Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mgcmntco Structured version   Visualization version   GIF version

Theorem mgcmntco 31272
Description: A Galois connection like statement, for two functions with same range. (Contributed by Thierry Arnoux, 26-Apr-2024.)
Hypotheses
Ref Expression
mgcoval.1 𝐴 = (Base‘𝑉)
mgcoval.2 𝐵 = (Base‘𝑊)
mgcoval.3 = (le‘𝑉)
mgcoval.4 = (le‘𝑊)
mgcval.1 𝐻 = (𝑉MGalConn𝑊)
mgcval.2 (𝜑𝑉 ∈ Proset )
mgcval.3 (𝜑𝑊 ∈ Proset )
mgccole.1 (𝜑𝐹𝐻𝐺)
mgcmntco.1 𝐶 = (Base‘𝑋)
mgcmntco.2 < = (le‘𝑋)
mgcmntco.3 (𝜑𝑋 ∈ Proset )
mgcmntco.4 (𝜑𝐾 ∈ (𝑉Monot𝑋))
mgcmntco.5 (𝜑𝐿 ∈ (𝑊Monot𝑋))
Assertion
Ref Expression
mgcmntco (𝜑 → (∀𝑥𝐴 (𝐾𝑥) < (𝐿‘(𝐹𝑥)) ↔ ∀𝑦𝐵 (𝐾‘(𝐺𝑦)) < (𝐿𝑦)))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑥,𝑉,𝑦   𝑥,𝑊,𝑦   𝑥,𝑋,𝑦   𝑥,𝐹,𝑦   𝑥,𝐺,𝑦   𝑥, < ,𝑦   𝑥,𝐾,𝑦   𝑥,𝐿,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐶(𝑥,𝑦)   𝐻(𝑥,𝑦)   (𝑥,𝑦)   (𝑥,𝑦)

Proof of Theorem mgcmntco
StepHypRef Expression
1 mgcmntco.3 . . . . 5 (𝜑𝑋 ∈ Proset )
21ad2antrr 723 . . . 4 (((𝜑 ∧ ∀𝑥𝐴 (𝐾𝑥) < (𝐿‘(𝐹𝑥))) ∧ 𝑦𝐵) → 𝑋 ∈ Proset )
3 mgcval.2 . . . . . . 7 (𝜑𝑉 ∈ Proset )
4 mgcmntco.4 . . . . . . 7 (𝜑𝐾 ∈ (𝑉Monot𝑋))
5 mgcoval.1 . . . . . . . 8 𝐴 = (Base‘𝑉)
6 mgcmntco.1 . . . . . . . 8 𝐶 = (Base‘𝑋)
75, 6mntf 31263 . . . . . . 7 ((𝑉 ∈ Proset ∧ 𝑋 ∈ Proset ∧ 𝐾 ∈ (𝑉Monot𝑋)) → 𝐾:𝐴𝐶)
