MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prslem Structured version   Visualization version   GIF version

Theorem prslem 18331
Description: Lemma for prsref 18332 and prstr 18333. (Contributed by Mario Carneiro, 1-Feb-2015.)
Hypotheses
Ref Expression
isprs.b 𝐡 = (Baseβ€˜πΎ)
isprs.l ≀ = (leβ€˜πΎ)
Assertion
Ref Expression
prslem ((𝐾 ∈ Proset ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡 ∧ 𝑍 ∈ 𝐡)) β†’ (𝑋 ≀ 𝑋 ∧ ((𝑋 ≀ π‘Œ ∧ π‘Œ ≀ 𝑍) β†’ 𝑋 ≀ 𝑍)))

Proof of Theorem prslem
Dummy variables π‘₯ 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isprs.b . . . 4 𝐡 = (Baseβ€˜πΎ)
2 isprs.l . . . 4 ≀ = (leβ€˜πΎ)
31, 2isprs 18330 . . 3 (𝐾 ∈ Proset ↔ (𝐾 ∈ V ∧ βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐡 βˆ€π‘§ ∈ 𝐡 (π‘₯ ≀ π‘₯ ∧ ((π‘₯ ≀ 𝑦 ∧ 𝑦 ≀ 𝑧) β†’ π‘₯ ≀ 𝑧))))
43simprbi 495 . 2 (𝐾 ∈ Proset β†’ βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐡 βˆ€π‘§ ∈ 𝐡 (π‘₯ ≀ π‘₯ ∧ ((π‘₯ ≀ 𝑦 ∧ 𝑦 ≀ 𝑧) β†’ π‘₯ ≀ 𝑧)))
5 breq12 5158 . . . . 5 ((π‘₯ = 𝑋 ∧ π‘₯ = 𝑋) β†’ (π‘₯ ≀ π‘₯ ↔ 𝑋 ≀ 𝑋))
65anidms 565 . . . 4 (π‘₯ = 𝑋 β†’ (π‘₯ ≀ π‘₯ ↔ 𝑋 ≀ 𝑋))
7 breq1 5156 . . . . . 6 (π‘₯ = 𝑋 β†’ (π‘₯ ≀ 𝑦 ↔ 𝑋 ≀ 𝑦))
87anbi1d 629 . . . . 5 (π‘₯ = 𝑋 β†’ ((π‘₯ ≀ 𝑦 ∧ 𝑦 ≀ 𝑧) ↔ (𝑋 ≀ 𝑦 ∧ 𝑦 ≀ 𝑧)))
9 breq1 5156 . . . . 5 (π‘₯ = 𝑋 β†’ (π‘₯ ≀ 𝑧 ↔ 𝑋 ≀ 𝑧))
108, 9imbi12d 343 . . . 4 (π‘₯ = 𝑋 β†’ (((π‘₯ ≀ 𝑦 ∧ 𝑦 ≀ 𝑧) β†’ π‘₯ ≀ 𝑧) ↔ ((𝑋 ≀ 𝑦 ∧ 𝑦 ≀ 𝑧) β†’ 𝑋 ≀ 𝑧)))
116, 10anbi12d 630 . . 3 (π‘₯ = 𝑋 β†’ ((π‘₯ ≀ π‘₯ ∧ ((π‘₯ ≀ 𝑦 ∧ 𝑦 ≀ 𝑧) β†’ π‘₯ ≀ 𝑧)) ↔ (𝑋 ≀ 𝑋 ∧ ((𝑋 ≀ 𝑦 ∧ 𝑦 ≀ 𝑧) β†’ 𝑋 ≀ 𝑧))))
12 breq2 5157 . . . . . 6 (𝑦 = π‘Œ β†’ (𝑋 ≀ 𝑦 ↔ 𝑋 ≀ π‘Œ))
13 breq1 5156 . . . . . 6 (𝑦 = π‘Œ β†’ (𝑦 ≀ 𝑧 ↔ π‘Œ ≀ 𝑧))
1412, 13anbi12d 630 . . . . 5 (𝑦 = π‘Œ β†’ ((𝑋 ≀ 𝑦 ∧ 𝑦 ≀ 𝑧) ↔ (𝑋 ≀ π‘Œ ∧ π‘Œ ≀ 𝑧)))
1514imbi1d 340 . . . 4 (𝑦 = π‘Œ β†’ (((𝑋 ≀ 𝑦 ∧ 𝑦 ≀ 𝑧) β†’ 𝑋 ≀ 𝑧) ↔ ((𝑋 ≀ π‘Œ ∧ π‘Œ ≀ 𝑧) β†’ 𝑋 ≀ 𝑧)))
