| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > prsref | Structured version Visualization version GIF version | ||
| Description: "Less than or equal to" is reflexive in a proset. (Contributed by Stefan O'Rear, 1-Feb-2015.) |
| Ref | Expression |
|---|---|
| isprs.b | ⊢ 𝐵 = (Base‘𝐾) |
| isprs.l | ⊢ ≤ = (le‘𝐾) |
| Ref | Expression |
|---|---|
| prsref | ⊢ ((𝐾 ∈ Proset ∧ 𝑋 ∈ 𝐵) → 𝑋 ≤ 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . . . 4 ⊢ (𝑋 ∈ 𝐵 → 𝑋 ∈ 𝐵) | |
| 2 | 1, 1, 1 | 3jca 1128 | . . 3 ⊢ (𝑋 ∈ 𝐵 → (𝑋 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵)) |
| 3 | isprs.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
| 4 | isprs.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
| 5 | 3, 4 | prslem 18265 | . . 3 ⊢ ((𝐾 ∈ Proset ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵)) → (𝑋 ≤ 𝑋 ∧ ((𝑋 ≤ 𝑋 ∧ 𝑋 ≤ 𝑋) → 𝑋 ≤ 𝑋))) |
| 6 | 2, 5 | sylan2 593 | . 2 ⊢ ((𝐾 ∈ Proset ∧ 𝑋 ∈ 𝐵) → (𝑋 ≤ 𝑋 ∧ ((𝑋 ≤ 𝑋 ∧ 𝑋 ≤ 𝑋) → 𝑋 ≤ 𝑋))) |
| 7 | 6 | simpld 494 | 1 ⊢ ((𝐾 ∈ Proset ∧ 𝑋 ∈ 𝐵) → 𝑋 ≤ 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 class class class wbr 5110 ‘cfv 6514 Basecbs 17186 lecple 17234 Proset cproset 18260 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-nul 5264 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-iota 6467 df-fv 6522 df-proset 18262 |
| This theorem is referenced by: posref 18286 mgccole1 32923 mgccole2 32924 prsdm 33911 prsrn 33912 prsthinc 49457 |
| Copyright terms: Public domain | W3C validator |