83, 1, 4, 7syl3anc 1370 . . . . . 6 (𝜑𝐾:𝐴𝐶)
98ad2antrr 723 . . . . 5 (((𝜑 ∧ ∀𝑥𝐴 (𝐾𝑥) < (𝐿‘(𝐹𝑥))) ∧ 𝑦𝐵) → 𝐾:𝐴𝐶)
10 mgcoval.2 . . . . . . . 8 𝐵 = (Base‘𝑊)
11 mgcoval.3 . . . . . . . 8 = (le‘𝑉)
12 mgcoval.4 . . . . . . . 8 = (le‘𝑊)
13 mgcval.1 . . . . . . . 8 𝐻 = (𝑉MGalConn𝑊)
14 mgcval.3 . . . . . . . 8 (𝜑𝑊 ∈ Proset )
15 mgccole.1 . . . . . . . 8 (𝜑𝐹𝐻𝐺)
165, 10, 11, 12, 13, 3, 14, 15mgcf2 31267 . . . . . . 7 (𝜑𝐺:𝐵𝐴)
1716adantr 481 . . . . . 6 ((𝜑 ∧ ∀𝑥𝐴 (𝐾𝑥) < (𝐿‘(𝐹𝑥))) → 𝐺:𝐵𝐴)
1817ffvelrnda 6961 . . . . 5 (((𝜑 ∧ ∀𝑥𝐴 (𝐾𝑥) < (𝐿‘(𝐹𝑥))) ∧ 𝑦𝐵) → (𝐺𝑦) ∈ 𝐴)
199, 18ffvelrnd 6962 . . . 4 (((𝜑 ∧ ∀𝑥𝐴 (𝐾𝑥) < (𝐿‘(𝐹𝑥))) ∧ 𝑦𝐵) → (𝐾‘(𝐺𝑦)) ∈ 𝐶)
20 mgcmntco.5 . . . . . . 7 (𝜑𝐿 ∈ (𝑊Monot𝑋))
2110, 6mntf 31263 . . . . . . 7 ((𝑊 ∈ Proset ∧ 𝑋 ∈ Proset ∧ 𝐿 ∈ (𝑊Monot𝑋)) → 𝐿:𝐵𝐶)
2214, 1, 20, 21syl3anc 1370 . . . . . 6 (𝜑𝐿:𝐵𝐶)
2322ad2antrr 723 . . . . 5 (((𝜑 ∧ ∀𝑥𝐴 (𝐾𝑥) < (𝐿‘(𝐹𝑥))) ∧ 𝑦𝐵) → 𝐿:𝐵𝐶)
245, 10, 11, 12, 13, 3, 14, 15mgcf1 31266 . . . . . . 7 (𝜑𝐹:𝐴𝐵)
2524ad2antrr 723 . . . . . 6 (((𝜑 ∧ ∀𝑥𝐴 (𝐾𝑥) < (𝐿‘(𝐹𝑥))) ∧ 𝑦𝐵) → 𝐹:𝐴𝐵)
2625, 18ffvelrnd 6962 . . . . 5 (((𝜑 ∧ ∀𝑥𝐴 (𝐾𝑥) < (𝐿‘(𝐹𝑥))) ∧ 𝑦𝐵) → (𝐹‘(𝐺𝑦)) ∈ 𝐵)
2723, 26ffvelrnd 6962 . . . 4 (((𝜑 ∧ ∀𝑥𝐴 (𝐾𝑥) < (𝐿‘(𝐹𝑥))) ∧ 𝑦𝐵) → (𝐿‘(𝐹‘(𝐺𝑦))) ∈ 𝐶)
2822adantr 481 . . . . 5 ((𝜑 ∧ ∀𝑥𝐴 (𝐾𝑥) < (𝐿‘(𝐹𝑥))) → 𝐿:𝐵𝐶)