1615anbi2d 628 . . 3 (𝑦 = π‘Œ β†’ ((𝑋 ≀ 𝑋 ∧ ((𝑋 ≀ 𝑦 ∧ 𝑦 ≀ 𝑧) β†’ 𝑋 ≀ 𝑧)) ↔ (𝑋 ≀ 𝑋 ∧ ((𝑋 ≀ π‘Œ ∧ π‘Œ ≀ 𝑧) β†’ 𝑋 ≀ 𝑧))))
17 breq2 5157 . . . . . 6 (𝑧 = 𝑍 β†’ (π‘Œ ≀ 𝑧 ↔ π‘Œ ≀ 𝑍))
1817anbi2d 628 . . . . 5 (𝑧 = 𝑍 β†’ ((𝑋 ≀ π‘Œ ∧ π‘Œ ≀ 𝑧) ↔ (𝑋 ≀ π‘Œ ∧ π‘Œ ≀ 𝑍)))
19 breq2 5157 . . . . 5 (𝑧 = 𝑍 β†’ (𝑋 ≀ 𝑧 ↔ 𝑋 ≀ 𝑍))
2018, 19imbi12d 343 . . . 4 (𝑧 = 𝑍 β†’ (((𝑋 ≀ π‘Œ ∧ π‘Œ ≀ 𝑧) β†’ 𝑋 ≀ 𝑧) ↔ ((𝑋 ≀ π‘Œ ∧ π‘Œ ≀ 𝑍) β†’ 𝑋 ≀ 𝑍)))
2120anbi2d 628 . . 3 (𝑧 = 𝑍 β†’ ((𝑋 ≀ 𝑋 ∧ ((𝑋 ≀ π‘Œ ∧ π‘Œ ≀ 𝑧) β†’ 𝑋 ≀ 𝑧)) ↔ (𝑋 ≀ 𝑋 ∧ ((𝑋 ≀ π‘Œ ∧ π‘Œ ≀ 𝑍) β†’ 𝑋 ≀ 𝑍))))
2211, 16, 21rspc3v 3633 . 2 ((𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡 ∧ 𝑍 ∈ 𝐡) β†’ (βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐡 βˆ€π‘§ ∈ 𝐡 (π‘₯ ≀ π‘₯ ∧ ((π‘₯ ≀ 𝑦 ∧ 𝑦 ≀ 𝑧) β†’ π‘₯ ≀ 𝑧)) β†’ (𝑋 ≀ 𝑋 ∧ ((𝑋 ≀ π‘Œ ∧ π‘Œ ≀ 𝑍) β†’ 𝑋 ≀ 𝑍))))
234, 22mpan9 505 1 ((𝐾 ∈ Proset ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡 ∧ 𝑍 ∈ 𝐡)) β†’ (𝑋 ≀ 𝑋 ∧ ((𝑋 ≀ π‘Œ ∧ π‘Œ ≀ 𝑍) β†’ 𝑋 ≀ 𝑍)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 394   ∧ w3a 1084   = wceq 1534   ∈ wcel 2100  βˆ€wral 3054  Vcvv 3471   class class class wbr 5153  β€˜cfv 6555  Basecbs 17221  lecple 17281   Proset cproset 18326
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2102  ax-9 2110  ax-ext 2700  ax-nul 5311
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-sb 2062  df-clab 2707  df-cleq 2721  df-clel 2806  df-ne 2934  df-ral 3055  df-rex 3064  df-rab 3428  df-v 3473  df-sbc 3786  df-dif 3959  df-un 3961  df-ss 3973  df-nul 4333  df-if 4534  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4916  df-br 5154  df-iota 6507  df-fv 6563  df-proset 18328
This theorem is referenced by:  prsref  18332  prstr  18333
  Copyright terms: Public domain W3C validator