MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prsref Structured version   Visualization version   GIF version

Theorem prsref 17806
Description: "Less than or equal to" is reflexive in a proset. (Contributed by Stefan O'Rear, 1-Feb-2015.)
Hypotheses
Ref Expression
isprs.b 𝐵 = (Base‘𝐾)
isprs.l = (le‘𝐾)
Assertion
Ref Expression
prsref ((𝐾 ∈ Proset ∧ 𝑋𝐵) → 𝑋 𝑋)

Proof of Theorem prsref
StepHypRef Expression
1 id 22 . . . 4 (𝑋𝐵𝑋𝐵)
21, 1, 13jca 1130 . . 3 (𝑋𝐵 → (𝑋𝐵𝑋𝐵𝑋𝐵))
3 isprs.b . . . 4 𝐵 = (Base‘𝐾)
4 isprs.l . . . 4 = (le‘𝐾)
53, 4prslem 17805 . . 3 ((𝐾 ∈ Proset ∧ (𝑋𝐵𝑋𝐵𝑋𝐵)) → (𝑋 𝑋 ∧ ((𝑋 𝑋𝑋 𝑋) → 𝑋 𝑋)))
62, 5sylan2 596 . 2 ((𝐾 ∈ Proset ∧ 𝑋𝐵) → (𝑋 𝑋 ∧ ((𝑋 𝑋𝑋 𝑋) → 𝑋 𝑋)))
76simpld 498 1 ((𝐾 ∈ Proset ∧ 𝑋𝐵) → 𝑋 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1089   = wceq 1543  wcel 2110   class class class wbr 5053  cfv 6380  Basecbs 16760  lecple 16809   Proset cproset 17800
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-nul 5199
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3410  df-sbc 3695  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4820  df-br 5054  df-iota 6338  df-fv 6388  df-proset 17802
This theorem is referenced by:  posref  17825  mgccole1  30987  mgccole2  30988  prsdm  31578  prsrn  31579  prsthinc  46008
  Copyright terms: Public domain W3C validator