Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mgcmntco Structured version   Visualization version   GIF version

Theorem mgcmntco 32975
Description: A Galois connection like statement, for two functions with same range. (Contributed by Thierry Arnoux, 26-Apr-2024.)
Hypotheses
Ref Expression
mgcoval.1 𝐴 = (Base‘𝑉)
mgcoval.2 𝐵 = (Base‘𝑊)
mgcoval.3 = (le‘𝑉)
mgcoval.4 = (le‘𝑊)
mgcval.1 𝐻 = (𝑉MGalConn𝑊)
mgcval.2 (𝜑𝑉 ∈ Proset )
mgcval.3 (𝜑𝑊 ∈ Proset )
mgccole.1 (𝜑𝐹𝐻𝐺)
mgcmntco.1 𝐶 = (Base‘𝑋)
mgcmntco.2 < = (le‘𝑋)
mgcmntco.3 (𝜑𝑋 ∈ Proset )
mgcmntco.4 (𝜑𝐾 ∈ (𝑉Monot𝑋))
mgcmntco.5 (𝜑𝐿 ∈ (𝑊Monot𝑋))
Assertion
Ref Expression
mgcmntco (𝜑 → (∀𝑥𝐴 (𝐾𝑥) < (𝐿‘(𝐹𝑥)) ↔ ∀𝑦𝐵 (𝐾‘(𝐺𝑦)) < (𝐿𝑦)))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑥,𝑉,𝑦   𝑥,𝑊,𝑦   𝑥,𝑋,𝑦   𝑥,𝐹,𝑦   𝑥,𝐺,𝑦   𝑥, < ,𝑦   𝑥,𝐾,𝑦   𝑥,𝐿,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐶(𝑥,𝑦)   𝐻(𝑥,𝑦)   (𝑥,𝑦)   (𝑥,𝑦)

Proof of Theorem mgcmntco
StepHypRef Expression
1 mgcmntco.3 . . . . 5 (𝜑𝑋 ∈ Proset )
21ad2antrr 726 . . . 4 (((𝜑 ∧ ∀𝑥𝐴 (𝐾𝑥) < (𝐿‘(𝐹𝑥))) ∧ 𝑦𝐵) → 𝑋 ∈ Proset )
3 mgcval.2 . . . . . . 7 (𝜑𝑉 ∈ Proset )
4 mgcmntco.4 . . . . . . 7 (𝜑𝐾 ∈ (𝑉Monot𝑋))
5 mgcoval.1 . . . . . . . 8 𝐴 = (Base‘𝑉)
6 mgcmntco.1 . . . . . . . 8 𝐶 = (Base‘𝑋)
75, 6mntf 32966 . . . . . . 7 ((𝑉 ∈ Proset ∧ 𝑋 ∈ Proset ∧ 𝐾 ∈ (𝑉Monot𝑋)) → 𝐾:𝐴𝐶)
83, 1, 4, 7syl3anc 1373 . . . . . 6 (𝜑𝐾:𝐴𝐶)
98ad2antrr 726 . . . . 5 (((𝜑 ∧ ∀𝑥𝐴 (𝐾𝑥) < (𝐿‘(𝐹𝑥))) ∧ 𝑦𝐵) → 𝐾:𝐴𝐶)