2928ffvelrnda 6961 . . . 4 (((𝜑 ∧ ∀𝑥𝐴 (𝐾𝑥) < (𝐿‘(𝐹𝑥))) ∧ 𝑦𝐵) → (𝐿𝑦) ∈ 𝐶)
3016ffvelrnda 6961 . . . . . . 7 ((𝜑𝑦𝐵) → (𝐺𝑦) ∈ 𝐴)
31 fveq2 6774 . . . . . . . . 9 (𝑥 = (𝐺𝑦) → (𝐾𝑥) = (𝐾‘(𝐺𝑦)))
32 2fveq3 6779 . . . . . . . . 9 (𝑥 = (𝐺𝑦) → (𝐿‘(𝐹𝑥)) = (𝐿‘(𝐹‘(𝐺𝑦))))
3331, 32breq12d 5087 . . . . . . . 8 (𝑥 = (𝐺𝑦) → ((𝐾𝑥) < (𝐿‘(𝐹𝑥)) ↔ (𝐾‘(𝐺𝑦)) < (𝐿‘(𝐹‘(𝐺𝑦)))))
3433adantl 482 . . . . . . 7 (((𝜑𝑦𝐵) ∧ 𝑥 = (𝐺𝑦)) → ((𝐾𝑥) < (𝐿‘(𝐹𝑥)) ↔ (𝐾‘(𝐺𝑦)) < (𝐿‘(𝐹‘(𝐺𝑦)))))
3530, 34rspcdv 3553 . . . . . 6 ((𝜑𝑦𝐵) → (∀𝑥𝐴 (𝐾𝑥) < (𝐿‘(𝐹𝑥)) → (𝐾‘(𝐺𝑦)) < (𝐿‘(𝐹‘(𝐺𝑦)))))
3635imp 407 . . . . 5 (((𝜑𝑦𝐵) ∧ ∀𝑥𝐴 (𝐾𝑥) < (𝐿‘(𝐹𝑥))) → (𝐾‘(𝐺𝑦)) < (𝐿‘(𝐹‘(𝐺𝑦))))
3736an32s 649 . . . 4 (((𝜑 ∧ ∀𝑥𝐴 (𝐾𝑥) < (𝐿‘(𝐹𝑥))) ∧ 𝑦𝐵) → (𝐾‘(𝐺𝑦)) < (𝐿‘(𝐹‘(𝐺𝑦))))
38 mgcmntco.2 . . . . 5 < = (le‘𝑋)
3914ad2antrr 723 . . . . 5 (((𝜑 ∧ ∀𝑥𝐴 (𝐾𝑥) < (𝐿‘(𝐹𝑥))) ∧ 𝑦𝐵) → 𝑊 ∈ Proset )
4020ad2antrr 723 . . . . 5 (((𝜑 ∧ ∀𝑥𝐴 (𝐾𝑥) < (𝐿‘(𝐹𝑥))) ∧ 𝑦𝐵) → 𝐿 ∈ (𝑊Monot𝑋))
41 simpr 485 . . . . 5 (((𝜑 ∧ ∀𝑥𝐴 (𝐾𝑥) < (𝐿‘(𝐹𝑥))) ∧ 𝑦𝐵) → 𝑦𝐵)
423ad2antrr 723 . . . . . 6 (((𝜑 ∧ ∀𝑥𝐴 (𝐾𝑥) < (𝐿‘(𝐹𝑥))) ∧ 𝑦𝐵) → 𝑉 ∈ Proset )
4315ad2antrr 723 . . . . . 6 (((𝜑 ∧ ∀𝑥𝐴 (𝐾𝑥) < (𝐿‘(𝐹𝑥))) ∧ 𝑦𝐵) → 𝐹𝐻𝐺)
445, 10, 11, 12, 13, 42, 39, 43, 41mgccole2 31269 . . . . 5 (((𝜑 ∧ ∀𝑥𝐴 (𝐾𝑥) < (𝐿‘(𝐹𝑥))) ∧ 𝑦𝐵) → (𝐹‘(𝐺𝑦)) 𝑦)
4510, 6, 12, 38, 39, 2, 40, 26, 41, 44ismntd 31262 . . . 4 (((𝜑 ∧ ∀𝑥𝐴 (𝐾𝑥) < (𝐿‘(𝐹𝑥))) ∧ 𝑦𝐵) → (𝐿‘(𝐹‘(𝐺𝑦))) < (𝐿𝑦))
