![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mp3an13 | Structured version Visualization version GIF version |
Description: An inference based on modus ponens. (Contributed by NM, 14-Jul-2005.) |
Ref | Expression |
---|---|
mp3an13.1 | ⊢ 𝜑 |
mp3an13.2 | ⊢ 𝜒 |
mp3an13.3 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
mp3an13 | ⊢ (𝜓 → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mp3an13.1 | . 2 ⊢ 𝜑 | |
2 | mp3an13.2 | . . 3 ⊢ 𝜒 | |
3 | mp3an13.3 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
4 | 2, 3 | mp3an3 1449 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
5 | 1, 4 | mpan 690 | 1 ⊢ (𝜓 → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
This theorem is referenced by: predeq2 6325 wrecseq2 8342 oeoalem 8632 mulrid 11256 addltmul 12499 eluzaddiOLD 12907 fz01en 13588 fznatpl1 13614 expubnd 14213 bernneq 14264 bernneq2 14265 faclbnd4lem1 14328 hashfun 14472 bpoly2 16089 bpoly3 16090 fsumcube 16092 efi4p 16169 efival 16184 cos2tsin 16211 cos01bnd 16218 cos01gt0 16223 dvds0 16305 odd2np1 16374 opoe 16396 divalglem0 16426 gcdid 16560 pythagtriplem4 16852 ressid 17289 fvpr0o 17605 fvpr1o 17606 zringcyg 21497 lecldbas 23242 blssioo 24830 tgioo 24831 rerest 24839 xrrest 24842 zdis 24851 reconnlem2 24862 metdscn2 24892 negcncf 24961 negcncfOLD 24962 iihalf2 24974 cncmet 25369 rrxmvallem 25451 rrxmval 25452 ovolunlem1a 25544 ismbf3d 25702 c1lip2 26051 pilem2 26510 pilem3 26511 sinperlem 26536 sincosq1sgn 26554 sincosq2sgn 26555 sinq12gt0 26563 cosq14gt0 26566 cosq14ge0 26567 coseq1 26581 sinord 26590 zetacvg 27072 1sgmprm 27257 ppiub 27262 chtublem 27269 chtub 27270 bcp1ctr 27337 bpos1lem 27340 bposlem2 27343 bposlem3 27344 bposlem4 27345 bposlem5 27346 bposlem6 27347 bposlem7 27348 bposlem9 27350 nnsge1 28360 cutpw2 28431 pw2bday 28432 pw2cut 28434 zs12bday 28438 axlowdim 28990 ipidsq 30738 ipasslem1 30859 ipasslem2 30860 ipasslem4 30862 ipasslem5 30863 ipasslem8 30865 ipasslem9 30866 ipasslem11 30868 pjoc1i 31459 h1de2bi 31582 h1de2ctlem 31583 spanunsni 31607 opsqrlem1 32168 opsqrlem6 32173 chrelati 32392 chrelat2i 32393 cvexchlem 32396 pnfinf 33172 1fldgenq 33303 rrhre 33983 erdszelem5 35179 wsuceq2 35797 taupilem1 37303 finxpreclem2 37372 sin2h 37596 cos2h 37597 tan2h 37598 poimirlem27 37633 poimirlem30 37636 broucube 37640 mblfinlem1 37643 heiborlem6 37802 lcmineqlem19 42028 2xp3dxp2ge1d 42222 onexomgt 43229 omabs2 43321 icccncfext 45842 dirkertrigeq 46056 zlmodzxzel 48199 dignn0flhalflem1 48464 2arymaptfo 48503 fv1prop 48548 fv2prop 48549 line2x 48603 onetansqsecsq 48991 cotsqcscsq 48992 |
Copyright terms: Public domain | W3C validator |