![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mp3an13 | Structured version Visualization version GIF version |
Description: An inference based on modus ponens. (Contributed by NM, 14-Jul-2005.) |
Ref | Expression |
---|---|
mp3an13.1 | ⊢ 𝜑 |
mp3an13.2 | ⊢ 𝜒 |
mp3an13.3 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
mp3an13 | ⊢ (𝜓 → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mp3an13.1 | . 2 ⊢ 𝜑 | |
2 | mp3an13.2 | . . 3 ⊢ 𝜒 | |
3 | mp3an13.3 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
4 | 2, 3 | mp3an3 1449 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
5 | 1, 4 | mpan 687 | 1 ⊢ (𝜓 → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1088 |
This theorem is referenced by: predeq2 6303 wrecseq2 8310 oeoalem 8602 mulrid 11219 addltmul 12455 eluzaddiOLD 12861 fz01en 13536 fznatpl1 13562 expubnd 14149 bernneq 14199 bernneq2 14200 faclbnd4lem1 14260 hashfun 14404 bpoly2 16008 bpoly3 16009 fsumcube 16011 efi4p 16087 efival 16102 cos2tsin 16129 cos01bnd 16136 cos01gt0 16141 dvds0 16222 odd2np1 16291 opoe 16313 divalglem0 16343 gcdid 16475 pythagtriplem4 16759 ressid 17196 fvpr0o 17512 fvpr1o 17513 zringcyg 21328 lecldbas 23042 blssioo 24630 tgioo 24631 rerest 24639 xrrest 24642 zdis 24651 reconnlem2 24662 metdscn2 24692 negcncf 24761 negcncfOLD 24762 iihalf2 24774 cncmet 25169 rrxmvallem 25251 rrxmval 25252 ovolunlem1a 25344 ismbf3d 25502 c1lip2 25850 pilem2 26303 pilem3 26304 sinperlem 26329 sincosq1sgn 26347 sincosq2sgn 26348 sinq12gt0 26356 cosq14gt0 26359 cosq14ge0 26360 coseq1 26373 sinord 26382 zetacvg 26859 1sgmprm 27044 ppiub 27049 chtublem 27056 chtub 27057 bcp1ctr 27124 bpos1lem 27127 bposlem2 27130 bposlem3 27131 bposlem4 27132 bposlem5 27133 bposlem6 27134 bposlem7 27135 bposlem9 27137 axlowdim 28651 ipidsq 30395 ipasslem1 30516 ipasslem2 30517 ipasslem4 30519 ipasslem5 30520 ipasslem8 30522 ipasslem9 30523 ipasslem11 30525 pjoc1i 31116 h1de2bi 31239 h1de2ctlem 31240 spanunsni 31264 opsqrlem1 31825 opsqrlem6 31830 chrelati 32049 chrelat2i 32050 cvexchlem 32053 pnfinf 32764 1fldgenq 32847 rrhre 33464 erdszelem5 34649 wsuceq2 35257 taupilem1 36665 finxpreclem2 36734 sin2h 36941 cos2h 36942 tan2h 36943 poimirlem27 36978 poimirlem30 36981 broucube 36985 mblfinlem1 36988 heiborlem6 37147 lcmineqlem19 41378 2xp3dxp2ge1d 41488 onexomgt 42452 omabs2 42544 icccncfext 45061 dirkertrigeq 45275 zlmodzxzel 47193 dignn0flhalflem1 47462 2arymaptfo 47501 fv1prop 47546 fv2prop 47547 line2x 47601 onetansqsecsq 47967 cotsqcscsq 47968 |
Copyright terms: Public domain | W3C validator |