Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mgcmntco Structured version   Visualization version   GIF version

Theorem mgcmntco 30991
Description: A Galois connection like statement, for two functions with same range. (Contributed by Thierry Arnoux, 26-Apr-2024.)
Hypotheses
Ref Expression
mgcoval.1 𝐴 = (Base‘𝑉)
mgcoval.2 𝐵 = (Base‘𝑊)
mgcoval.3 = (le‘𝑉)
mgcoval.4 = (le‘𝑊)
mgcval.1 𝐻 = (𝑉MGalConn𝑊)
mgcval.2 (𝜑𝑉 ∈ Proset )
mgcval.3 (𝜑𝑊 ∈ Proset )
mgccole.1 (𝜑𝐹𝐻𝐺)
mgcmntco.1 𝐶 = (Base‘𝑋)
mgcmntco.2 < = (le‘𝑋)
mgcmntco.3 (𝜑𝑋 ∈ Proset )
mgcmntco.4 (𝜑𝐾 ∈ (𝑉Monot𝑋))
mgcmntco.5 (𝜑𝐿 ∈ (𝑊Monot𝑋))
Assertion
Ref Expression
mgcmntco (𝜑 → (∀𝑥𝐴 (𝐾𝑥) < (𝐿‘(𝐹𝑥)) ↔ ∀𝑦𝐵 (𝐾‘(𝐺𝑦)) < (𝐿𝑦)))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑥,𝑉,𝑦   𝑥,𝑊,𝑦   𝑥,𝑋,𝑦   𝑥,𝐹,𝑦   𝑥,𝐺,𝑦   𝑥, < ,𝑦   𝑥,𝐾,𝑦   𝑥,𝐿,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐶(𝑥,𝑦)   𝐻(𝑥,𝑦)   (𝑥,𝑦)   (𝑥,𝑦)

Proof of Theorem mgcmntco
StepHypRef Expression
1 mgcmntco.3 . . . . 5 (𝜑𝑋 ∈ Proset )
21ad2antrr 726 . . . 4 (((𝜑 ∧ ∀𝑥𝐴 (𝐾𝑥) < (𝐿‘(𝐹𝑥))) ∧ 𝑦𝐵) → 𝑋 ∈ Proset )
3 mgcval.2 . . . . . . 7 (𝜑𝑉 ∈ Proset )
4 mgcmntco.4 . . . . . . 7 (𝜑𝐾 ∈ (𝑉Monot𝑋))
5 mgcoval.1 . . . . . . . 8 𝐴 = (Base‘𝑉)
6 mgcmntco.1 . . . . . . . 8 𝐶 = (Base‘𝑋)
75, 6mntf 30982 . . . . . . 7 ((𝑉 ∈ Proset ∧ 𝑋 ∈ Proset ∧ 𝐾 ∈ (𝑉Monot𝑋)) → 𝐾:𝐴𝐶)
83, 1, 4, 7syl3anc 1373 . . . . . 6 (𝜑𝐾:𝐴𝐶)
98ad2antrr 726 . . . . 5 (((𝜑 ∧ ∀𝑥𝐴 (𝐾𝑥) < (𝐿‘(𝐹𝑥))) ∧ 𝑦𝐵) → 𝐾:𝐴𝐶)
