Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mgcmntco Structured version   Visualization version   GIF version

Theorem mgcmntco 32936
Description: A Galois connection like statement, for two functions with same range. (Contributed by Thierry Arnoux, 26-Apr-2024.)
Hypotheses
Ref Expression
mgcoval.1 𝐴 = (Base‘𝑉)
mgcoval.2 𝐵 = (Base‘𝑊)
mgcoval.3 = (le‘𝑉)
mgcoval.4 = (le‘𝑊)
mgcval.1 𝐻 = (𝑉MGalConn𝑊)
mgcval.2 (𝜑𝑉 ∈ Proset )
mgcval.3 (𝜑𝑊 ∈ Proset )
mgccole.1 (𝜑𝐹𝐻𝐺)
mgcmntco.1 𝐶 = (Base‘𝑋)
mgcmntco.2 < = (le‘𝑋)
mgcmntco.3 (𝜑𝑋 ∈ Proset )
mgcmntco.4 (𝜑𝐾 ∈ (𝑉Monot𝑋))
mgcmntco.5 (𝜑𝐿 ∈ (𝑊Monot𝑋))
Assertion
Ref Expression
mgcmntco (𝜑 → (∀𝑥𝐴 (𝐾𝑥) < (𝐿‘(𝐹𝑥)) ↔ ∀𝑦𝐵 (𝐾‘(𝐺𝑦)) < (𝐿𝑦)))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑥,𝑉,𝑦   𝑥,𝑊,𝑦   𝑥,𝑋,𝑦   𝑥,𝐹,𝑦   𝑥,𝐺,𝑦   𝑥, < ,𝑦   𝑥,𝐾,𝑦   𝑥,𝐿,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐶(𝑥,𝑦)   𝐻(𝑥,𝑦)   (𝑥,𝑦)   (𝑥,𝑦)

Proof of Theorem mgcmntco
StepHypRef Expression
1 mgcmntco.3 . . . . 5 (𝜑𝑋 ∈ Proset )
21ad2antrr 726 . . . 4 (((𝜑 ∧ ∀𝑥𝐴 (𝐾𝑥) < (𝐿‘(𝐹𝑥))) ∧ 𝑦𝐵) → 𝑋 ∈ Proset )
3 mgcval.2 . . . . . . 7 (𝜑𝑉 ∈ Proset )
4 mgcmntco.4 . . . . . . 7 (𝜑𝐾 ∈ (𝑉Monot𝑋))
5 mgcoval.1 . . . . . . . 8 𝐴 = (Base‘𝑉)
6 mgcmntco.1 . . . . . . . 8 𝐶 = (Base‘𝑋)
75, 6mntf 32927 . . . . . . 7 ((𝑉 ∈ Proset ∧ 𝑋 ∈ Proset ∧ 𝐾 ∈ (𝑉Monot𝑋)) → 𝐾:𝐴𝐶)
83, 1, 4, 7syl3anc 1373 . . . . . 6 (𝜑𝐾:𝐴𝐶)
98ad2antrr 726 . . . . 5 (((𝜑 ∧ ∀𝑥𝐴 (𝐾𝑥) < (𝐿‘(𝐹𝑥))) ∧ 𝑦𝐵) → 𝐾:𝐴𝐶)
