| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mp3an13 | Structured version Visualization version GIF version | ||
| Description: An inference based on modus ponens. (Contributed by NM, 14-Jul-2005.) |
| Ref | Expression |
|---|---|
| mp3an13.1 | ⊢ 𝜑 |
| mp3an13.2 | ⊢ 𝜒 |
| mp3an13.3 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| mp3an13 | ⊢ (𝜓 → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mp3an13.1 | . 2 ⊢ 𝜑 | |
| 2 | mp3an13.2 | . . 3 ⊢ 𝜒 | |
| 3 | mp3an13.3 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
| 4 | 2, 3 | mp3an3 1452 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
| 5 | 1, 4 | mpan 690 | 1 ⊢ (𝜓 → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: predeq2 6277 wrecseq2 8295 oeoalem 8560 mulrid 11172 addltmul 12418 eluzaddiOLD 12825 fz01en 13513 fznatpl1 13539 expubnd 14143 bernneq 14194 bernneq2 14195 faclbnd4lem1 14258 hashfun 14402 bpoly2 16023 bpoly3 16024 fsumcube 16026 efi4p 16105 efival 16120 cos2tsin 16147 cos01bnd 16154 cos01gt0 16159 dvds0 16241 odd2np1 16311 opoe 16333 divalglem0 16363 gcdid 16497 pythagtriplem4 16790 ressid 17214 fvpr0o 17522 fvpr1o 17523 zringcyg 21379 lecldbas 23106 blssioo 24683 tgioo 24684 rerest 24692 xrrest 24696 zdis 24705 reconnlem2 24716 metdscn2 24746 negcncf 24815 negcncfOLD 24816 iihalf2 24828 cncmet 25222 rrxmvallem 25304 rrxmval 25305 ovolunlem1a 25397 ismbf3d 25555 c1lip2 25903 pilem2 26362 pilem3 26363 sinperlem 26389 sincosq1sgn 26407 sincosq2sgn 26408 sinq12gt0 26416 cosq14gt0 26419 cosq14ge0 26420 coseq1 26434 sinord 26443 zetacvg 26925 1sgmprm 27110 ppiub 27115 chtublem 27122 chtub 27123 bcp1ctr 27190 bpos1lem 27193 bposlem2 27196 bposlem3 27197 bposlem4 27198 bposlem5 27199 bposlem6 27200 bposlem7 27201 bposlem9 27203 nnsge1 28235 pw2gt0divsd 28328 pw2ge0divsd 28329 pw2cut 28335 zs12bday 28343 axlowdim 28888 ipidsq 30639 ipasslem1 30760 ipasslem2 30761 ipasslem4 30763 ipasslem5 30764 ipasslem8 30766 ipasslem9 30767 ipasslem11 30769 pjoc1i 31360 h1de2bi 31483 h1de2ctlem 31484 spanunsni 31508 opsqrlem1 32069 opsqrlem6 32074 chrelati 32293 chrelat2i 32294 cvexchlem 32297 pnfinf 33137 1fldgenq 33272 rrhre 34011 erdszelem5 35182 wsuceq2 35804 taupilem1 37309 finxpreclem2 37378 sin2h 37604 cos2h 37605 tan2h 37606 poimirlem27 37641 poimirlem30 37644 broucube 37648 mblfinlem1 37651 heiborlem6 37810 lcmineqlem19 42035 onexomgt 43230 omabs2 43321 icccncfext 45885 dirkertrigeq 46099 pgnbgreunbgrlem4 48109 zlmodzxzel 48343 dignn0flhalflem1 48604 2arymaptfo 48643 fv1prop 48688 fv2prop 48689 line2x 48743 onetansqsecsq 49750 cotsqcscsq 49751 |
| Copyright terms: Public domain | W3C validator |