10 mgcoval.2 . . . . . . . 8 𝐵 = (Base‘𝑊)
11 mgcoval.3 . . . . . . . 8 = (le‘𝑉)
12 mgcoval.4 . . . . . . . 8 = (le‘𝑊)
13 mgcval.1 . . . . . . . 8 𝐻 = (𝑉MGalConn𝑊)
14 mgcval.3 . . . . . . . 8 (𝜑𝑊 ∈ Proset )
15 mgccole.1 . . . . . . . 8 (𝜑𝐹𝐻𝐺)
165, 10, 11, 12, 13, 3, 14, 15mgcf2 30986 . . . . . . 7 (𝜑𝐺:𝐵𝐴)
1716adantr 484 . . . . . 6 ((𝜑 ∧ ∀𝑥𝐴 (𝐾𝑥) < (𝐿‘(𝐹𝑥))) → 𝐺:𝐵𝐴)
1817ffvelrnda 6904 . . . . 5 (((𝜑 ∧ ∀𝑥𝐴 (𝐾𝑥) < (𝐿‘(𝐹𝑥))) ∧ 𝑦𝐵) → (𝐺𝑦) ∈ 𝐴)
199, 18ffvelrnd 6905 . . . 4 (((𝜑 ∧ ∀𝑥𝐴 (𝐾𝑥) < (𝐿‘(𝐹𝑥))) ∧ 𝑦𝐵) → (𝐾‘(𝐺𝑦)) ∈ 𝐶)
20 mgcmntco.5 . . . . . . 7 (𝜑𝐿 ∈ (𝑊Monot𝑋))
2110, 6mntf 30982 . . . . . . 7 ((𝑊 ∈ Proset ∧ 𝑋 ∈ Proset ∧ 𝐿 ∈ (𝑊Monot𝑋)) → 𝐿:𝐵𝐶)
2214, 1, 20, 21syl3anc 1373 . . . . . 6 (𝜑𝐿:𝐵𝐶)
2322ad2antrr 726 . . . . 5 (((𝜑 ∧ ∀𝑥𝐴 (𝐾𝑥) < (𝐿‘(𝐹𝑥))) ∧ 𝑦𝐵) → 𝐿:𝐵𝐶)
245, 10, 11, 12, 13, 3, 14, 15mgcf1 30985 . . . . . . 7 (𝜑𝐹:𝐴𝐵)
2524ad2antrr 726 . . . . . 6 (((𝜑 ∧ ∀𝑥𝐴 (𝐾𝑥) < (𝐿‘(𝐹𝑥))) ∧ 𝑦𝐵) → 𝐹:𝐴𝐵)
2625, 18ffvelrnd 6905 . . . . 5 (((𝜑 ∧ ∀𝑥𝐴 (𝐾𝑥) < (𝐿‘(𝐹𝑥))) ∧ 𝑦𝐵) → (𝐹‘(𝐺𝑦)) ∈ 𝐵)
2723, 26ffvelrnd 6905 . . . 4 (((𝜑 ∧ ∀𝑥𝐴 (𝐾𝑥) < (𝐿‘(𝐹𝑥))) ∧ 𝑦𝐵) → (𝐿‘(𝐹‘(𝐺𝑦))) ∈ 𝐶)
2822adantr 484 . . . . 5 ((𝜑 ∧ ∀𝑥𝐴 (𝐾𝑥) < (𝐿‘(𝐹𝑥))) → 𝐿:𝐵𝐶)
2928ffvelrnda 6904 . . . 4 (((𝜑 ∧ ∀𝑥𝐴 (𝐾𝑥) < (𝐿‘(𝐹𝑥))) ∧ 𝑦𝐵) → (𝐿𝑦) ∈ 𝐶)
3016ffvelrnda 6904 . . . . . . 7 ((𝜑𝑦𝐵) → (𝐺𝑦) ∈ 𝐴)
31 fveq2 6717 . . . . . . . . 9 (𝑥 = (𝐺𝑦) → (𝐾𝑥) = (𝐾‘(𝐺𝑦)))
32 2fveq3 6722 . . . . . . . . 9 (𝑥 = (𝐺𝑦) → (𝐿‘(𝐹𝑥)) = (𝐿‘(𝐹‘(𝐺𝑦))))
3331, 32breq12d 5066 . . . . . . . 8 (𝑥 = (𝐺𝑦) → ((𝐾𝑥) < (𝐿‘(𝐹𝑥)) ↔ (𝐾‘(𝐺𝑦)) < (𝐿‘(𝐹‘(𝐺𝑦)))))