10 mgcoval.2 . . . . . . . 8 𝐵 = (Base‘𝑊)
11 mgcoval.3 . . . . . . . 8 = (le‘𝑉)
12 mgcoval.4 . . . . . . . 8 = (le‘𝑊)
13 mgcval.1 . . . . . . . 8 𝐻 = (𝑉MGalConn𝑊)
14 mgcval.3 . . . . . . . 8 (𝜑𝑊 ∈ Proset )
15 mgccole.1 . . . . . . . 8 (𝜑𝐹𝐻𝐺)
165, 10, 11, 12, 13, 3, 14, 15mgcf2 32931 . . . . . . 7 (𝜑𝐺:𝐵𝐴)
1716adantr 480 . . . . . 6 ((𝜑 ∧ ∀𝑥𝐴 (𝐾𝑥) < (𝐿‘(𝐹𝑥))) → 𝐺:𝐵𝐴)
1817ffvelcdmda 7018 . . . . 5 (((𝜑 ∧ ∀𝑥𝐴 (𝐾𝑥) < (𝐿‘(𝐹𝑥))) ∧ 𝑦𝐵) → (𝐺𝑦) ∈ 𝐴)
199, 18ffvelcdmd 7019 . . . 4 (((𝜑 ∧ ∀𝑥𝐴 (𝐾𝑥) < (𝐿‘(𝐹𝑥))) ∧ 𝑦𝐵) → (𝐾‘(𝐺𝑦)) ∈ 𝐶)
20 mgcmntco.5 . . . . . . 7 (𝜑𝐿 ∈ (𝑊Monot𝑋))
2110, 6mntf 32927 . . . . . . 7 ((𝑊 ∈ Proset ∧ 𝑋 ∈ Proset ∧ 𝐿 ∈ (𝑊Monot𝑋)) → 𝐿:𝐵𝐶)
2214, 1, 20, 21syl3anc 1373 . . . . . 6 (𝜑𝐿:𝐵𝐶)
2322ad2antrr 726 . . . . 5 (((𝜑 ∧ ∀𝑥𝐴 (𝐾𝑥) < (𝐿‘(𝐹𝑥))) ∧ 𝑦𝐵) → 𝐿:𝐵𝐶)
245, 10, 11, 12, 13, 3, 14, 15mgcf1 32930 . . . . . . 7 (𝜑𝐹:𝐴𝐵)
2524ad2antrr 726 . . . . . 6 (((𝜑 ∧ ∀𝑥𝐴 (𝐾𝑥) < (𝐿‘(𝐹𝑥))) ∧ 𝑦𝐵) → 𝐹:𝐴𝐵)
2625, 18ffvelcdmd 7019 . . . . 5 (((𝜑 ∧ ∀𝑥𝐴 (𝐾𝑥) < (𝐿‘(𝐹𝑥))) ∧ 𝑦𝐵) → (𝐹‘(𝐺𝑦)) ∈ 𝐵)
2723, 26ffvelcdmd 7019 . . . 4 (((𝜑 ∧ ∀𝑥𝐴 (𝐾𝑥) < (𝐿‘(𝐹𝑥))) ∧ 𝑦𝐵) → (𝐿‘(𝐹‘(𝐺𝑦))) ∈ 𝐶)
2822adantr 480 . . . . 5 ((𝜑 ∧ ∀𝑥𝐴 (𝐾𝑥) < (𝐿‘(𝐹𝑥))) → 𝐿:𝐵𝐶)
2928ffvelcdmda 7018 . . . 4 (((𝜑 ∧ ∀𝑥𝐴 (𝐾𝑥) < (𝐿‘(𝐹𝑥))) ∧ 𝑦𝐵) → (𝐿𝑦) ∈ 𝐶)
3016ffvelcdmda 7018 . . . . . . 7 ((𝜑𝑦𝐵) → (𝐺𝑦) ∈ 𝐴)
31 fveq2 6822 . . . . . . . . 9 (𝑥 = (𝐺𝑦) → (𝐾𝑥) = (𝐾‘(𝐺𝑦)))
32 2fveq3 6827 . . . . . . . . 9 (𝑥 = (𝐺𝑦) → (𝐿‘(𝐹𝑥)) = (𝐿‘(𝐹‘(𝐺𝑦))))
