MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prstr Structured version   Visualization version   GIF version

Theorem prstr 17933
Description: "Less than or equal to" is transitive in a proset. (Contributed by Stefan O'Rear, 1-Feb-2015.)
Hypotheses
Ref Expression
isprs.b 𝐵 = (Base‘𝐾)
isprs.l = (le‘𝐾)
Assertion
Ref Expression
prstr ((𝐾 ∈ Proset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑌𝑌 𝑍)) → 𝑋 𝑍)

Proof of Theorem prstr
StepHypRef Expression
1 isprs.b . . . 4 𝐵 = (Base‘𝐾)
2 isprs.l . . . 4 = (le‘𝐾)
31, 2prslem 17931 . . 3 ((𝐾 ∈ Proset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 𝑋 ∧ ((𝑋 𝑌𝑌 𝑍) → 𝑋 𝑍)))
43simprd 495 . 2 ((𝐾 ∈ Proset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 𝑌𝑌 𝑍) → 𝑋 𝑍))
543impia 1115 1 ((𝐾 ∈ Proset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑌𝑌 𝑍)) → 𝑋 𝑍)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108   class class class wbr 5070  cfv 6418  Basecbs 16840  lecple 16895   Proset cproset 17926
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-nul 5225
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-iota 6376  df-fv 6426  df-proset 17928
This theorem is referenced by:  drsdirfi  17938  mgcmnt1  31172  mgcmnt2  31173  mgcmntco  31174  dfmgc2lem  31175  prsthinc  46223
  Copyright terms: Public domain W3C validator