| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mp3an13 | Structured version Visualization version GIF version | ||
| Description: An inference based on modus ponens. (Contributed by NM, 14-Jul-2005.) |
| Ref | Expression |
|---|---|
| mp3an13.1 | ⊢ 𝜑 |
| mp3an13.2 | ⊢ 𝜒 |
| mp3an13.3 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| mp3an13 | ⊢ (𝜓 → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mp3an13.1 | . 2 ⊢ 𝜑 | |
| 2 | mp3an13.2 | . . 3 ⊢ 𝜒 | |
| 3 | mp3an13.3 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
| 4 | 2, 3 | mp3an3 1452 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
| 5 | 1, 4 | mpan 690 | 1 ⊢ (𝜓 → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: predeq2 6252 wrecseq2 8249 oeoalem 8514 mulrid 11113 addltmul 12360 eluzaddiOLD 12767 fz01en 13455 fznatpl1 13481 expubnd 14085 bernneq 14136 bernneq2 14137 faclbnd4lem1 14200 hashfun 14344 bpoly2 15964 bpoly3 15965 fsumcube 15967 efi4p 16046 efival 16061 cos2tsin 16088 cos01bnd 16095 cos01gt0 16100 dvds0 16182 odd2np1 16252 opoe 16274 divalglem0 16304 gcdid 16438 pythagtriplem4 16731 ressid 17155 fvpr0o 17463 fvpr1o 17464 zringcyg 21376 lecldbas 23104 blssioo 24681 tgioo 24682 rerest 24690 xrrest 24694 zdis 24703 reconnlem2 24714 metdscn2 24744 negcncf 24813 negcncfOLD 24814 iihalf2 24826 cncmet 25220 rrxmvallem 25302 rrxmval 25303 ovolunlem1a 25395 ismbf3d 25553 c1lip2 25901 pilem2 26360 pilem3 26361 sinperlem 26387 sincosq1sgn 26405 sincosq2sgn 26406 sinq12gt0 26414 cosq14gt0 26417 cosq14ge0 26418 coseq1 26432 sinord 26441 zetacvg 26923 1sgmprm 27108 ppiub 27113 chtublem 27120 chtub 27121 bcp1ctr 27188 bpos1lem 27191 bposlem2 27194 bposlem3 27195 bposlem4 27196 bposlem5 27197 bposlem6 27198 bposlem7 27199 bposlem9 27201 nnsge1 28242 pw2gt0divsd 28339 pw2ge0divsd 28340 pw2sltdivmuld 28344 pw2sltmuldiv2d 28345 pw2cut 28351 zs12bday 28365 axlowdim 28910 ipidsq 30658 ipasslem1 30779 ipasslem2 30780 ipasslem4 30782 ipasslem5 30783 ipasslem8 30785 ipasslem9 30786 ipasslem11 30788 pjoc1i 31379 h1de2bi 31502 h1de2ctlem 31503 spanunsni 31527 opsqrlem1 32088 opsqrlem6 32093 chrelati 32312 chrelat2i 32313 cvexchlem 32316 pnfinf 33134 1fldgenq 33270 rrhre 34004 erdszelem5 35188 wsuceq2 35810 taupilem1 37315 finxpreclem2 37384 sin2h 37610 cos2h 37611 tan2h 37612 poimirlem27 37647 poimirlem30 37650 broucube 37654 mblfinlem1 37657 heiborlem6 37816 lcmineqlem19 42040 onexomgt 43234 omabs2 43325 icccncfext 45888 dirkertrigeq 46102 pgnbgreunbgrlem4 48123 zlmodzxzel 48359 dignn0flhalflem1 48620 2arymaptfo 48659 fv1prop 48704 fv2prop 48705 line2x 48759 onetansqsecsq 49766 cotsqcscsq 49767 |
| Copyright terms: Public domain | W3C validator |