Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mp3an13 | Structured version Visualization version GIF version |
Description: An inference based on modus ponens. (Contributed by NM, 14-Jul-2005.) |
Ref | Expression |
---|---|
mp3an13.1 | ⊢ 𝜑 |
mp3an13.2 | ⊢ 𝜒 |
mp3an13.3 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
mp3an13 | ⊢ (𝜓 → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mp3an13.1 | . 2 ⊢ 𝜑 | |
2 | mp3an13.2 | . . 3 ⊢ 𝜒 | |
3 | mp3an13.3 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
4 | 2, 3 | mp3an3 1448 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
5 | 1, 4 | mpan 686 | 1 ⊢ (𝜓 → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 |
This theorem is referenced by: predeq2 6202 wrecseq2 8119 oeoalem 8403 mulid1 10957 addltmul 12192 eluzaddi 12593 fz01en 13266 fznatpl1 13292 expubnd 13876 bernneq 13925 bernneq2 13926 faclbnd4lem1 13988 hashfun 14133 bpoly2 15748 bpoly3 15749 fsumcube 15751 efi4p 15827 efival 15842 cos2tsin 15869 cos01bnd 15876 cos01gt0 15881 dvds0 15962 odd2np1 16031 opoe 16053 divalglem0 16083 gcdid 16215 pythagtriplem4 16501 ressid 16935 fvpr0o 17251 fvpr1o 17252 zringcyg 20672 lecldbas 22351 blssioo 23939 tgioo 23940 rerest 23948 xrrest 23951 zdis 23960 reconnlem2 23971 metdscn2 24001 negcncf 24066 iihalf2 24077 cncmet 24467 rrxmvallem 24549 rrxmval 24550 ovolunlem1a 24641 ismbf3d 24799 c1lip2 25143 pilem2 25592 pilem3 25593 sinperlem 25618 sincosq1sgn 25636 sincosq2sgn 25637 sinq12gt0 25645 cosq14gt0 25648 cosq14ge0 25649 coseq1 25662 sinord 25671 zetacvg 26145 1sgmprm 26328 ppiub 26333 chtublem 26340 chtub 26341 bcp1ctr 26408 bpos1lem 26411 bposlem2 26414 bposlem3 26415 bposlem4 26416 bposlem5 26417 bposlem6 26418 bposlem7 26419 bposlem9 26421 axlowdim 27310 ipidsq 29051 ipasslem1 29172 ipasslem2 29173 ipasslem4 29175 ipasslem5 29176 ipasslem8 29178 ipasslem9 29179 ipasslem11 29181 pjoc1i 29772 h1de2bi 29895 h1de2ctlem 29896 spanunsni 29920 opsqrlem1 30481 opsqrlem6 30486 chrelati 30705 chrelat2i 30706 cvexchlem 30709 pnfinf 31416 rrhre 31950 erdszelem5 33136 wsuceq2 33789 taupilem1 35471 finxpreclem2 35540 sin2h 35746 cos2h 35747 tan2h 35748 poimirlem27 35783 poimirlem30 35786 broucube 35790 mblfinlem1 35793 heiborlem6 35953 lcmineqlem19 40035 2xp3dxp2ge1d 40142 icccncfext 43382 dirkertrigeq 43596 zlmodzxzel 45643 dignn0flhalflem1 45913 2arymaptfo 45952 fv1prop 45997 fv2prop 45998 line2x 46052 onetansqsecsq 46415 cotsqcscsq 46416 |
Copyright terms: Public domain | W3C validator |