MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prstr Structured version   Visualization version   GIF version

Theorem prstr 18260
Description: "Less than or equal to" is transitive in a proset. (Contributed by Stefan O'Rear, 1-Feb-2015.)
Hypotheses
Ref Expression
isprs.b 𝐵 = (Base‘𝐾)
isprs.l = (le‘𝐾)
Assertion
Ref Expression
prstr ((𝐾 ∈ Proset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑌𝑌 𝑍)) → 𝑋 𝑍)

Proof of Theorem prstr
StepHypRef Expression
1 isprs.b . . . 4 𝐵 = (Base‘𝐾)
2 isprs.l . . . 4 = (le‘𝐾)
31, 2prslem 18258 . . 3 ((𝐾 ∈ Proset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 𝑋 ∧ ((𝑋 𝑌𝑌 𝑍) → 𝑋 𝑍)))
43simprd 495 . 2 ((𝐾 ∈ Proset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 𝑌𝑌 𝑍) → 𝑋 𝑍))
543impia 1117 1 ((𝐾 ∈ Proset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑌𝑌 𝑍)) → 𝑋 𝑍)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109   class class class wbr 5107  cfv 6511  Basecbs 17179  lecple 17227   Proset cproset 18253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-nul 5261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-iota 6464  df-fv 6519  df-proset 18255
This theorem is referenced by:  drsdirfi  18266  mgcmnt1  32918  mgcmnt2  32919  mgcmntco  32920  dfmgc2lem  32921  prsthinc  49453
  Copyright terms: Public domain W3C validator