25331 rrxmval 25332 ovolunlem1a 25424 ismbf3d 25582 c1lip2 25930 pilem2 26389 pilem3 26390 sinperlem 26416 sincosq1sgn 26434 sincosq2sgn 26435 sinq12gt0 26443 cosq14gt0 26446 cosq14ge0 26447 coseq1 26461 sinord 26470 zetacvg 26952 1sgmprm 27137 ppiub 27142 chtublem 27149 chtub 27150 bcp1ctr 27217 bpos1lem 27220 bposlem2 27223 bposlem3 27224 bposlem4 27225 bposlem5 27226 bposlem6 27227 bposlem7 27228 bposlem9 27230 nnsge1 28271 pw2gt0divsd 28368 pw2ge0divsd 28369 pw2sltdivmuld 28373 pw2sltmuldiv2d 28374 pw2cut 28380 zs12bday 28394 axlowdim 28939 ipidsq 30690 ipasslem1 30811 ipasslem2 30812 ipasslem4 30814 ipasslem5 30815 ipasslem8 30817 ipasslem9 30818 ipasslem11 30820 pjoc1i 31411 h1de2bi 31534 h1de2ctlem 31535 spanunsni 31559 opsqrlem1 32120 opsqrlem6 32125 chrelati 32344 chrelat2i 32345 cvexchlem 32348 pnfinf 33152 1fldgenq 33288 rrhre 34034 erdszelem5 35239 wsuceq2 35858 taupilem1 37365 finxpreclem2 37434 sin2h 37649 cos2h 37650 tan2h 37651 poimirlem27 37686 poimirlem30 37689 broucube 37693 mblfinlem1 37696 heiborlem6 37855 lcmineqlem19 42139 onexomgt 43333 omabs2 43424 icccncfext 45984 dirkertrigeq 46198 pgnbgreunbgrlem4 48218 zlmodzxzel 48454 dignn0flhalflem1 48715 2arymaptfo 48754 fv1prop 48799 fv2prop 48800 line2x 48854 onetansqsecsq 49861 cotsqcscsq 49862 |
| Copyright terms: Public domain | W3C validator |