Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > prsref | Structured version Visualization version GIF version |
Description: "Less than or equal to" is reflexive in a proset. (Contributed by Stefan O'Rear, 1-Feb-2015.) |
Ref | Expression |
---|---|
isprs.b | ⊢ 𝐵 = (Base‘𝐾) |
isprs.l | ⊢ ≤ = (le‘𝐾) |
Ref | Expression |
---|---|
prsref | ⊢ ((𝐾 ∈ Proset ∧ 𝑋 ∈ 𝐵) → 𝑋 ≤ 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . . . 4 ⊢ (𝑋 ∈ 𝐵 → 𝑋 ∈ 𝐵) | |
2 | 1, 1, 1 | 3jca 1126 | . . 3 ⊢ (𝑋 ∈ 𝐵 → (𝑋 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵)) |
3 | isprs.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
4 | isprs.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
5 | 3, 4 | prslem 17931 | . . 3 ⊢ ((𝐾 ∈ Proset ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵)) → (𝑋 ≤ 𝑋 ∧ ((𝑋 ≤ 𝑋 ∧ 𝑋 ≤ 𝑋) → 𝑋 ≤ 𝑋))) |
6 | 2, 5 | sylan2 592 | . 2 ⊢ ((𝐾 ∈ Proset ∧ 𝑋 ∈ 𝐵) → (𝑋 ≤ 𝑋 ∧ ((𝑋 ≤ 𝑋 ∧ 𝑋 ≤ 𝑋) → 𝑋 ≤ 𝑋))) |
7 | 6 | simpld 494 | 1 ⊢ ((𝐾 ∈ Proset ∧ 𝑋 ∈ 𝐵) → 𝑋 ≤ 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 class class class wbr 5070 ‘cfv 6418 Basecbs 16840 lecple 16895 Proset cproset 17926 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-nul 5225 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-iota 6376 df-fv 6426 df-proset 17928 |
This theorem is referenced by: posref 17951 mgccole1 31170 mgccole2 31171 prsdm 31766 prsrn 31767 prsthinc 46223 |
Copyright terms: Public domain | W3C validator |