10 mgcoval.2 . . . . . . . 8 𝐵 = (Base‘𝑊)
11 mgcoval.3 . . . . . . . 8 = (le‘𝑉)
12 mgcoval.4 . . . . . . . 8 = (le‘𝑊)
13 mgcval.1 . . . . . . . 8 𝐻 = (𝑉MGalConn𝑊)
14 mgcval.3 . . . . . . . 8 (𝜑𝑊 ∈ Proset )
15 mgccole.1 . . . . . . . 8 (𝜑𝐹𝐻𝐺)
165, 10, 11, 12, 13, 3, 14, 15mgcf2 32970 . . . . . . 7 (𝜑𝐺:𝐵𝐴)
1716adantr 480 . . . . . 6 ((𝜑 ∧ ∀𝑥𝐴 (𝐾𝑥) < (𝐿‘(𝐹𝑥))) → 𝐺:𝐵𝐴)
1817ffvelcdmda 7017 . . . . 5 (((𝜑 ∧ ∀𝑥𝐴 (𝐾𝑥) < (𝐿‘(𝐹𝑥))) ∧ 𝑦𝐵) → (𝐺𝑦) ∈ 𝐴)
199, 18ffvelcdmd 7018 . . . 4 (((𝜑 ∧ ∀𝑥𝐴 (𝐾𝑥) < (𝐿‘(𝐹𝑥))) ∧ 𝑦𝐵) → (𝐾‘(𝐺𝑦)) ∈ 𝐶)
20 mgcmntco.5 . . . . . . 7 (𝜑𝐿 ∈ (𝑊Monot𝑋))
2110, 6mntf 32966 . . . . . . 7 ((𝑊 ∈ Proset ∧ 𝑋 ∈ Proset ∧ 𝐿 ∈ (𝑊Monot𝑋)) → 𝐿:𝐵𝐶)
2214, 1, 20, 21syl3anc 1373 . . . . . 6 (𝜑𝐿:𝐵𝐶)
2322ad2antrr 726 . . . . 5 (((𝜑 ∧ ∀𝑥𝐴 (𝐾𝑥) < (𝐿‘(𝐹𝑥))) ∧ 𝑦𝐵) → 𝐿:𝐵𝐶)
245, 10, 11, 12, 13, 3, 14, 15mgcf1 32969 . . . . . . 7 (𝜑𝐹:𝐴𝐵)
2524ad2antrr 726 . . . . . 6 (((𝜑 ∧ ∀𝑥𝐴 (𝐾𝑥) < (𝐿‘(𝐹𝑥))) ∧ 𝑦𝐵) → 𝐹:𝐴𝐵)
2625, 18ffvelcdmd 7018 . . . . 5 (((𝜑 ∧ ∀𝑥𝐴 (𝐾𝑥) < (𝐿‘(𝐹𝑥))) ∧ 𝑦𝐵) → (𝐹‘(𝐺𝑦)) ∈ 𝐵)
2723, 26ffvelcdmd 7018 . . . 4 (((𝜑 ∧ ∀𝑥𝐴 (𝐾𝑥) < (𝐿‘(𝐹𝑥))) ∧ 𝑦𝐵) → (𝐿‘(𝐹‘(𝐺𝑦))) ∈ 𝐶)
2822adantr 480 . . . . 5 ((𝜑 ∧ ∀𝑥𝐴 (𝐾𝑥) < (𝐿‘(𝐹𝑥))) → 𝐿:𝐵𝐶)
2928ffvelcdmda 7017 . . . 4 (((𝜑 ∧ ∀𝑥𝐴 (𝐾𝑥) < (𝐿‘(𝐹𝑥))) ∧ 𝑦𝐵) → (𝐿𝑦) ∈ 𝐶)
3016ffvelcdmda 7017 . . . . . . 7 ((𝜑𝑦𝐵) → (𝐺𝑦) ∈ 𝐴)
31 fveq2 6822 . . . . . . . . 9 (𝑥 = (𝐺𝑦) → (𝐾𝑥) = (𝐾‘(𝐺𝑦)))
32 2fveq3 6827 . . . . . . . . 9 (𝑥 = (𝐺𝑦) → (𝐿‘(𝐹𝑥)) = (𝐿‘(𝐹‘(𝐺𝑦))))