3433adantl 485 . . . . . . 7 (((𝜑𝑦𝐵) ∧ 𝑥 = (𝐺𝑦)) → ((𝐾𝑥) < (𝐿‘(𝐹𝑥)) ↔ (𝐾‘(𝐺𝑦)) < (𝐿‘(𝐹‘(𝐺𝑦)))))
3530, 34rspcdv 3529 . . . . . 6 ((𝜑𝑦𝐵) → (∀𝑥𝐴 (𝐾𝑥) < (𝐿‘(𝐹𝑥)) → (𝐾‘(𝐺𝑦)) < (𝐿‘(𝐹‘(𝐺𝑦)))))
3635imp 410 . . . . 5 (((𝜑𝑦𝐵) ∧ ∀𝑥𝐴 (𝐾𝑥) < (𝐿‘(𝐹𝑥))) → (𝐾‘(𝐺𝑦)) < (𝐿‘(𝐹‘(𝐺𝑦))))
3736an32s 652 . . . 4 (((𝜑 ∧ ∀𝑥𝐴 (𝐾𝑥) < (𝐿‘(𝐹𝑥))) ∧ 𝑦𝐵) → (𝐾‘(𝐺𝑦)) < (𝐿‘(𝐹‘(𝐺𝑦))))
38 mgcmntco.2 . . . . 5 < = (le‘𝑋)
3914ad2antrr 726 . . . . 5 (((𝜑 ∧ ∀𝑥𝐴 (𝐾𝑥) < (𝐿‘(𝐹𝑥))) ∧ 𝑦𝐵) → 𝑊 ∈ Proset )
4020ad2antrr 726 . . . . 5 (((𝜑 ∧ ∀𝑥𝐴 (𝐾𝑥) < (𝐿‘(𝐹𝑥))) ∧ 𝑦𝐵) → 𝐿 ∈ (𝑊Monot𝑋))
41 simpr 488 . . . . 5 (((𝜑 ∧ ∀𝑥𝐴 (𝐾𝑥) < (𝐿‘(𝐹𝑥))) ∧ 𝑦𝐵) → 𝑦𝐵)
423ad2antrr 726 . . . . . 6 (((𝜑 ∧ ∀𝑥𝐴 (𝐾𝑥) < (𝐿‘(𝐹𝑥))) ∧ 𝑦𝐵) → 𝑉 ∈ Proset )
4315ad2antrr 726 . . . . . 6 (((𝜑 ∧ ∀𝑥𝐴 (𝐾𝑥) < (𝐿‘(𝐹𝑥))) ∧ 𝑦𝐵) → 𝐹𝐻𝐺)
445, 10, 11, 12, 13, 42, 39, 43, 41mgccole2 30988 . . . . 5 (((𝜑 ∧ ∀𝑥𝐴 (𝐾𝑥) < (𝐿‘(𝐹𝑥))) ∧ 𝑦𝐵) → (𝐹‘(𝐺𝑦)) 𝑦)
4510, 6, 12, 38, 39, 2, 40, 26, 41, 44ismntd 30981 . . . 4 (((𝜑 ∧ ∀𝑥𝐴 (𝐾𝑥) < (𝐿‘(𝐹𝑥))) ∧ 𝑦𝐵) → (𝐿‘(𝐹‘(𝐺𝑦))) < (𝐿𝑦))
466, 38prstr 17807 . . . 4 ((𝑋 ∈ Proset ∧ ((𝐾‘(𝐺𝑦)) ∈ 𝐶 ∧ (𝐿‘(𝐹‘(𝐺𝑦))) ∈ 𝐶 ∧ (𝐿𝑦) ∈ 𝐶) ∧ ((𝐾‘(𝐺𝑦)) < (𝐿‘(𝐹‘(𝐺𝑦))) ∧ (𝐿‘(𝐹‘(𝐺𝑦))) < (𝐿𝑦))) → (𝐾‘(𝐺𝑦)) < (𝐿𝑦))
472, 19, 27, 29, 37, 45, 46syl132anc 1390 . . 3 (((𝜑 ∧ ∀𝑥𝐴 (𝐾𝑥) < (𝐿‘(𝐹𝑥))) ∧ 𝑦𝐵) → (𝐾‘(𝐺𝑦)) < (𝐿𝑦))
4847ralrimiva 3105 . 2 ((𝜑 ∧ ∀𝑥𝐴 (𝐾𝑥) < (𝐿‘(𝐹𝑥))) → ∀𝑦𝐵 (𝐾‘(𝐺𝑦)) < (𝐿𝑦))
491ad2antrr 726 . . . 4 (((𝜑 ∧ ∀𝑦𝐵 (𝐾‘(𝐺𝑦)) < (𝐿𝑦)) ∧ 𝑥𝐴) → 𝑋 ∈ Proset )
