MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prslem Structured version   Visualization version   GIF version

Theorem prslem 17931
Description: Lemma for prsref 17932 and prstr 17933. (Contributed by Mario Carneiro, 1-Feb-2015.)
Hypotheses
Ref Expression
isprs.b 𝐵 = (Base‘𝐾)
isprs.l = (le‘𝐾)
Assertion
Ref Expression
prslem ((𝐾 ∈ Proset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 𝑋 ∧ ((𝑋 𝑌𝑌 𝑍) → 𝑋 𝑍)))

Proof of Theorem prslem
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isprs.b . . . 4 𝐵 = (Base‘𝐾)
2 isprs.l . . . 4 = (le‘𝐾)
31, 2isprs 17930 . . 3 (𝐾 ∈ Proset ↔ (𝐾 ∈ V ∧ ∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥 𝑥 ∧ ((𝑥 𝑦𝑦 𝑧) → 𝑥 𝑧))))
43simprbi 496 . 2 (𝐾 ∈ Proset → ∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥 𝑥 ∧ ((𝑥 𝑦𝑦 𝑧) → 𝑥 𝑧)))
5 breq12 5075 . . . . 5 ((𝑥 = 𝑋𝑥 = 𝑋) → (𝑥 𝑥𝑋 𝑋))
65anidms 566 . . . 4 (𝑥 = 𝑋 → (𝑥 𝑥𝑋 𝑋))
7 breq1 5073 . . . . . 6 (𝑥 = 𝑋 → (𝑥 𝑦𝑋 𝑦))
87anbi1d 629 . . . . 5 (𝑥 = 𝑋 → ((𝑥 𝑦𝑦 𝑧) ↔ (𝑋 𝑦𝑦 𝑧)))
9 breq1 5073 . . . . 5 (𝑥 = 𝑋 → (𝑥 𝑧𝑋 𝑧))
108, 9imbi12d 344 . . . 4 (𝑥 = 𝑋 → (((𝑥 𝑦𝑦 𝑧) → 𝑥 𝑧) ↔ ((𝑋 𝑦𝑦 𝑧) → 𝑋 𝑧)))
116, 10anbi12d 630 . . 3 (𝑥 = 𝑋 → ((𝑥 𝑥 ∧ ((𝑥 𝑦𝑦 𝑧) → 𝑥 𝑧)) ↔ (𝑋 𝑋 ∧ ((𝑋 𝑦𝑦 𝑧) → 𝑋 𝑧))))
12 breq2 5074 . . . . . 6 (𝑦 = 𝑌 → (𝑋 𝑦𝑋 𝑌))
13 breq1 5073 . . . . . 6 (𝑦 = 𝑌 → (𝑦 𝑧𝑌 𝑧))
1412, 13anbi12d 630 . . . . 5 (𝑦 = 𝑌 → ((𝑋 𝑦𝑦 𝑧) ↔ (𝑋 𝑌𝑌 𝑧)))
1514imbi1d 341 . . . 4 (𝑦 = 𝑌 → (((𝑋 𝑦𝑦 𝑧) → 𝑋 𝑧) ↔ ((𝑋 𝑌𝑌 𝑧) → 𝑋 𝑧)))
1615anbi2d 628 . . 3 (𝑦 = 𝑌 → ((𝑋 𝑋 ∧ ((𝑋 𝑦𝑦 𝑧) → 𝑋 𝑧)) ↔ (𝑋 𝑋 ∧ ((𝑋 𝑌𝑌 𝑧) → 𝑋 𝑧))))
17 breq2 5074 . . . . . 6 (𝑧 = 𝑍 → (𝑌 𝑧𝑌 𝑍))
1817anbi2d 628 . . . . 5 (𝑧 = 𝑍 → ((𝑋 𝑌𝑌 𝑧) ↔ (𝑋 𝑌𝑌 𝑍)))
19 breq2 5074 . . . . 5 (𝑧 = 𝑍 → (𝑋 𝑧𝑋 𝑍))
2018, 19imbi12d 344 . . . 4 (𝑧 = 𝑍 → (((𝑋 𝑌𝑌 𝑧) → 𝑋 𝑧) ↔ ((𝑋 𝑌𝑌 𝑍) → 𝑋 𝑍)))
2120anbi2d 628 . . 3 (𝑧 = 𝑍 → ((𝑋 𝑋 ∧ ((𝑋 𝑌𝑌 𝑧) → 𝑋 𝑧)) ↔ (𝑋 𝑋 ∧ ((𝑋 𝑌𝑌 𝑍) → 𝑋 𝑍))))
2211, 16, 21rspc3v 3565 . 2 ((𝑋𝐵𝑌𝐵𝑍𝐵) → (∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥 𝑥 ∧ ((𝑥 𝑦𝑦 𝑧) → 𝑥 𝑧)) → (𝑋 𝑋 ∧ ((𝑋 𝑌𝑌 𝑍) → 𝑋 𝑍))))
234, 22mpan9 506 1 ((𝐾 ∈ Proset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 𝑋 ∧ ((𝑋 𝑌𝑌 𝑍) → 𝑋 𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wral 3063  Vcvv 3422   class class class wbr 5070  cfv 6418  Basecbs 16840  lecple 16895   Proset cproset 17926
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-nul 5225
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-iota 6376  df-fv 6426  df-proset 17928
This theorem is referenced by:  prsref  17932  prstr  17933
  Copyright terms: Public domain W3C validator