3331, 32breq12d 5102 . . . . . . . 8 (𝑥 = (𝐺𝑦) → ((𝐾𝑥) < (𝐿‘(𝐹𝑥)) ↔ (𝐾‘(𝐺𝑦)) < (𝐿‘(𝐹‘(𝐺𝑦)))))
3433adantl 481 . . . . . . 7 (((𝜑𝑦𝐵) ∧ 𝑥 = (𝐺𝑦)) → ((𝐾𝑥) < (𝐿‘(𝐹𝑥)) ↔ (𝐾‘(𝐺𝑦)) < (𝐿‘(𝐹‘(𝐺𝑦)))))
3530, 34rspcdv 3564 . . . . . 6 ((𝜑𝑦𝐵) → (∀𝑥𝐴 (𝐾𝑥) < (𝐿‘(𝐹𝑥)) → (𝐾‘(𝐺𝑦)) < (𝐿‘(𝐹‘(𝐺𝑦)))))
3635imp 406 . . . . 5 (((𝜑𝑦𝐵) ∧ ∀𝑥𝐴 (𝐾𝑥) < (𝐿‘(𝐹𝑥))) → (𝐾‘(𝐺𝑦)) < (𝐿‘(𝐹‘(𝐺𝑦))))
3736an32s 652 . . . 4 (((𝜑 ∧ ∀𝑥𝐴 (𝐾𝑥) < (𝐿‘(𝐹𝑥))) ∧ 𝑦𝐵) → (𝐾‘(𝐺𝑦)) < (𝐿‘(𝐹‘(𝐺𝑦))))
38 mgcmntco.2 . . . . 5 < = (le‘𝑋)
3914ad2antrr 726 . . . . 5 (((𝜑 ∧ ∀𝑥𝐴 (𝐾𝑥) < (𝐿‘(𝐹𝑥))) ∧ 𝑦𝐵) → 𝑊 ∈ Proset )
4020ad2antrr 726 . . . . 5 (((𝜑 ∧ ∀𝑥𝐴 (𝐾𝑥) < (𝐿‘(𝐹𝑥))) ∧ 𝑦𝐵) → 𝐿 ∈ (𝑊Monot𝑋))
41 simpr 484 . . . . 5 (((𝜑 ∧ ∀𝑥𝐴 (𝐾𝑥) < (𝐿‘(𝐹𝑥))) ∧ 𝑦𝐵) → 𝑦𝐵)
423ad2antrr 726 . . . . . 6 (((𝜑 ∧ ∀𝑥𝐴 (𝐾𝑥) < (𝐿‘(𝐹𝑥))) ∧ 𝑦𝐵) → 𝑉 ∈ Proset )
4315ad2antrr 726 . . . . . 6 (((𝜑 ∧ ∀𝑥𝐴 (𝐾𝑥) < (𝐿‘(𝐹𝑥))) ∧ 𝑦𝐵) → 𝐹𝐻𝐺)
445, 10, 11, 12, 13, 42, 39, 43, 41mgccole2 32972 . . . . 5 (((𝜑 ∧ ∀𝑥𝐴 (𝐾𝑥) < (𝐿‘(𝐹𝑥))) ∧ 𝑦𝐵) → (𝐹‘(𝐺𝑦)) 𝑦)
4510, 6, 12, 38, 39, 2, 40, 26, 41, 44ismntd 32965 . . . 4 (((𝜑 ∧ ∀𝑥𝐴 (𝐾𝑥) < (𝐿‘(𝐹𝑥))) ∧ 𝑦𝐵) → (𝐿‘(𝐹‘(𝐺𝑦))) < (𝐿𝑦))
466, 38prstr 18205 . . . 4 ((𝑋 ∈ Proset ∧ ((𝐾‘(𝐺𝑦)) ∈ 𝐶 ∧ (𝐿‘(𝐹‘(𝐺𝑦))) ∈ 𝐶 ∧ (𝐿𝑦) ∈ 𝐶) ∧ ((𝐾‘(𝐺𝑦)) < (𝐿‘(𝐹‘(𝐺𝑦))) ∧ (𝐿‘(𝐹‘(𝐺𝑦))) < (𝐿𝑦))) → (𝐾‘(𝐺𝑦)) < (𝐿𝑦))
472, 19, 27, 29, 37, 45, 46syl132anc 1390 . . 3 (((𝜑 ∧ ∀𝑥𝐴 (𝐾𝑥) < (𝐿‘(𝐹𝑥))) ∧ 𝑦𝐵) → (𝐾‘(𝐺𝑦)) < (𝐿𝑦))
4847ralrimiva 3124 . 2 ((𝜑 ∧ ∀𝑥𝐴 (𝐾𝑥) < (𝐿‘(𝐹𝑥))) → ∀𝑦𝐵 (𝐾‘(𝐺𝑦)) < (𝐿𝑦))