508ad2antrr 726 . . . . 5 (((𝜑 ∧ ∀𝑦𝐵 (𝐾‘(𝐺𝑦)) < (𝐿𝑦)) ∧ 𝑥𝐴) → 𝐾:𝐴𝐶)
51 simpr 488 . . . . 5 (((𝜑 ∧ ∀𝑦𝐵 (𝐾‘(𝐺𝑦)) < (𝐿𝑦)) ∧ 𝑥𝐴) → 𝑥𝐴)
5250, 51ffvelrnd 6905 . . . 4 (((𝜑 ∧ ∀𝑦𝐵 (𝐾‘(𝐺𝑦)) < (𝐿𝑦)) ∧ 𝑥𝐴) → (𝐾𝑥) ∈ 𝐶)
5316ad2antrr 726 . . . . . 6 (((𝜑 ∧ ∀𝑦𝐵 (𝐾‘(𝐺𝑦)) < (𝐿𝑦)) ∧ 𝑥𝐴) → 𝐺:𝐵𝐴)
5424adantr 484 . . . . . . 7 ((𝜑 ∧ ∀𝑦𝐵 (𝐾‘(𝐺𝑦)) < (𝐿𝑦)) → 𝐹:𝐴𝐵)
5554ffvelrnda 6904 . . . . . 6 (((𝜑 ∧ ∀𝑦𝐵 (𝐾‘(𝐺𝑦)) < (𝐿𝑦)) ∧ 𝑥𝐴) → (𝐹𝑥) ∈ 𝐵)
5653, 55ffvelrnd 6905 . . . . 5 (((𝜑 ∧ ∀𝑦𝐵 (𝐾‘(𝐺𝑦)) < (𝐿𝑦)) ∧ 𝑥𝐴) → (𝐺‘(𝐹𝑥)) ∈ 𝐴)
5750, 56ffvelrnd 6905 . . . 4 (((𝜑 ∧ ∀𝑦𝐵 (𝐾‘(𝐺𝑦)) < (𝐿𝑦)) ∧ 𝑥𝐴) → (𝐾‘(𝐺‘(𝐹𝑥))) ∈ 𝐶)
5822ad2antrr 726 . . . . 5 (((𝜑 ∧ ∀𝑦𝐵 (𝐾‘(𝐺𝑦)) < (𝐿𝑦)) ∧ 𝑥𝐴) → 𝐿:𝐵𝐶)
5958, 55ffvelrnd 6905 . . . 4 (((𝜑 ∧ ∀𝑦𝐵 (𝐾‘(𝐺𝑦)) < (𝐿𝑦)) ∧ 𝑥𝐴) → (𝐿‘(𝐹𝑥)) ∈ 𝐶)
603ad2antrr 726 . . . . 5 (((𝜑 ∧ ∀𝑦𝐵 (𝐾‘(𝐺𝑦)) < (𝐿𝑦)) ∧ 𝑥𝐴) → 𝑉 ∈ Proset )
614ad2antrr 726 . . . . 5 (((𝜑 ∧ ∀𝑦𝐵 (𝐾‘(𝐺𝑦)) < (𝐿𝑦)) ∧ 𝑥𝐴) → 𝐾 ∈ (𝑉Monot𝑋))
6214ad2antrr 726 . . . . . 6 (((𝜑 ∧ ∀𝑦𝐵 (𝐾‘(𝐺𝑦)) < (𝐿𝑦)) ∧ 𝑥𝐴) → 𝑊 ∈ Proset )
6315ad2antrr 726 . . . . . 6 (((𝜑 ∧ ∀𝑦𝐵 (𝐾‘(𝐺𝑦)) < (𝐿𝑦)) ∧ 𝑥𝐴) → 𝐹𝐻𝐺)
645, 10, 11, 12, 13, 60, 62, 63, 51mgccole1 30987 . . . . 5 (((𝜑 ∧ ∀𝑦𝐵 (𝐾‘(𝐺𝑦)) < (𝐿𝑦)) ∧ 𝑥𝐴) → 𝑥 (𝐺‘(𝐹𝑥)))
655, 6, 11, 38, 60, 49, 61, 51, 56, 64ismntd 30981 . . . 4 (((𝜑 ∧ ∀𝑦𝐵 (𝐾‘(𝐺𝑦)) < (𝐿𝑦)) ∧ 𝑥𝐴) → (𝐾𝑥) < (𝐾‘(𝐺‘(𝐹𝑥))))
6624ffvelrnda 6904 . . . . . . 7 ((𝜑𝑥𝐴) → (𝐹𝑥) ∈ 𝐵)
67 2fveq3 6722 . . . . . . . . 9 (𝑦 = (𝐹𝑥) → (𝐾‘(𝐺𝑦)) = (𝐾‘(𝐺‘(𝐹𝑥))))
68 fveq2 6717 . . . . . . . . 9 (𝑦 = (𝐹𝑥) → (𝐿𝑦) = (𝐿‘(𝐹𝑥)))
6967, 68breq12d 5066 . . . . . . . 8 (𝑦 = (𝐹𝑥) → ((𝐾‘(𝐺𝑦)) < (𝐿𝑦) ↔ (𝐾‘(𝐺‘(𝐹𝑥))) < (𝐿‘(𝐹𝑥))))
7069adantl 485 . . . . . . 7 (((𝜑𝑥𝐴) ∧ 𝑦 = (𝐹𝑥)) → ((𝐾‘(𝐺𝑦)) < (𝐿𝑦) ↔ (𝐾‘(𝐺‘(𝐹𝑥))) < (𝐿‘(𝐹𝑥))))
7166, 70rspcdv 3529 . . . . . 6 ((𝜑𝑥𝐴) → (∀𝑦𝐵 (𝐾‘(𝐺𝑦)) < (𝐿𝑦) → (𝐾‘(𝐺‘(𝐹𝑥))) < (𝐿‘(𝐹𝑥))))
7271imp 410 . . . . 5 (((𝜑𝑥𝐴) ∧ ∀𝑦𝐵 (𝐾‘(𝐺𝑦)) < (𝐿𝑦)) → (𝐾‘(𝐺‘(𝐹𝑥))) < (𝐿‘(𝐹𝑥)))
7372an32s 652 . . . 4 (((𝜑 ∧ ∀𝑦𝐵 (𝐾‘(𝐺𝑦)) < (𝐿𝑦)) ∧ 𝑥𝐴) → (𝐾‘(𝐺‘(𝐹𝑥))) < (𝐿‘(𝐹𝑥)))
746, 38prstr 17807 . . . 4 ((𝑋 ∈ Proset ∧ ((𝐾𝑥) ∈ 𝐶 ∧ (𝐾‘(𝐺‘(𝐹𝑥))) ∈ 𝐶 ∧ (𝐿‘(𝐹𝑥)) ∈ 𝐶) ∧ ((𝐾𝑥) < (𝐾‘(𝐺‘(𝐹𝑥))) ∧ (𝐾‘(𝐺‘(𝐹𝑥))) < (𝐿‘(𝐹𝑥)))) → (𝐾𝑥) < (𝐿‘(𝐹𝑥)))
7549, 52, 57, 59, 65, 73, 74syl132anc 1390 . . 3 (((𝜑 ∧ ∀𝑦𝐵 (𝐾‘(𝐺𝑦)) < (𝐿𝑦)) ∧ 𝑥𝐴) → (𝐾𝑥) < (𝐿‘(𝐹𝑥)))
7675ralrimiva 3105 . 2 ((𝜑 ∧ ∀𝑦𝐵 (𝐾‘(𝐺𝑦)) < (𝐿𝑦)) → ∀𝑥𝐴 (𝐾𝑥) < (𝐿‘(𝐹𝑥)))
7748, 76impbida 801 1 (𝜑 → (∀𝑥𝐴 (𝐾𝑥) < (𝐿‘(𝐹𝑥)) ↔ ∀𝑦𝐵 (𝐾‘(𝐺𝑦)) < (𝐿𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1543  wcel 2110  wral 3061   class class class wbr 5053  wf 6376  cfv 6380  (class class class)co 7213  Basecbs 16760  lecple 16809   Proset cproset 17800  Monotcmnt 30975  MGalConncmgc 30976
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4820  df-br 5054  df-opab 5116  df-id 5455  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-fv 6388  df-ov 7216  df-oprab 7217  df-mpo 7218  df-map 8510  df-proset 17802  df-mnt 30977  df-mgc 30978
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator