Proof of Theorem mgcmntco
| Step | Hyp | Ref
| Expression |
| 1 | | mgcmntco.3 |
. . . . 5
⊢ (𝜑 → 𝑋 ∈ Proset ) |
| 2 | 1 | ad2antrr 726 |
. . . 4
⊢ (((𝜑 ∧ ∀𝑥 ∈ 𝐴 (𝐾‘𝑥) < (𝐿‘(𝐹‘𝑥))) ∧ 𝑦 ∈ 𝐵) → 𝑋 ∈ Proset ) |
| 3 | | mgcval.2 |
. . . . . . 7
⊢ (𝜑 → 𝑉 ∈ Proset ) |
| 4 | | mgcmntco.4 |
. . . . . . 7
⊢ (𝜑 → 𝐾 ∈ (𝑉Monot𝑋)) |
| 5 | | mgcoval.1 |
. . . . . . . 8
⊢ 𝐴 = (Base‘𝑉) |
| 6 | | mgcmntco.1 |
. . . . . . . 8
⊢ 𝐶 = (Base‘𝑋) |
| 7 | 5, 6 | mntf 32921 |
. . . . . . 7
⊢ ((𝑉 ∈ Proset ∧ 𝑋 ∈ Proset ∧ 𝐾 ∈ (𝑉Monot𝑋)) → 𝐾:𝐴⟶𝐶) |
| 8 | 3, 1, 4, 7 | syl3anc 1372 |
. . . . . 6
⊢ (𝜑 → 𝐾:𝐴⟶𝐶) |
| 9 | 8 | ad2antrr 726 |
. . . . 5
⊢ (((𝜑 ∧ ∀𝑥 ∈ 𝐴 (𝐾‘𝑥) < (𝐿‘(𝐹‘𝑥))) ∧ 𝑦 ∈ 𝐵) → 𝐾:𝐴⟶𝐶) |
| 10 | | mgcoval.2 |
. . . . . . . 8
⊢ 𝐵 = (Base‘𝑊) |
| 11 | | mgcoval.3 |
. . . . . . . 8
⊢ ≤ =
(le‘𝑉) |
| 12 | | mgcoval.4 |
. . . . . . . 8
⊢ ≲ =
(le‘𝑊) |
| 13 | | mgcval.1 |
. . . . . . . 8
⊢ 𝐻 = (𝑉MGalConn𝑊) |
| 14 | | mgcval.3 |
. . . . . . . 8
⊢ (𝜑 → 𝑊 ∈ Proset ) |
| 15 | | mgccole.1 |
. . . . . . . 8
⊢ (𝜑 → 𝐹𝐻𝐺) |
| 16 | 5, 10, 11, 12, 13, 3, 14, 15 | mgcf2 32925 |
. . . . . . 7
⊢ (𝜑 → 𝐺:𝐵⟶𝐴) |
| 17 | 16 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ ∀𝑥 ∈ 𝐴 (𝐾‘𝑥) < (𝐿‘(𝐹‘𝑥))) → 𝐺:𝐵⟶𝐴) |
| 18 | 17 | ffvelcdmda 7085 |
. . . . 5
⊢ (((𝜑 ∧ ∀𝑥 ∈ 𝐴 (𝐾‘𝑥) < (𝐿‘(𝐹‘𝑥))) ∧ 𝑦 ∈ 𝐵) → (𝐺‘𝑦) ∈ 𝐴) |
| 19 | 9, 18 | ffvelcdmd 7086 |
. . . 4
⊢ (((𝜑 ∧ ∀𝑥 ∈ 𝐴 (𝐾‘𝑥) < (𝐿‘(𝐹‘𝑥))) ∧ 𝑦 ∈ 𝐵) → (𝐾‘(𝐺‘𝑦)) ∈ 𝐶) |
| 20 | | mgcmntco.5 |
. . . . . . 7
⊢ (𝜑 → 𝐿 ∈ (𝑊Monot𝑋)) |
| 21 | 10, 6 | mntf 32921 |
. . . . . . 7
⊢ ((𝑊 ∈ Proset ∧ 𝑋 ∈ Proset ∧ 𝐿 ∈ (𝑊Monot𝑋)) → 𝐿:𝐵⟶𝐶) |
