![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > prstr | Structured version Visualization version GIF version |
Description: "Less than or equal to" is transitive in a proset. (Contributed by Stefan O'Rear, 1-Feb-2015.) |
Ref | Expression |
---|---|
isprs.b | β’ π΅ = (BaseβπΎ) |
isprs.l | β’ β€ = (leβπΎ) |
Ref | Expression |
---|---|
prstr | β’ ((πΎ β Proset β§ (π β π΅ β§ π β π΅ β§ π β π΅) β§ (π β€ π β§ π β€ π)) β π β€ π) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isprs.b | . . . 4 β’ π΅ = (BaseβπΎ) | |
2 | isprs.l | . . . 4 β’ β€ = (leβπΎ) | |
3 | 1, 2 | prslem 18255 | . . 3 β’ ((πΎ β Proset β§ (π β π΅ β§ π β π΅ β§ π β π΅)) β (π β€ π β§ ((π β€ π β§ π β€ π) β π β€ π))) |
4 | 3 | simprd 494 | . 2 β’ ((πΎ β Proset β§ (π β π΅ β§ π β π΅ β§ π β π΅)) β ((π β€ π β§ π β€ π) β π β€ π)) |
5 | 4 | 3impia 1115 | 1 β’ ((πΎ β Proset β§ (π β π΅ β§ π β π΅ β§ π β π΅) β§ (π β€ π β§ π β€ π)) β π β€ π) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 394 β§ w3a 1085 = wceq 1539 β wcel 2104 class class class wbr 5147 βcfv 6542 Basecbs 17148 lecple 17208 Proset cproset 18250 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2701 ax-nul 5305 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2722 df-clel 2808 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3431 df-v 3474 df-sbc 3777 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-iota 6494 df-fv 6550 df-proset 18252 |
This theorem is referenced by: drsdirfi 18262 mgcmnt1 32429 mgcmnt2 32430 mgcmntco 32431 dfmgc2lem 32432 prsthinc 47761 |
Copyright terms: Public domain | W3C validator |