MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prsref Structured version   Visualization version   GIF version

Theorem prsref 18017
Description: "Less than or equal to" is reflexive in a proset. (Contributed by Stefan O'Rear, 1-Feb-2015.)
Hypotheses
Ref Expression
isprs.b 𝐵 = (Base‘𝐾)
isprs.l = (le‘𝐾)
Assertion
Ref Expression
prsref ((𝐾 ∈ Proset ∧ 𝑋𝐵) → 𝑋 𝑋)

Proof of Theorem prsref
StepHypRef Expression
1 id 22 . . . 4 (𝑋𝐵𝑋𝐵)
21, 1, 13jca 1127 . . 3 (𝑋𝐵 → (𝑋𝐵𝑋𝐵𝑋𝐵))
3 isprs.b . . . 4 𝐵 = (Base‘𝐾)
4 isprs.l . . . 4 = (le‘𝐾)
53, 4prslem 18016 . . 3 ((𝐾 ∈ Proset ∧ (𝑋𝐵𝑋𝐵𝑋𝐵)) → (𝑋 𝑋 ∧ ((𝑋 𝑋𝑋 𝑋) → 𝑋 𝑋)))
62, 5sylan2 593 . 2 ((𝐾 ∈ Proset ∧ 𝑋𝐵) → (𝑋 𝑋 ∧ ((𝑋 𝑋𝑋 𝑋) → 𝑋 𝑋)))
76simpld 495 1 ((𝐾 ∈ Proset ∧ 𝑋𝐵) → 𝑋 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106   class class class wbr 5074  cfv 6433  Basecbs 16912  lecple 16969   Proset cproset 18011
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-nul 5230
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-iota 6391  df-fv 6441  df-proset 18013
This theorem is referenced by:  posref  18036  mgccole1  31268  mgccole2  31269  prsdm  31864  prsrn  31865  prsthinc  46335
  Copyright terms: Public domain W3C validator