MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prstr Structured version   Visualization version   GIF version

Theorem prstr 18257
Description: "Less than or equal to" is transitive in a proset. (Contributed by Stefan O'Rear, 1-Feb-2015.)
Hypotheses
Ref Expression
isprs.b 𝐡 = (Baseβ€˜πΎ)
isprs.l ≀ = (leβ€˜πΎ)
Assertion
Ref Expression
prstr ((𝐾 ∈ Proset ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡 ∧ 𝑍 ∈ 𝐡) ∧ (𝑋 ≀ π‘Œ ∧ π‘Œ ≀ 𝑍)) β†’ 𝑋 ≀ 𝑍)

Proof of Theorem prstr
StepHypRef Expression
1 isprs.b . . . 4 𝐡 = (Baseβ€˜πΎ)
2 isprs.l . . . 4 ≀ = (leβ€˜πΎ)
31, 2prslem 18255 . . 3 ((𝐾 ∈ Proset ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡 ∧ 𝑍 ∈ 𝐡)) β†’ (𝑋 ≀ 𝑋 ∧ ((𝑋 ≀ π‘Œ ∧ π‘Œ ≀ 𝑍) β†’ 𝑋 ≀ 𝑍)))
43simprd 494 . 2 ((𝐾 ∈ Proset ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡 ∧ 𝑍 ∈ 𝐡)) β†’ ((𝑋 ≀ π‘Œ ∧ π‘Œ ≀ 𝑍) β†’ 𝑋 ≀ 𝑍))
543impia 1115 1 ((𝐾 ∈ Proset ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡 ∧ 𝑍 ∈ 𝐡) ∧ (𝑋 ≀ π‘Œ ∧ π‘Œ ≀ 𝑍)) β†’ 𝑋 ≀ 𝑍)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 394   ∧ w3a 1085   = wceq 1539   ∈ wcel 2104   class class class wbr 5147  β€˜cfv 6542  Basecbs 17148  lecple 17208   Proset cproset 18250
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-ext 2701  ax-nul 5305
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2722  df-clel 2808  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3431  df-v 3474  df-sbc 3777  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-iota 6494  df-fv 6550  df-proset 18252
This theorem is referenced by:  drsdirfi  18262  mgcmnt1  32429  mgcmnt2  32430  mgcmntco  32431  dfmgc2lem  32432  prsthinc  47761
  Copyright terms: Public domain W3C validator