491ad2antrr 726 . . . 4 (((𝜑 ∧ ∀𝑦𝐵 (𝐾‘(𝐺𝑦)) < (𝐿𝑦)) ∧ 𝑥𝐴) → 𝑋 ∈ Proset )
508ad2antrr 726 . . . . 5 (((𝜑 ∧ ∀𝑦𝐵 (𝐾‘(𝐺𝑦)) < (𝐿𝑦)) ∧ 𝑥𝐴) → 𝐾:𝐴𝐶)
51 simpr 484 . . . . 5 (((𝜑 ∧ ∀𝑦𝐵 (𝐾‘(𝐺𝑦)) < (𝐿𝑦)) ∧ 𝑥𝐴) → 𝑥𝐴)
5250, 51ffvelcdmd 7018 . . . 4 (((𝜑 ∧ ∀𝑦𝐵 (𝐾‘(𝐺𝑦)) < (𝐿𝑦)) ∧ 𝑥𝐴) → (𝐾𝑥) ∈ 𝐶)
5316ad2antrr 726 . . . . . 6 (((𝜑 ∧ ∀𝑦𝐵 (𝐾‘(𝐺𝑦)) < (𝐿𝑦)) ∧ 𝑥𝐴) → 𝐺:𝐵𝐴)
5424adantr 480 . . . . . . 7 ((𝜑 ∧ ∀𝑦𝐵 (𝐾‘(𝐺𝑦)) < (𝐿𝑦)) → 𝐹:𝐴𝐵)
5554ffvelcdmda 7017 . . . . . 6 (((𝜑 ∧ ∀𝑦𝐵 (𝐾‘(𝐺𝑦)) < (𝐿𝑦)) ∧ 𝑥𝐴) → (𝐹𝑥) ∈ 𝐵)
5653, 55ffvelcdmd 7018 . . . . 5 (((𝜑 ∧ ∀𝑦𝐵 (𝐾‘(𝐺𝑦)) < (𝐿𝑦)) ∧ 𝑥𝐴) → (𝐺‘(𝐹𝑥)) ∈ 𝐴)
5750, 56ffvelcdmd 7018 . . . 4 (((𝜑 ∧ ∀𝑦𝐵 (𝐾‘(𝐺𝑦)) < (𝐿𝑦)) ∧ 𝑥𝐴) → (𝐾‘(𝐺‘(𝐹𝑥))) ∈ 𝐶)
5822ad2antrr 726 . . . . 5 (((𝜑 ∧ ∀𝑦𝐵 (𝐾‘(𝐺𝑦)) < (𝐿𝑦)) ∧ 𝑥𝐴) → 𝐿:𝐵𝐶)
5958, 55ffvelcdmd 7018 . . . 4 (((𝜑 ∧ ∀𝑦𝐵 (𝐾‘(𝐺𝑦)) < (𝐿𝑦)) ∧ 𝑥𝐴) → (𝐿‘(𝐹𝑥)) ∈ 𝐶)
603ad2antrr 726 . . . . 5 (((𝜑 ∧ ∀𝑦𝐵 (𝐾‘(𝐺𝑦)) < (𝐿𝑦)) ∧ 𝑥𝐴) → 𝑉 ∈ Proset )
614ad2antrr 726 . . . . 5 (((𝜑 ∧ ∀𝑦𝐵 (𝐾‘(𝐺𝑦)) < (𝐿𝑦)) ∧ 𝑥𝐴) → 𝐾 ∈ (𝑉Monot𝑋))
6214ad2antrr 726 . . . . . 6 (((𝜑 ∧ ∀𝑦𝐵 (𝐾‘(𝐺𝑦)) < (𝐿𝑦)) ∧ 𝑥𝐴) → 𝑊 ∈ Proset )
6315ad2antrr 726 . . . . . 6 (((𝜑 ∧ ∀𝑦𝐵 (𝐾‘(𝐺𝑦)) < (𝐿𝑦)) ∧ 𝑥𝐴) → 𝐹𝐻𝐺)
645, 10, 11, 12, 13, 60, 62, 63, 51mgccole1 32971 . . . . 5 (((𝜑 ∧ ∀𝑦𝐵 (𝐾‘(𝐺𝑦)) < (𝐿𝑦)) ∧ 𝑥𝐴) → 𝑥 (𝐺‘(𝐹𝑥)))
655, 6, 11, 38, 60, 49, 61, 51, 56, 64ismntd 32965 . . . 4 (((𝜑 ∧ ∀𝑦𝐵 (𝐾‘(𝐺𝑦)) < (𝐿𝑦)) ∧ 𝑥𝐴) → (𝐾𝑥) < (𝐾‘(𝐺‘(𝐹𝑥))))
6624ffvelcdmda 7017 . . . . . . 7 ((𝜑𝑥𝐴) → (𝐹𝑥) ∈ 𝐵)