3331, 32breq12d 5105 . . . . . . . 8 (𝑥 = (𝐺𝑦) → ((𝐾𝑥) < (𝐿‘(𝐹𝑥)) ↔ (𝐾‘(𝐺𝑦)) < (𝐿‘(𝐹‘(𝐺𝑦)))))
3433adantl 481 . . . . . . 7 (((𝜑𝑦𝐵) ∧ 𝑥 = (𝐺𝑦)) → ((𝐾𝑥) < (𝐿‘(𝐹𝑥)) ↔ (𝐾‘(𝐺𝑦)) < (𝐿‘(𝐹‘(𝐺𝑦)))))
3530, 34rspcdv 3569 . . . . . 6 ((𝜑𝑦𝐵) → (∀𝑥𝐴 (𝐾𝑥) < (𝐿‘(𝐹𝑥)) → (𝐾‘(𝐺𝑦)) < (𝐿‘(𝐹‘(𝐺𝑦)))))
3635imp 406 . . . . 5 (((𝜑𝑦𝐵) ∧ ∀𝑥𝐴 (𝐾𝑥) < (𝐿‘(𝐹𝑥))) → (𝐾‘(𝐺𝑦)) < (𝐿‘(𝐹‘(𝐺𝑦))))
3736an32s 652 . . . 4 (((𝜑 ∧ ∀𝑥𝐴 (𝐾𝑥) < (𝐿‘(𝐹𝑥))) ∧ 𝑦𝐵) → (𝐾‘(𝐺𝑦)) < (𝐿‘(𝐹‘(𝐺𝑦))))
38 mgcmntco.2 . . . . 5 < = (le‘𝑋)
3914ad2antrr 726 . . . . 5 (((𝜑 ∧ ∀𝑥𝐴 (𝐾𝑥) < (𝐿‘(𝐹𝑥))) ∧ 𝑦𝐵) → 𝑊 ∈ Proset )
4020ad2antrr 726 . . . . 5 (((𝜑 ∧ ∀𝑥𝐴 (𝐾𝑥) < (𝐿‘(𝐹𝑥))) ∧ 𝑦𝐵) → 𝐿 ∈ (𝑊Monot𝑋))
41 simpr 484 . . . . 5 (((𝜑 ∧ ∀𝑥𝐴 (𝐾𝑥) < (𝐿‘(𝐹𝑥))) ∧ 𝑦𝐵) → 𝑦𝐵)
423ad2antrr 726 . . . . . 6 (((𝜑 ∧ ∀𝑥𝐴 (𝐾𝑥) < (𝐿‘(𝐹𝑥))) ∧ 𝑦𝐵) → 𝑉 ∈ Proset )
4315ad2antrr 726 . . . . . 6 (((𝜑 ∧ ∀𝑥𝐴 (𝐾𝑥) < (𝐿‘(𝐹𝑥))) ∧ 𝑦𝐵) → 𝐹𝐻𝐺)
445, 10, 11, 12, 13, 42, 39, 43, 41mgccole2 32933 . . . . 5 (((𝜑 ∧ ∀𝑥𝐴 (𝐾𝑥) < (𝐿‘(𝐹𝑥))) ∧ 𝑦𝐵) → (𝐹‘(𝐺𝑦)) 𝑦)
4510, 6, 12, 38, 39, 2, 40, 26, 41, 44ismntd 32926 . . . 4 (((𝜑 ∧ ∀𝑥𝐴 (𝐾𝑥) < (𝐿‘(𝐹𝑥))) ∧ 𝑦𝐵) → (𝐿‘(𝐹‘(𝐺𝑦))) < (𝐿𝑦))
466, 38prstr 18205 . . . 4 ((𝑋 ∈ Proset ∧ ((𝐾‘(𝐺𝑦)) ∈ 𝐶 ∧ (𝐿‘(𝐹‘(𝐺𝑦))) ∈ 𝐶 ∧ (𝐿𝑦) ∈ 𝐶) ∧ ((𝐾‘(𝐺𝑦)) < (𝐿‘(𝐹‘(𝐺𝑦))) ∧ (𝐿‘(𝐹‘(𝐺𝑦))) < (𝐿𝑦))) → (𝐾‘(𝐺𝑦)) < (𝐿𝑦))
472, 19, 27, 29, 37, 45, 46syl132anc 1390 . . 3 (((𝜑 ∧ ∀𝑥𝐴 (𝐾𝑥) < (𝐿‘(𝐹𝑥))) ∧ 𝑦𝐵) → (𝐾‘(𝐺𝑦)) < (𝐿𝑦))
4847ralrimiva 3121 . 2 ((𝜑 ∧ ∀𝑥𝐴 (𝐾𝑥) < (𝐿‘(𝐹𝑥))) → ∀𝑦𝐵 (𝐾‘(𝐺𝑦)) < (𝐿𝑦))