| 22 | 14, 1, 20, 21 | syl3anc 1372 |
. . . . . 6
⊢ (𝜑 → 𝐿:𝐵⟶𝐶) |
| 23 | 22 | ad2antrr 726 |
. . . . 5
⊢ (((𝜑 ∧ ∀𝑥 ∈ 𝐴 (𝐾‘𝑥) < (𝐿‘(𝐹‘𝑥))) ∧ 𝑦 ∈ 𝐵) → 𝐿:𝐵⟶𝐶) |
| 24 | 5, 10, 11, 12, 13, 3, 14, 15 | mgcf1 32924 |
. . . . . . 7
⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
| 25 | 24 | ad2antrr 726 |
. . . . . 6
⊢ (((𝜑 ∧ ∀𝑥 ∈ 𝐴 (𝐾‘𝑥) < (𝐿‘(𝐹‘𝑥))) ∧ 𝑦 ∈ 𝐵) → 𝐹:𝐴⟶𝐵) |
| 26 | 25, 18 | ffvelcdmd 7086 |
. . . . 5
⊢ (((𝜑 ∧ ∀𝑥 ∈ 𝐴 (𝐾‘𝑥) < (𝐿‘(𝐹‘𝑥))) ∧ 𝑦 ∈ 𝐵) → (𝐹‘(𝐺‘𝑦)) ∈ 𝐵) |
| 27 | 23, 26 | ffvelcdmd 7086 |
. . . 4
⊢ (((𝜑 ∧ ∀𝑥 ∈ 𝐴 (𝐾‘𝑥) < (𝐿‘(𝐹‘𝑥))) ∧ 𝑦 ∈ 𝐵) → (𝐿‘(𝐹‘(𝐺‘𝑦))) ∈ 𝐶) |
| 28 | 22 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ ∀𝑥 ∈ 𝐴 (𝐾‘𝑥) < (𝐿‘(𝐹‘𝑥))) → 𝐿:𝐵⟶𝐶) |
| 29 | 28 | ffvelcdmda 7085 |
. . . 4
⊢ (((𝜑 ∧ ∀𝑥 ∈ 𝐴 (𝐾‘𝑥) < (𝐿‘(𝐹‘𝑥))) ∧ 𝑦 ∈ 𝐵) → (𝐿‘𝑦) ∈ 𝐶) |
| 30 | 16 | ffvelcdmda 7085 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → (𝐺‘𝑦) ∈ 𝐴) |
| 31 | | fveq2 6887 |
. . . . . . . . 9
⊢ (𝑥 = (𝐺‘𝑦) → (𝐾‘𝑥) = (𝐾‘(𝐺‘𝑦))) |
| 32 | | 2fveq3 6892 |
. . . . . . . . 9
⊢ (𝑥 = (𝐺‘𝑦) → (𝐿‘(𝐹‘𝑥)) = (𝐿‘(𝐹‘(𝐺‘𝑦)))) |
| 33 | 31, 32 | breq12d 5138 |
. . . . . . . 8
⊢ (𝑥 = (𝐺‘𝑦) → ((𝐾‘𝑥) < (𝐿‘(𝐹‘𝑥)) ↔ (𝐾‘(𝐺‘𝑦)) < (𝐿‘(𝐹‘(𝐺‘𝑦))))) |
| 34 | 33 | adantl 481 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ 𝑥 = (𝐺‘𝑦)) → ((𝐾‘𝑥) < (𝐿‘(𝐹‘𝑥)) ↔ (𝐾‘(𝐺‘𝑦)) < (𝐿‘(𝐹‘(𝐺‘𝑦))))) |
| 35 | 30, 34 | rspcdv 3598 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → (∀𝑥 ∈ 𝐴 (𝐾‘𝑥) < (𝐿‘(𝐹‘𝑥)) → (𝐾‘(𝐺‘𝑦)) < (𝐿‘(𝐹‘(𝐺‘𝑦))))) |
| 36 | 35 | imp 406 |
. . . . 5
