| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mp3an13 | Structured version Visualization version GIF version | ||
| Description: An inference based on modus ponens. (Contributed by NM, 14-Jul-2005.) |
| Ref | Expression |
|---|---|
| mp3an13.1 | ⊢ 𝜑 |
| mp3an13.2 | ⊢ 𝜒 |
| mp3an13.3 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| mp3an13 | ⊢ (𝜓 → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mp3an13.1 | . 2 ⊢ 𝜑 | |
| 2 | mp3an13.2 | . . 3 ⊢ 𝜒 | |
| 3 | mp3an13.3 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
| 4 | 2, 3 | mp3an3 1452 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
| 5 | 1, 4 | mpan 690 | 1 ⊢ (𝜓 → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: predeq2 6266 wrecseq2 8273 oeoalem 8538 mulrid 11151 addltmul 12397 eluzaddiOLD 12804 fz01en 13492 fznatpl1 13518 expubnd 14122 bernneq 14173 bernneq2 14174 faclbnd4lem1 14237 hashfun 14381 bpoly2 16001 bpoly3 16002 fsumcube 16004 efi4p 16083 efival 16098 cos2tsin 16125 cos01bnd 16132 cos01gt0 16137 dvds0 16219 odd2np1 16289 opoe 16311 divalglem0 16341 gcdid 16475 pythagtriplem4 16768 ressid 17192 fvpr0o 17500 fvpr1o 17501 zringcyg 21413 lecldbas 23141 blssioo 24718 tgioo 24719 rerest 24727 xrrest 24731 zdis 24740 reconnlem2 24751 metdscn2 24781 negcncf 24850 negcncfOLD 24851 iihalf2 24863 cncmet 25257 rrxmvallem 25339 rrxmval 25340 ovolunlem1a 25432 ismbf3d 25590 c1lip2 25938 pilem2 26397 pilem3 26398 sinperlem 26424 sincosq1sgn 26442 sincosq2sgn 26443 sinq12gt0 26451 cosq14gt0 26454 cosq14ge0 26455 coseq1 26469 sinord 26478 zetacvg 26960 1sgmprm 27145 ppiub 27150 chtublem 27157 chtub 27158 bcp1ctr 27225 bpos1lem 27228 bposlem2 27231 bposlem3 27232 bposlem4 27233 bposlem5 27234 bposlem6 27235 bposlem7 27236 bposlem9 27238 nnsge1 28277 pw2gt0divsd 28374 pw2ge0divsd 28375 pw2sltdivmuld 28379 pw2sltmuldiv2d 28380 pw2cut 28385 zs12bday 28398 axlowdim 28943 ipidsq 30691 ipasslem1 30812 ipasslem2 30813 ipasslem4 30815 ipasslem5 30816 ipasslem8 30818 ipasslem9 30819 ipasslem11 30821 pjoc1i 31412 h1de2bi 31535 h1de2ctlem 31536 spanunsni 31560 opsqrlem1 32121 opsqrlem6 32126 chrelati 32345 chrelat2i 32346 cvexchlem 32349 pnfinf 33154 1fldgenq 33290 rrhre 34006 erdszelem5 35177 wsuceq2 35799 taupilem1 37304 finxpreclem2 37373 sin2h 37599 cos2h 37600 tan2h 37601 poimirlem27 37636 poimirlem30 37639 broucube 37643 mblfinlem1 37646 heiborlem6 37805 lcmineqlem19 42030 onexomgt 43225 omabs2 43316 icccncfext 45880 dirkertrigeq 46094 pgnbgreunbgrlem4 48104 zlmodzxzel 48338 dignn0flhalflem1 48599 2arymaptfo 48638 fv1prop 48683 fv2prop 48684 line2x 48738 onetansqsecsq 49745 cotsqcscsq 49746 |
| Copyright terms: Public domain | W3C validator |