MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prstr Structured version   Visualization version   GIF version

Theorem prstr 17807
Description: "Less than or equal to" is transitive in a proset. (Contributed by Stefan O'Rear, 1-Feb-2015.)
Hypotheses
Ref Expression
isprs.b 𝐵 = (Base‘𝐾)
isprs.l = (le‘𝐾)
Assertion
Ref Expression
prstr ((𝐾 ∈ Proset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑌𝑌 𝑍)) → 𝑋 𝑍)

Proof of Theorem prstr
StepHypRef Expression
1 isprs.b . . . 4 𝐵 = (Base‘𝐾)
2 isprs.l . . . 4 = (le‘𝐾)
31, 2prslem 17805 . . 3 ((𝐾 ∈ Proset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 𝑋 ∧ ((𝑋 𝑌𝑌 𝑍) → 𝑋 𝑍)))
43simprd 499 . 2 ((𝐾 ∈ Proset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 𝑌𝑌 𝑍) → 𝑋 𝑍))
543impia 1119 1 ((𝐾 ∈ Proset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑋 𝑌𝑌 𝑍)) → 𝑋 𝑍)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1089   = wceq 1543  wcel 2110   class class class wbr 5053  cfv 6380  Basecbs 16760  lecple 16809   Proset cproset 17800
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-nul 5199
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3410  df-sbc 3695  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4820  df-br 5054  df-iota 6338  df-fv 6388  df-proset 17802
This theorem is referenced by:  drsdirfi  17812  mgcmnt1  30989  mgcmnt2  30990  mgcmntco  30991  dfmgc2lem  30992  prsthinc  46008
  Copyright terms: Public domain W3C validator