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐵) ∧ ∀𝑥 ∈ 𝐴 (𝐾‘𝑥) < (𝐿‘(𝐹‘𝑥))) → (𝐾‘(𝐺‘𝑦)) < (𝐿‘(𝐹‘(𝐺‘𝑦)))) |
| 37 | 36 | an32s 652 |
. . . 4
⊢ (((𝜑 ∧ ∀𝑥 ∈ 𝐴 (𝐾‘𝑥) < (𝐿‘(𝐹‘𝑥))) ∧ 𝑦 ∈ 𝐵) → (𝐾‘(𝐺‘𝑦)) < (𝐿‘(𝐹‘(𝐺‘𝑦)))) |
| 38 | | mgcmntco.2 |
. . . . 5
⊢ < =
(le‘𝑋) |
| 39 | 14 | ad2antrr 726 |
. . . . 5
⊢ (((𝜑 ∧ ∀𝑥 ∈ 𝐴 (𝐾‘𝑥) < (𝐿‘(𝐹‘𝑥))) ∧ 𝑦 ∈ 𝐵) → 𝑊 ∈ Proset ) |
| 40 | 20 | ad2antrr 726 |
. . . . 5
⊢ (((𝜑 ∧ ∀𝑥 ∈ 𝐴 (𝐾‘𝑥) < (𝐿‘(𝐹‘𝑥))) ∧ 𝑦 ∈ 𝐵) → 𝐿 ∈ (𝑊Monot𝑋)) |
| 41 | | simpr 484 |
. . . . 5
⊢ (((𝜑 ∧ ∀𝑥 ∈ 𝐴 (𝐾‘𝑥) < (𝐿‘(𝐹‘𝑥))) ∧ 𝑦 ∈ 𝐵) → 𝑦 ∈ 𝐵) |
| 42 | 3 | ad2antrr 726 |
. . . . . 6
⊢ (((𝜑 ∧ ∀𝑥 ∈ 𝐴 (𝐾‘𝑥) < (𝐿‘(𝐹‘𝑥))) ∧ 𝑦 ∈ 𝐵) → 𝑉 ∈ Proset ) |
| 43 | 15 | ad2antrr 726 |
. . . . . 6
⊢ (((𝜑 ∧ ∀𝑥 ∈ 𝐴 (𝐾‘𝑥) < (𝐿‘(𝐹‘𝑥))) ∧ 𝑦 ∈ 𝐵) → 𝐹𝐻𝐺) |
| 44 | 5, 10, 11, 12, 13, 42, 39, 43, 41 | mgccole2 32927 |
. . . . 5
⊢ (((𝜑 ∧ ∀𝑥 ∈ 𝐴 (𝐾‘𝑥) < (𝐿‘(𝐹‘𝑥))) ∧ 𝑦 ∈ 𝐵) → (𝐹‘(𝐺‘𝑦)) ≲ 𝑦) |
| 45 | 10, 6, 12, 38, 39, 2, 40, 26, 41, 44 | ismntd 32920 |
. . . 4
⊢ (((𝜑 ∧ ∀𝑥 ∈ 𝐴 (𝐾‘𝑥) < (𝐿‘(𝐹‘𝑥))) ∧ 𝑦 ∈ 𝐵) → (𝐿‘(𝐹‘(𝐺‘𝑦))) < (𝐿‘𝑦)) |
| 46 | 6, 38 | prstr 18320 |
. . . 4
⊢ ((𝑋 ∈ Proset ∧ ((𝐾‘(𝐺‘𝑦)) ∈ 𝐶 ∧ (𝐿‘(𝐹‘(𝐺‘𝑦))) ∈ 𝐶 ∧ (𝐿‘𝑦) ∈ 𝐶) ∧ ((𝐾‘(𝐺‘𝑦)) < (𝐿‘(𝐹‘(𝐺‘𝑦))) ∧ (𝐿‘(𝐹‘(𝐺‘𝑦))) < (𝐿‘𝑦))) → (𝐾‘(𝐺‘𝑦)) < (𝐿‘𝑦)) |
| 47 | 2, 19, 27, 29, 37, 45, 46 | syl132anc 1389 |
. . 3
⊢ (((𝜑 ∧ ∀𝑥 ∈ 𝐴 (𝐾‘𝑥) < (𝐿‘(𝐹‘𝑥))) ∧ 𝑦 ∈ 𝐵) → (𝐾‘(𝐺‘𝑦)) < (𝐿‘𝑦)) |
| 48 | 47 | ralrimiva 3133 |
. 2
⊢ ((𝜑 ∧ ∀𝑥 ∈ 𝐴 (𝐾‘𝑥) < (𝐿‘(𝐹‘𝑥))) → ∀𝑦 ∈ 𝐵 (𝐾‘(𝐺‘𝑦)) < (𝐿‘𝑦)) |
| 49 | 1 | ad2antrr 726 |
. . . 4
⊢ (((𝜑 ∧ ∀𝑦 ∈ 𝐵 (𝐾‘(𝐺‘𝑦)) < (𝐿‘𝑦)) ∧ 𝑥 ∈ 𝐴) → 𝑋 ∈ Proset ) |
| 50 | 8 | ad2antrr 726 |
. . . . 5
