![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mp3an13 | Structured version Visualization version GIF version |
Description: An inference based on modus ponens. (Contributed by NM, 14-Jul-2005.) |
Ref | Expression |
---|---|
mp3an13.1 | ⊢ 𝜑 |
mp3an13.2 | ⊢ 𝜒 |
mp3an13.3 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
mp3an13 | ⊢ (𝜓 → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mp3an13.1 | . 2 ⊢ 𝜑 | |
2 | mp3an13.2 | . . 3 ⊢ 𝜒 | |
3 | mp3an13.3 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
4 | 2, 3 | mp3an3 1448 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
5 | 1, 4 | mpan 686 | 1 ⊢ (𝜓 → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 395 df-3an 1087 |
This theorem is referenced by: predeq2 6302 wrecseq2 8306 oeoalem 8598 mulrid 11216 addltmul 12452 eluzaddiOLD 12858 fz01en 13533 fznatpl1 13559 expubnd 14146 bernneq 14196 bernneq2 14197 faclbnd4lem1 14257 hashfun 14401 bpoly2 16005 bpoly3 16006 fsumcube 16008 efi4p 16084 efival 16099 cos2tsin 16126 cos01bnd 16133 cos01gt0 16138 dvds0 16219 odd2np1 16288 opoe 16310 divalglem0 16340 gcdid 16472 pythagtriplem4 16756 ressid 17193 fvpr0o 17509 fvpr1o 17510 zringcyg 21240 lecldbas 22943 blssioo 24531 tgioo 24532 rerest 24540 xrrest 24543 zdis 24552 reconnlem2 24563 metdscn2 24593 negcncf 24662 negcncfOLD 24663 iihalf2 24675 cncmet 25070 rrxmvallem 25152 rrxmval 25153 ovolunlem1a 25245 ismbf3d 25403 c1lip2 25750 pilem2 26200 pilem3 26201 sinperlem 26226 sincosq1sgn 26244 sincosq2sgn 26245 sinq12gt0 26253 cosq14gt0 26256 cosq14ge0 26257 coseq1 26270 sinord 26279 zetacvg 26755 1sgmprm 26938 ppiub 26943 chtublem 26950 chtub 26951 bcp1ctr 27018 bpos1lem 27021 bposlem2 27024 bposlem3 27025 bposlem4 27026 bposlem5 27027 bposlem6 27028 bposlem7 27029 bposlem9 27031 axlowdim 28486 ipidsq 30230 ipasslem1 30351 ipasslem2 30352 ipasslem4 30354 ipasslem5 30355 ipasslem8 30357 ipasslem9 30358 ipasslem11 30360 pjoc1i 30951 h1de2bi 31074 h1de2ctlem 31075 spanunsni 31099 opsqrlem1 31660 opsqrlem6 31665 chrelati 31884 chrelat2i 31885 cvexchlem 31888 pnfinf 32599 1fldgenq 32682 rrhre 33299 erdszelem5 34484 wsuceq2 35092 taupilem1 36505 finxpreclem2 36574 sin2h 36781 cos2h 36782 tan2h 36783 poimirlem27 36818 poimirlem30 36821 broucube 36825 mblfinlem1 36828 heiborlem6 36987 lcmineqlem19 41218 2xp3dxp2ge1d 41328 onexomgt 42292 omabs2 42384 icccncfext 44901 dirkertrigeq 45115 zlmodzxzel 47119 dignn0flhalflem1 47388 2arymaptfo 47427 fv1prop 47472 fv2prop 47473 line2x 47527 onetansqsecsq 47893 cotsqcscsq 47894 |
Copyright terms: Public domain | W3C validator |