Step | Hyp | Ref
| Expression |
1 | | isprs.b |
. . . 4
⊢ 𝐵 = (Base‘𝐾) |
2 | | isprs.l |
. . . 4
⊢ ≤ =
(le‘𝐾) |
3 | 1, 2 | isprs 17930 |
. . 3
⊢ (𝐾 ∈ Proset ↔ (𝐾 ∈ V ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝑥 ≤ 𝑥 ∧ ((𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧) → 𝑥 ≤ 𝑧)))) |
4 | 3 | simprbi 496 |
. 2
⊢ (𝐾 ∈ Proset →
∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝑥 ≤ 𝑥 ∧ ((𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧) → 𝑥 ≤ 𝑧))) |
5 | | breq12 5075 |
. . . . 5
⊢ ((𝑥 = 𝑋 ∧ 𝑥 = 𝑋) → (𝑥 ≤ 𝑥 ↔ 𝑋 ≤ 𝑋)) |
6 | 5 | anidms 566 |
. . . 4
⊢ (𝑥 = 𝑋 → (𝑥 ≤ 𝑥 ↔ 𝑋 ≤ 𝑋)) |
7 | | breq1 5073 |
. . . . . 6
⊢ (𝑥 = 𝑋 → (𝑥 ≤ 𝑦 ↔ 𝑋 ≤ 𝑦)) |
8 | 7 | anbi1d 629 |
. . . . 5
⊢ (𝑥 = 𝑋 → ((𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧) ↔ (𝑋 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧))) |
9 | | breq1 5073 |
. . . . 5
⊢ (𝑥 = 𝑋 → (𝑥 ≤ 𝑧 ↔ 𝑋 ≤ 𝑧)) |
10 | 8, 9 | imbi12d 344 |
. . . 4
⊢ (𝑥 = 𝑋 → (((𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧) → 𝑥 ≤ 𝑧) ↔ ((𝑋 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧) → 𝑋 ≤ 𝑧))) |
11 | 6, 10 | anbi12d 630 |
. . 3
⊢ (𝑥 = 𝑋 → ((𝑥 ≤ 𝑥 ∧ ((𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧) → 𝑥 ≤ 𝑧)) ↔ (𝑋 ≤ 𝑋 ∧ ((𝑋 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧) → 𝑋 ≤ 𝑧)))) |
12 | | breq2 5074 |
. . . . . 6
⊢ (𝑦 = 𝑌 → (𝑋 ≤ 𝑦 ↔ 𝑋 ≤ 𝑌)) |
13 | | breq1 5073 |
. . . . . 6
⊢ (𝑦 = 𝑌 → (𝑦 ≤ 𝑧 ↔ 𝑌 ≤ 𝑧)) |
14 | 12, 13 | anbi12d 630 |
. . . . 5
⊢ (𝑦 = 𝑌 → ((𝑋 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧) ↔ (𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑧))) |
15 | 14 | imbi1d 341 |
. . . 4
⊢ (𝑦 = 𝑌 → (((𝑋 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧) → 𝑋 ≤ 𝑧) ↔ ((𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑧) → 𝑋 ≤ 𝑧))) |
16 | 15 | anbi2d 628 |
. . 3
⊢ (𝑦 = 𝑌 → ((𝑋 ≤ 𝑋 ∧ ((𝑋 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧) → 𝑋 ≤ 𝑧)) ↔ (𝑋 ≤ 𝑋 ∧ ((𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑧) → 𝑋 ≤ 𝑧)))) |
17 | | breq2 5074 |
. . . . . 6
⊢ (𝑧 = 𝑍 → (𝑌 ≤ 𝑧 ↔ 𝑌 ≤ 𝑍)) |
18 | 17 | anbi2d 628 |
. . . . 5
⊢ (𝑧 = 𝑍 → ((𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑧) ↔ (𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑍))) |
19 | | breq2 5074 |
. . . . 5
⊢ (𝑧 = 𝑍 → (𝑋 ≤ 𝑧 ↔ 𝑋 ≤ 𝑍)) |
20 | 18, 19 | imbi12d 344 |
. . . 4
⊢ (𝑧 = 𝑍 → (((𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑧) → 𝑋 ≤ 𝑧) ↔ ((𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑍) → 𝑋 ≤ 𝑍))) |
21 | 20 | anbi2d 628 |
. . 3
⊢ (𝑧 = 𝑍 → ((𝑋 ≤ 𝑋 ∧ ((𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑧) → 𝑋 ≤ 𝑧)) ↔ (𝑋 ≤ 𝑋 ∧ ((𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑍) → 𝑋 ≤ 𝑍)))) |
22 | 11, 16, 21 | rspc3v 3565 |
. 2
⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝑥 ≤ 𝑥 ∧ ((𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧) → 𝑥 ≤ 𝑧)) → (𝑋 ≤ 𝑋 ∧ ((𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑍) → 𝑋 ≤ 𝑍)))) |
23 | 4, 22 | mpan9 506 |
1
⊢ ((𝐾 ∈ Proset ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 ≤ 𝑋 ∧ ((𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑍) → 𝑋 ≤ 𝑍))) |