⊢ (((𝜑 ∧ ∀𝑦 ∈ 𝐵 (𝐾‘(𝐺‘𝑦)) < (𝐿‘𝑦)) ∧ 𝑥 ∈ 𝐴) → 𝐾:𝐴⟶𝐶) |
| 51 | | simpr 484 |
. . . . 5
⊢ (((𝜑 ∧ ∀𝑦 ∈ 𝐵 (𝐾‘(𝐺‘𝑦)) < (𝐿‘𝑦)) ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐴) |
| 52 | 50, 51 | ffvelcdmd 7086 |
. . . 4
⊢ (((𝜑 ∧ ∀𝑦 ∈ 𝐵 (𝐾‘(𝐺‘𝑦)) < (𝐿‘𝑦)) ∧ 𝑥 ∈ 𝐴) → (𝐾‘𝑥) ∈ 𝐶) |
| 53 | 16 | ad2antrr 726 |
. . . . . 6
⊢ (((𝜑 ∧ ∀𝑦 ∈ 𝐵 (𝐾‘(𝐺‘𝑦)) < (𝐿‘𝑦)) ∧ 𝑥 ∈ 𝐴) → 𝐺:𝐵⟶𝐴) |
| 54 | 24 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ ∀𝑦 ∈ 𝐵 (𝐾‘(𝐺‘𝑦)) < (𝐿‘𝑦)) → 𝐹:𝐴⟶𝐵) |
| 55 | 54 | ffvelcdmda 7085 |
. . . . . 6
⊢ (((𝜑 ∧ ∀𝑦 ∈ 𝐵 (𝐾‘(𝐺‘𝑦)) < (𝐿‘𝑦)) ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ 𝐵) |
| 56 | 53, 55 | ffvelcdmd 7086 |
. . . . 5
⊢ (((𝜑 ∧ ∀𝑦 ∈ 𝐵 (𝐾‘(𝐺‘𝑦)) < (𝐿‘𝑦)) ∧ 𝑥 ∈ 𝐴) → (𝐺‘(𝐹‘𝑥)) ∈ 𝐴) |
| 57 | 50, 56 | ffvelcdmd 7086 |
. . . 4
⊢ (((𝜑 ∧ ∀𝑦 ∈ 𝐵 (𝐾‘(𝐺‘𝑦)) < (𝐿‘𝑦)) ∧ 𝑥 ∈ 𝐴) → (𝐾‘(𝐺‘(𝐹‘𝑥))) ∈ 𝐶) |
| 58 | 22 | ad2antrr 726 |
. . . . 5
⊢ (((𝜑 ∧ ∀𝑦 ∈ 𝐵 (𝐾‘(𝐺‘𝑦)) < (𝐿‘𝑦)) ∧ 𝑥 ∈ 𝐴) → 𝐿:𝐵⟶𝐶) |
| 59 | 58, 55 | ffvelcdmd 7086 |
. . . 4
⊢ (((𝜑 ∧ ∀𝑦 ∈ 𝐵 (𝐾‘(𝐺‘𝑦)) < (𝐿‘𝑦)) ∧ 𝑥 ∈ 𝐴) → (𝐿‘(𝐹‘𝑥)) ∈ 𝐶) |
| 60 | 3 | ad2antrr 726 |
. . . . 5
⊢ (((𝜑 ∧ ∀𝑦 ∈ 𝐵 (𝐾‘(𝐺‘𝑦)) < (𝐿‘𝑦)) ∧ 𝑥 ∈ 𝐴) → 𝑉 ∈ Proset ) |
| 61 | 4 | ad2antrr 726 |
. . . . 5
⊢ (((𝜑 ∧ ∀𝑦 ∈ 𝐵 (𝐾‘(𝐺‘𝑦)) < (𝐿‘𝑦)) ∧ 𝑥 ∈ 𝐴) → 𝐾 ∈ (𝑉Monot𝑋)) |
| 62 | 14 | ad2antrr 726 |
. . . . . 6
⊢ (((𝜑 ∧ ∀𝑦 ∈ 𝐵 (𝐾‘(𝐺‘𝑦)) < (𝐿‘𝑦)) ∧ 𝑥 ∈ 𝐴) → 𝑊 ∈ Proset ) |
| 63 | 15 | ad2antrr 726 |
. . . . . 6
⊢ (((𝜑 ∧ ∀𝑦 ∈ 𝐵 (𝐾‘(𝐺‘𝑦)) < (𝐿‘𝑦)) ∧ 𝑥 ∈ 𝐴) → 𝐹𝐻𝐺) |
| 64 | 5, 10, 11, 12, 13, 60, 62, 63, 51 | mgccole1 32926 |
. . . . 5
⊢ (((𝜑 ∧ ∀𝑦 ∈ 𝐵 (𝐾‘(𝐺‘𝑦)) < (𝐿‘𝑦)) ∧ 𝑥 ∈ 𝐴) → 𝑥 ≤ (𝐺‘(𝐹‘𝑥))) |