67 2fveq3 6827 . . . . . . . . 9 (𝑦 = (𝐹𝑥) → (𝐾‘(𝐺𝑦)) = (𝐾‘(𝐺‘(𝐹𝑥))))
68 fveq2 6822 . . . . . . . . 9 (𝑦 = (𝐹𝑥) → (𝐿𝑦) = (𝐿‘(𝐹𝑥)))
6967, 68breq12d 5102 . . . . . . . 8 (𝑦 = (𝐹𝑥) → ((𝐾‘(𝐺𝑦)) < (𝐿𝑦) ↔ (𝐾‘(𝐺‘(𝐹𝑥))) < (𝐿‘(𝐹𝑥))))
7069adantl 481 . . . . . . 7 (((𝜑𝑥𝐴) ∧ 𝑦 = (𝐹𝑥)) → ((𝐾‘(𝐺𝑦)) < (𝐿𝑦) ↔ (𝐾‘(𝐺‘(𝐹𝑥))) < (𝐿‘(𝐹𝑥))))
7166, 70rspcdv 3564 . . . . . 6 ((𝜑𝑥𝐴) → (∀𝑦𝐵 (𝐾‘(𝐺𝑦)) < (𝐿𝑦) → (𝐾‘(𝐺‘(𝐹𝑥))) < (𝐿‘(𝐹𝑥))))
7271imp 406 . . . . 5 (((𝜑𝑥𝐴) ∧ ∀𝑦𝐵 (𝐾‘(𝐺𝑦)) < (𝐿𝑦)) → (𝐾‘(𝐺‘(𝐹𝑥))) < (𝐿‘(𝐹𝑥)))
7372an32s 652 . . . 4 (((𝜑 ∧ ∀𝑦𝐵 (𝐾‘(𝐺𝑦)) < (𝐿𝑦)) ∧ 𝑥𝐴) → (𝐾‘(𝐺‘(𝐹𝑥))) < (𝐿‘(𝐹𝑥)))
746, 38prstr 18205 . . . 4 ((𝑋 ∈ Proset ∧ ((𝐾𝑥) ∈ 𝐶 ∧ (𝐾‘(𝐺‘(𝐹𝑥))) ∈ 𝐶 ∧ (𝐿‘(𝐹𝑥)) ∈ 𝐶) ∧ ((𝐾𝑥) < (𝐾‘(𝐺‘(𝐹𝑥))) ∧ (𝐾‘(𝐺‘(𝐹𝑥))) < (𝐿‘(𝐹𝑥)))) → (𝐾𝑥) < (𝐿‘(𝐹𝑥)))
7549, 52, 57, 59, 65, 73, 74syl132anc 1390 . . 3 (((𝜑 ∧ ∀𝑦𝐵 (𝐾‘(𝐺𝑦)) < (𝐿𝑦)) ∧ 𝑥𝐴) → (𝐾𝑥) < (𝐿‘(𝐹𝑥)))
7675ralrimiva 3124 . 2 ((𝜑 ∧ ∀𝑦𝐵 (𝐾‘(𝐺𝑦)) < (𝐿𝑦)) → ∀𝑥𝐴 (𝐾𝑥) < (𝐿‘(𝐹𝑥)))
7748, 76impbida 800 1 (𝜑 → (∀𝑥𝐴 (𝐾𝑥) < (𝐿‘(𝐹𝑥)) ↔ ∀𝑦𝐵 (𝐾‘(𝐺𝑦)) < (𝐿𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wral 3047   class class class wbr 5089  wf 6477  cfv 6481  (class class class)co 7346  Basecbs 17120  lecple 17168   Proset cproset 18198  Monotcmnt 32959  MGalConncmgc 32960
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-map 8752  df-proset 18200  df-mnt 32961  df-mgc 32962
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator