MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prsref Structured version   Visualization version   GIF version

Theorem prsref 18266
Description: "Less than or equal to" is reflexive in a proset. (Contributed by Stefan O'Rear, 1-Feb-2015.)
Hypotheses
Ref Expression
isprs.b 𝐵 = (Base‘𝐾)
isprs.l = (le‘𝐾)
Assertion
Ref Expression
prsref ((𝐾 ∈ Proset ∧ 𝑋𝐵) → 𝑋 𝑋)

Proof of Theorem prsref
StepHypRef Expression
1 id 22 . . . 4 (𝑋𝐵𝑋𝐵)
21, 1, 13jca 1128 . . 3 (𝑋𝐵 → (𝑋𝐵𝑋𝐵𝑋𝐵))
3 isprs.b . . . 4 𝐵 = (Base‘𝐾)
4 isprs.l . . . 4 = (le‘𝐾)
53, 4prslem 18265 . . 3 ((𝐾 ∈ Proset ∧ (𝑋𝐵𝑋𝐵𝑋𝐵)) → (𝑋 𝑋 ∧ ((𝑋 𝑋𝑋 𝑋) → 𝑋 𝑋)))
62, 5sylan2 593 . 2 ((𝐾 ∈ Proset ∧ 𝑋𝐵) → (𝑋 𝑋 ∧ ((𝑋 𝑋𝑋 𝑋) → 𝑋 𝑋)))
76simpld 494 1 ((𝐾 ∈ Proset ∧ 𝑋𝐵) → 𝑋 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109   class class class wbr 5110  cfv 6514  Basecbs 17186  lecple 17234   Proset cproset 18260
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-nul 5264
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-iota 6467  df-fv 6522  df-proset 18262
This theorem is referenced by:  posref  18286  mgccole1  32923  mgccole2  32924  prsdm  33911  prsrn  33912  prsthinc  49457
  Copyright terms: Public domain W3C validator