| 65 | 5, 6, 11, 38, 60, 49, 61, 51, 56, 64 | ismntd 32920 |
. . . 4
⊢ (((𝜑 ∧ ∀𝑦 ∈ 𝐵 (𝐾‘(𝐺‘𝑦)) < (𝐿‘𝑦)) ∧ 𝑥 ∈ 𝐴) → (𝐾‘𝑥) < (𝐾‘(𝐺‘(𝐹‘𝑥)))) |
| 66 | 24 | ffvelcdmda 7085 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ 𝐵) |
| 67 | | 2fveq3 6892 |
. . . . . . . . 9
⊢ (𝑦 = (𝐹‘𝑥) → (𝐾‘(𝐺‘𝑦)) = (𝐾‘(𝐺‘(𝐹‘𝑥)))) |
| 68 | | fveq2 6887 |
. . . . . . . . 9
⊢ (𝑦 = (𝐹‘𝑥) → (𝐿‘𝑦) = (𝐿‘(𝐹‘𝑥))) |
| 69 | 67, 68 | breq12d 5138 |
. . . . . . . 8
⊢ (𝑦 = (𝐹‘𝑥) → ((𝐾‘(𝐺‘𝑦)) < (𝐿‘𝑦) ↔ (𝐾‘(𝐺‘(𝐹‘𝑥))) < (𝐿‘(𝐹‘𝑥)))) |
| 70 | 69 | adantl 481 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 = (𝐹‘𝑥)) → ((𝐾‘(𝐺‘𝑦)) < (𝐿‘𝑦) ↔ (𝐾‘(𝐺‘(𝐹‘𝑥))) < (𝐿‘(𝐹‘𝑥)))) |
| 71 | 66, 70 | rspcdv 3598 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (∀𝑦 ∈ 𝐵 (𝐾‘(𝐺‘𝑦)) < (𝐿‘𝑦) → (𝐾‘(𝐺‘(𝐹‘𝑥))) < (𝐿‘(𝐹‘𝑥)))) |
| 72 | 71 | imp 406 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ ∀𝑦 ∈ 𝐵 (𝐾‘(𝐺‘𝑦)) < (𝐿‘𝑦)) → (𝐾‘(𝐺‘(𝐹‘𝑥))) < (𝐿‘(𝐹‘𝑥))) |
| 73 | 72 | an32s 652 |
. . . 4
⊢ (((𝜑 ∧ ∀𝑦 ∈ 𝐵 (𝐾‘(𝐺‘𝑦)) < (𝐿‘𝑦)) ∧ 𝑥 ∈ 𝐴) → (𝐾‘(𝐺‘(𝐹‘𝑥))) < (𝐿‘(𝐹‘𝑥))) |
| 74 | 6, 38 | prstr 18320 |
. . . 4
⊢ ((𝑋 ∈ Proset ∧ ((𝐾‘𝑥) ∈ 𝐶 ∧ (𝐾‘(𝐺‘(𝐹‘𝑥))) ∈ 𝐶 ∧ (𝐿‘(𝐹‘𝑥)) ∈ 𝐶) ∧ ((𝐾‘𝑥) < (𝐾‘(𝐺‘(𝐹‘𝑥))) ∧ (𝐾‘(𝐺‘(𝐹‘𝑥))) < (𝐿‘(𝐹‘𝑥)))) → (𝐾‘𝑥) < (𝐿‘(𝐹‘𝑥))) |
| 75 | 49, 52, 57, 59, 65, 73, 74 | syl132anc 1389 |
. . 3
⊢ (((𝜑 ∧ ∀𝑦 ∈ 𝐵 (𝐾‘(𝐺‘𝑦)) < (𝐿‘𝑦)) ∧ 𝑥 ∈ 𝐴) → (𝐾‘𝑥) < (𝐿‘(𝐹‘𝑥))) |
| 76 | 75 | ralrimiva 3133 |
. 2
⊢ ((𝜑 ∧ ∀𝑦 ∈ 𝐵 (𝐾‘(𝐺‘𝑦)) < (𝐿‘𝑦)) → ∀𝑥 ∈ 𝐴 (𝐾‘𝑥) < (𝐿‘(𝐹‘𝑥))) |
| 77 | 48, 76 | impbida 800 |
1
⊢ (𝜑 → (∀𝑥 ∈ 𝐴 (𝐾‘𝑥) < (𝐿‘(𝐹‘𝑥)) ↔ ∀𝑦 ∈ 𝐵 (𝐾‘(𝐺‘𝑦)) < (𝐿‘𝑦))) |