Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mp3an13 | Structured version Visualization version GIF version |
Description: An inference based on modus ponens. (Contributed by NM, 14-Jul-2005.) |
Ref | Expression |
---|---|
mp3an13.1 | ⊢ 𝜑 |
mp3an13.2 | ⊢ 𝜒 |
mp3an13.3 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
mp3an13 | ⊢ (𝜓 → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mp3an13.1 | . 2 ⊢ 𝜑 | |
2 | mp3an13.2 | . . 3 ⊢ 𝜒 | |
3 | mp3an13.3 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
4 | 2, 3 | mp3an3 1450 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
5 | 1, 4 | mpan 688 | 1 ⊢ (𝜓 → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 398 df-3an 1089 |
This theorem is referenced by: predeq2 6220 wrecseq2 8166 oeoalem 8458 mulid1 11019 addltmul 12255 eluzaddi 12657 fz01en 13330 fznatpl1 13356 expubnd 13941 bernneq 13990 bernneq2 13991 faclbnd4lem1 14053 hashfun 14197 bpoly2 15812 bpoly3 15813 fsumcube 15815 efi4p 15891 efival 15906 cos2tsin 15933 cos01bnd 15940 cos01gt0 15945 dvds0 16026 odd2np1 16095 opoe 16117 divalglem0 16147 gcdid 16279 pythagtriplem4 16565 ressid 16999 fvpr0o 17315 fvpr1o 17316 zringcyg 20736 lecldbas 22415 blssioo 24003 tgioo 24004 rerest 24012 xrrest 24015 zdis 24024 reconnlem2 24035 metdscn2 24065 negcncf 24130 iihalf2 24141 cncmet 24531 rrxmvallem 24613 rrxmval 24614 ovolunlem1a 24705 ismbf3d 24863 c1lip2 25207 pilem2 25656 pilem3 25657 sinperlem 25682 sincosq1sgn 25700 sincosq2sgn 25701 sinq12gt0 25709 cosq14gt0 25712 cosq14ge0 25713 coseq1 25726 sinord 25735 zetacvg 26209 1sgmprm 26392 ppiub 26397 chtublem 26404 chtub 26405 bcp1ctr 26472 bpos1lem 26475 bposlem2 26478 bposlem3 26479 bposlem4 26480 bposlem5 26481 bposlem6 26482 bposlem7 26483 bposlem9 26485 axlowdim 27374 ipidsq 29117 ipasslem1 29238 ipasslem2 29239 ipasslem4 29241 ipasslem5 29242 ipasslem8 29244 ipasslem9 29245 ipasslem11 29247 pjoc1i 29838 h1de2bi 29961 h1de2ctlem 29962 spanunsni 29986 opsqrlem1 30547 opsqrlem6 30552 chrelati 30771 chrelat2i 30772 cvexchlem 30775 pnfinf 31482 rrhre 32016 erdszelem5 33202 wsuceq2 33855 taupilem1 35536 finxpreclem2 35605 sin2h 35811 cos2h 35812 tan2h 35813 poimirlem27 35848 poimirlem30 35851 broucube 35855 mblfinlem1 35858 heiborlem6 36018 lcmineqlem19 40097 2xp3dxp2ge1d 40204 icccncfext 43477 dirkertrigeq 43691 zlmodzxzel 45749 dignn0flhalflem1 46019 2arymaptfo 46058 fv1prop 46103 fv2prop 46104 line2x 46158 onetansqsecsq 46521 cotsqcscsq 46522 |
Copyright terms: Public domain | W3C validator |