| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mp3an13 | Structured version Visualization version GIF version | ||
| Description: An inference based on modus ponens. (Contributed by NM, 14-Jul-2005.) |
| Ref | Expression |
|---|---|
| mp3an13.1 | ⊢ 𝜑 |
| mp3an13.2 | ⊢ 𝜒 |
| mp3an13.3 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| mp3an13 | ⊢ (𝜓 → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mp3an13.1 | . 2 ⊢ 𝜑 | |
| 2 | mp3an13.2 | . . 3 ⊢ 𝜒 | |
| 3 | mp3an13.3 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
| 4 | 2, 3 | mp3an3 1452 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
| 5 | 1, 4 | mpan 690 | 1 ⊢ (𝜓 → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: predeq2 6293 wrecseq2 8316 oeoalem 8606 mulrid 11231 addltmul 12475 eluzaddiOLD 12882 fz01en 13567 fznatpl1 13593 expubnd 14194 bernneq 14245 bernneq2 14246 faclbnd4lem1 14309 hashfun 14453 bpoly2 16071 bpoly3 16072 fsumcube 16074 efi4p 16153 efival 16168 cos2tsin 16195 cos01bnd 16202 cos01gt0 16207 dvds0 16289 odd2np1 16358 opoe 16380 divalglem0 16410 gcdid 16544 pythagtriplem4 16837 ressid 17263 fvpr0o 17571 fvpr1o 17572 zringcyg 21428 lecldbas 23155 blssioo 24732 tgioo 24733 rerest 24741 xrrest 24745 zdis 24754 reconnlem2 24765 metdscn2 24795 negcncf 24864 negcncfOLD 24865 iihalf2 24877 cncmet 25272 rrxmvallem 25354 rrxmval 25355 ovolunlem1a 25447 ismbf3d 25605 c1lip2 25953 pilem2 26412 pilem3 26413 sinperlem 26439 sincosq1sgn 26457 sincosq2sgn 26458 sinq12gt0 26466 cosq14gt0 26469 cosq14ge0 26470 coseq1 26484 sinord 26493 zetacvg 26975 1sgmprm 27160 ppiub 27165 chtublem 27172 chtub 27173 bcp1ctr 27240 bpos1lem 27243 bposlem2 27246 bposlem3 27247 bposlem4 27248 bposlem5 27249 bposlem6 27250 bposlem7 27251 bposlem9 27253 nnsge1 28263 cutpw2 28334 pw2bday 28335 pw2cut 28337 zs12bday 28341 axlowdim 28886 ipidsq 30637 ipasslem1 30758 ipasslem2 30759 ipasslem4 30761 ipasslem5 30762 ipasslem8 30764 ipasslem9 30765 ipasslem11 30767 pjoc1i 31358 h1de2bi 31481 h1de2ctlem 31482 spanunsni 31506 opsqrlem1 32067 opsqrlem6 32072 chrelati 32291 chrelat2i 32292 cvexchlem 32295 pnfinf 33127 1fldgenq 33262 rrhre 33998 erdszelem5 35163 wsuceq2 35780 taupilem1 37285 finxpreclem2 37354 sin2h 37580 cos2h 37581 tan2h 37582 poimirlem27 37617 poimirlem30 37620 broucube 37624 mblfinlem1 37627 heiborlem6 37786 lcmineqlem19 42006 2xp3dxp2ge1d 42200 onexomgt 43212 omabs2 43303 icccncfext 45864 dirkertrigeq 46078 zlmodzxzel 48278 dignn0flhalflem1 48543 2arymaptfo 48582 fv1prop 48627 fv2prop 48628 line2x 48682 onetansqsecsq 49573 cotsqcscsq 49574 |
| Copyright terms: Public domain | W3C validator |