MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prstr Structured version   Visualization version   GIF version

Theorem prstr 18311
Description: "Less than or equal to" is transitive in a proset. (Contributed by Stefan O'Rear, 1-Feb-2015.)
Hypotheses
Ref Expression
isprs.b 𝐵 = (Base‘𝐾)
isprs.l = (le‘𝐾)
Assertion
Ref Expression
prstr ((𝐾 ∈ Proset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑌𝑌 𝑍)) → 𝑋 𝑍)

Proof of Theorem prstr
StepHypRef Expression
1 isprs.b . . . 4 𝐵 = (Base‘𝐾)
2 isprs.l . . . 4 = (le‘𝐾)
31, 2prslem 18309 . . 3 ((𝐾 ∈ Proset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 𝑋 ∧ ((𝑋 𝑌𝑌 𝑍) → 𝑋 𝑍)))
43simprd 495 . 2 ((𝐾 ∈ Proset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 𝑌𝑌 𝑍) → 𝑋 𝑍))
543impia 1117 1 ((𝐾 ∈ Proset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑌𝑌 𝑍)) → 𝑋 𝑍)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2108   class class class wbr 5119  cfv 6531  Basecbs 17228  lecple 17278   Proset cproset 18304
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707  ax-nul 5276
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-dif 3929  df-un 3931  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-iota 6484  df-fv 6539  df-proset 18306
This theorem is referenced by:  drsdirfi  18317  mgcmnt1  32972  mgcmnt2  32973  mgcmntco  32974  dfmgc2lem  32975  prsthinc  49350
  Copyright terms: Public domain W3C validator