| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > prstr | Structured version Visualization version GIF version | ||
| Description: "Less than or equal to" is transitive in a proset. (Contributed by Stefan O'Rear, 1-Feb-2015.) |
| Ref | Expression |
|---|---|
| isprs.b | ⊢ 𝐵 = (Base‘𝐾) |
| isprs.l | ⊢ ≤ = (le‘𝐾) |
| Ref | Expression |
|---|---|
| prstr | ⊢ ((𝐾 ∈ Proset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ (𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑍)) → 𝑋 ≤ 𝑍) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isprs.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | isprs.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
| 3 | 1, 2 | prslem 18205 | . . 3 ⊢ ((𝐾 ∈ Proset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 ≤ 𝑋 ∧ ((𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑍) → 𝑋 ≤ 𝑍))) |
| 4 | 3 | simprd 495 | . 2 ⊢ ((𝐾 ∈ Proset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑍) → 𝑋 ≤ 𝑍)) |
| 5 | 4 | 3impia 1117 | 1 ⊢ ((𝐾 ∈ Proset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ (𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑍)) → 𝑋 ≤ 𝑍) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 class class class wbr 5093 ‘cfv 6486 Basecbs 17122 lecple 17170 Proset cproset 18200 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-nul 5246 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-iota 6442 df-fv 6494 df-proset 18202 |
| This theorem is referenced by: drsdirfi 18213 mgcmnt1 32980 mgcmnt2 32981 mgcmntco 32982 dfmgc2lem 32983 prsthinc 49589 |
| Copyright terms: Public domain | W3C validator |