491ad2antrr 726 . . . 4 (((𝜑 ∧ ∀𝑦𝐵 (𝐾‘(𝐺𝑦)) < (𝐿𝑦)) ∧ 𝑥𝐴) → 𝑋 ∈ Proset )
508ad2antrr 726 . . . . 5 (((𝜑 ∧ ∀𝑦𝐵 (𝐾‘(𝐺𝑦)) < (𝐿𝑦)) ∧ 𝑥𝐴) → 𝐾:𝐴𝐶)
51 simpr 484 . . . . 5 (((𝜑 ∧ ∀𝑦𝐵 (𝐾‘(𝐺𝑦)) < (𝐿𝑦)) ∧ 𝑥𝐴) → 𝑥𝐴)
5250, 51ffvelcdmd 7019 . . . 4 (((𝜑 ∧ ∀𝑦𝐵 (𝐾‘(𝐺𝑦)) < (𝐿𝑦)) ∧ 𝑥𝐴) → (𝐾𝑥) ∈ 𝐶)
5316ad2antrr 726 . . . . . 6 (((𝜑 ∧ ∀𝑦𝐵 (𝐾‘(𝐺𝑦)) < (𝐿𝑦)) ∧ 𝑥𝐴) → 𝐺:𝐵𝐴)
5424adantr 480 . . . . . . 7 ((𝜑 ∧ ∀𝑦𝐵 (𝐾‘(𝐺𝑦)) < (𝐿𝑦)) → 𝐹:𝐴𝐵)
5554ffvelcdmda 7018 . . . . . 6 (((𝜑 ∧ ∀𝑦𝐵 (𝐾‘(𝐺𝑦)) < (𝐿𝑦)) ∧ 𝑥𝐴) → (𝐹𝑥) ∈ 𝐵)
5653, 55ffvelcdmd 7019 . . . . 5 (((𝜑 ∧ ∀𝑦𝐵 (𝐾‘(𝐺𝑦)) < (𝐿𝑦)) ∧ 𝑥𝐴) → (𝐺‘(𝐹𝑥)) ∈ 𝐴)
5750, 56ffvelcdmd 7019 . . . 4 (((𝜑 ∧ ∀𝑦𝐵 (𝐾‘(𝐺𝑦)) < (𝐿𝑦)) ∧ 𝑥𝐴) → (𝐾‘(𝐺‘(𝐹𝑥))) ∈ 𝐶)
5822ad2antrr 726 . . . . 5 (((𝜑 ∧ ∀𝑦𝐵 (𝐾‘(𝐺𝑦)) < (𝐿𝑦)) ∧ 𝑥𝐴) → 𝐿:𝐵𝐶)
5958, 55ffvelcdmd 7019 . . . 4 (((𝜑 ∧ ∀𝑦𝐵 (𝐾‘(𝐺𝑦)) < (𝐿𝑦)) ∧ 𝑥𝐴) → (𝐿‘(𝐹𝑥)) ∈ 𝐶)
603ad2antrr 726 . . . . 5 (((𝜑 ∧ ∀𝑦𝐵 (𝐾‘(𝐺𝑦)) < (𝐿𝑦)) ∧ 𝑥𝐴) → 𝑉 ∈ Proset )
614ad2antrr 726 . . . . 5 (((𝜑 ∧ ∀𝑦𝐵 (𝐾‘(𝐺𝑦)) < (𝐿𝑦)) ∧ 𝑥𝐴) → 𝐾 ∈ (𝑉Monot𝑋))
6214ad2antrr 726 . . . . . 6 (((𝜑 ∧ ∀𝑦𝐵 (𝐾‘(𝐺𝑦)) < (𝐿𝑦)) ∧ 𝑥𝐴) → 𝑊 ∈ Proset )
6315ad2antrr 726 . . . . . 6 (((𝜑 ∧ ∀𝑦𝐵 (𝐾‘(𝐺𝑦)) < (𝐿𝑦)) ∧ 𝑥𝐴) → 𝐹𝐻𝐺)
645, 10, 11, 12, 13, 60, 62, 63, 51mgccole1 32932 . . . . 5 (((𝜑 ∧ ∀𝑦𝐵 (𝐾‘(𝐺𝑦)) < (𝐿𝑦)) ∧ 𝑥𝐴) → 𝑥 (𝐺‘(𝐹𝑥)))
655, 6, 11, 38, 60, 49, 61, 51, 56, 64ismntd 32926 . . . 4 (((𝜑 ∧ ∀𝑦𝐵 (𝐾‘(𝐺𝑦)) < (𝐿𝑦)) ∧ 𝑥𝐴) → (𝐾𝑥) < (𝐾‘(𝐺‘(𝐹𝑥))))
6624ffvelcdmda 7018 . . . . . . 7 ((𝜑𝑥𝐴) → (𝐹𝑥) ∈ 𝐵)
67 2fveq3 6827 . . . . . . . . 9 (𝑦 = (𝐹𝑥) → (𝐾‘(𝐺𝑦)) = (𝐾‘(𝐺‘(𝐹𝑥))))
68 fveq2 6822 . . . . . . . . 9 (𝑦 = (𝐹𝑥) → (𝐿𝑦) = (𝐿‘(𝐹𝑥)))
6967, 68breq12d 5105 . . . . . . . 8 (𝑦 = (𝐹𝑥) → ((𝐾‘(𝐺𝑦)) < (𝐿𝑦) ↔ (𝐾‘(𝐺‘(𝐹𝑥))) < (𝐿‘(𝐹𝑥))))
7069adantl 481 . . . . . . 7 (((𝜑𝑥𝐴) ∧ 𝑦 = (𝐹𝑥)) → ((𝐾‘(𝐺𝑦)) < (𝐿𝑦) ↔ (𝐾‘(𝐺‘(𝐹𝑥))) < (𝐿‘(𝐹𝑥))))
7166, 70rspcdv 3569 . . . . . 6 ((𝜑𝑥𝐴) → (∀𝑦𝐵 (𝐾‘(𝐺𝑦)) < (𝐿𝑦) → (𝐾‘(𝐺‘(𝐹𝑥))) < (𝐿‘(𝐹𝑥))))
7271imp 406 . . . . 5 (((𝜑𝑥𝐴) ∧ ∀𝑦𝐵 (𝐾‘(𝐺𝑦)) < (𝐿𝑦)) → (𝐾‘(𝐺‘(𝐹𝑥))) < (𝐿‘(𝐹𝑥)))
7372an32s 652 . . . 4 (((𝜑 ∧ ∀𝑦𝐵 (𝐾‘(𝐺𝑦)) < (𝐿𝑦)) ∧ 𝑥𝐴) → (𝐾‘(𝐺‘(𝐹𝑥))) < (𝐿‘(𝐹𝑥)))
746, 38prstr 18205 . . . 4 ((𝑋 ∈ Proset ∧ ((𝐾𝑥) ∈ 𝐶 ∧ (𝐾‘(𝐺‘(𝐹𝑥))) ∈ 𝐶 ∧ (𝐿‘(𝐹𝑥)) ∈ 𝐶) ∧ ((𝐾𝑥) < (𝐾‘(𝐺‘(𝐹𝑥))) ∧ (𝐾‘(𝐺‘(𝐹𝑥))) < (𝐿‘(𝐹𝑥)))) → (𝐾𝑥) < (𝐿‘(𝐹𝑥)))
7549, 52, 57, 59, 65, 73, 74syl132anc 1390 . . 3 (((𝜑 ∧ ∀𝑦𝐵 (𝐾‘(𝐺𝑦)) < (𝐿𝑦)) ∧ 𝑥𝐴) → (𝐾𝑥) < (𝐿‘(𝐹𝑥)))
7675ralrimiva 3121 . 2 ((𝜑 ∧ ∀𝑦𝐵 (𝐾‘(𝐺𝑦)) < (𝐿𝑦)) → ∀𝑥𝐴 (𝐾𝑥) < (𝐿‘(𝐹𝑥)))
7748, 76impbida 800 1 (𝜑 → (∀𝑥𝐴 (𝐾𝑥) < (𝐿‘(𝐹𝑥)) ↔ ∀𝑦𝐵 (𝐾‘(𝐺𝑦)) < (𝐿𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044   class class class wbr 5092  wf 6478  cfv 6482  (class class class)co 7349  Basecbs 17120  lecple 17168   Proset cproset 18198  Monotcmnt 32920  MGalConncmgc 32921
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-map 8755  df-proset 18200  df-mnt 32922  df-mgc 32923
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator