| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mp3an13 | Structured version Visualization version GIF version | ||
| Description: An inference based on modus ponens. (Contributed by NM, 14-Jul-2005.) |
| Ref | Expression |
|---|---|
| mp3an13.1 | ⊢ 𝜑 |
| mp3an13.2 | ⊢ 𝜒 |
| mp3an13.3 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| mp3an13 | ⊢ (𝜓 → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mp3an13.1 | . 2 ⊢ 𝜑 | |
| 2 | mp3an13.2 | . . 3 ⊢ 𝜒 | |
| 3 | mp3an13.3 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
| 4 | 2, 3 | mp3an3 1452 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
| 5 | 1, 4 | mpan 690 | 1 ⊢ (𝜓 → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: predeq2 6265 wrecseq2 8272 oeoalem 8537 mulrid 11150 addltmul 12396 eluzaddiOLD 12803 fz01en 13491 fznatpl1 13517 expubnd 14121 bernneq 14172 bernneq2 14173 faclbnd4lem1 14236 hashfun 14380 bpoly2 16000 bpoly3 16001 fsumcube 16003 efi4p 16082 efival 16097 cos2tsin 16124 cos01bnd 16131 cos01gt0 16136 dvds0 16218 odd2np1 16288 opoe 16310 divalglem0 16340 gcdid 16474 pythagtriplem4 16767 ressid 17191 fvpr0o 17499 fvpr1o 17500 zringcyg 21412 lecldbas 23140 blssioo 24717 tgioo 24718 rerest 24726 xrrest 24730 zdis 24739 reconnlem2 24750 metdscn2 24780 negcncf 24849 negcncfOLD 24850 iihalf2 24862 cncmet 25256 rrxmvallem 25338 rrxmval 25339 ovolunlem1a 25431 ismbf3d 25589 c1lip2 25937 pilem2 26396 pilem3 26397 sinperlem 26423 sincosq1sgn 26441 sincosq2sgn 26442 sinq12gt0 26450 cosq14gt0 26453 cosq14ge0 26454 coseq1 26468 sinord 26477 zetacvg 26959 1sgmprm 27144 ppiub 27149 chtublem 27156 chtub 27157 bcp1ctr 27224 bpos1lem 27227 bposlem2 27230 bposlem3 27231 bposlem4 27232 bposlem5 27233 bposlem6 27234 bposlem7 27235 bposlem9 27237 nnsge1 28276 pw2gt0divsd 28373 pw2ge0divsd 28374 pw2sltdivmuld 28378 pw2sltmuldiv2d 28379 pw2cut 28384 zs12bday 28397 axlowdim 28942 ipidsq 30690 ipasslem1 30811 ipasslem2 30812 ipasslem4 30814 ipasslem5 30815 ipasslem8 30817 ipasslem9 30818 ipasslem11 30820 pjoc1i 31411 h1de2bi 31534 h1de2ctlem 31535 spanunsni 31559 opsqrlem1 32120 opsqrlem6 32125 chrelati 32344 chrelat2i 32345 cvexchlem 32348 pnfinf 33153 1fldgenq 33289 rrhre 34005 erdszelem5 35176 wsuceq2 35798 taupilem1 37303 finxpreclem2 37372 sin2h 37598 cos2h 37599 tan2h 37600 poimirlem27 37635 poimirlem30 37638 broucube 37642 mblfinlem1 37645 heiborlem6 37804 lcmineqlem19 42029 onexomgt 43224 omabs2 43315 icccncfext 45879 dirkertrigeq 46093 pgnbgreunbgrlem4 48103 zlmodzxzel 48337 dignn0flhalflem1 48598 2arymaptfo 48637 fv1prop 48682 fv2prop 48683 line2x 48737 onetansqsecsq 49744 cotsqcscsq 49745 |
| Copyright terms: Public domain | W3C validator |