466, 38prstr 18018 . . . 4 ((𝑋 ∈ Proset ∧ ((𝐾‘(𝐺𝑦)) ∈ 𝐶 ∧ (𝐿‘(𝐹‘(𝐺𝑦))) ∈ 𝐶 ∧ (𝐿𝑦) ∈ 𝐶) ∧ ((𝐾‘(𝐺𝑦)) < (𝐿‘(𝐹‘(𝐺𝑦))) ∧ (𝐿‘(𝐹‘(𝐺𝑦))) < (𝐿𝑦))) → (𝐾‘(𝐺𝑦)) < (𝐿𝑦))
472, 19, 27, 29, 37, 45, 46syl132anc 1387 . . 3 (((𝜑 ∧ ∀𝑥𝐴 (𝐾𝑥) < (𝐿‘(𝐹𝑥))) ∧ 𝑦𝐵) → (𝐾‘(𝐺𝑦)) < (𝐿𝑦))
4847ralrimiva 3103 . 2 ((𝜑 ∧ ∀𝑥𝐴 (𝐾𝑥) < (𝐿‘(𝐹𝑥))) → ∀𝑦𝐵 (𝐾‘(𝐺𝑦)) < (𝐿𝑦))
491ad2antrr 723 . . . 4 (((𝜑 ∧ ∀𝑦𝐵 (𝐾‘(𝐺𝑦)) < (𝐿𝑦)) ∧ 𝑥𝐴) → 𝑋 ∈ Proset )
508ad2antrr 723 . . . . 5 (((𝜑 ∧ ∀𝑦𝐵 (𝐾‘(𝐺𝑦)) < (𝐿𝑦)) ∧ 𝑥𝐴) → 𝐾:𝐴𝐶)
51 simpr 485 . . . . 5 (((𝜑 ∧ ∀𝑦𝐵 (𝐾‘(𝐺𝑦)) < (𝐿𝑦)) ∧ 𝑥𝐴) → 𝑥𝐴)
5250, 51ffvelrnd 6962 . . . 4 (((𝜑 ∧ ∀𝑦𝐵 (𝐾‘(𝐺𝑦)) < (𝐿𝑦)) ∧ 𝑥𝐴) → (𝐾𝑥) ∈ 𝐶)
5316ad2antrr 723 . . . . . 6 (((𝜑 ∧ ∀𝑦𝐵 (𝐾‘(𝐺𝑦)) < (𝐿𝑦)) ∧ 𝑥𝐴) → 𝐺:𝐵𝐴)
5424adantr 481 . . . . . . 7 ((𝜑 ∧ ∀𝑦𝐵 (𝐾‘(𝐺𝑦)) < (𝐿𝑦)) → 𝐹:𝐴𝐵)
5554ffvelrnda 6961 . . . . . 6 (((𝜑 ∧ ∀𝑦𝐵 (𝐾‘(𝐺𝑦)) < (𝐿𝑦)) ∧ 𝑥𝐴) → (𝐹𝑥) ∈ 𝐵)
5653, 55ffvelrnd 6962 . . . . 5 (((𝜑 ∧ ∀𝑦𝐵 (𝐾‘(𝐺𝑦)) < (𝐿𝑦)) ∧ 𝑥𝐴) → (𝐺‘(𝐹𝑥)) ∈ 𝐴)
5750, 56ffvelrnd 6962 . . . 4 (((𝜑 ∧ ∀𝑦𝐵 (𝐾‘(𝐺𝑦)) < (𝐿𝑦)) ∧ 𝑥𝐴) → (𝐾‘(𝐺‘(𝐹𝑥))) ∈ 𝐶)
5822ad2antrr 723 . . . . 5 (((𝜑 ∧ ∀𝑦𝐵 (𝐾‘(𝐺𝑦)) < (𝐿𝑦)) ∧ 𝑥𝐴) → 𝐿:𝐵𝐶)
5958, 55ffvelrnd 6962 . . . 4 (((𝜑 ∧ ∀𝑦𝐵 (𝐾‘(𝐺𝑦)) < (𝐿𝑦)) ∧ 𝑥𝐴) → (𝐿‘(𝐹𝑥)) ∈ 𝐶)
603ad2antrr 723 . . . . 5 (((𝜑 ∧ ∀𝑦𝐵 (𝐾‘(𝐺𝑦)) < (𝐿𝑦)) ∧ 𝑥𝐴) → 𝑉 ∈ Proset )
614ad2antrr 723 . . . . 5 (((𝜑 ∧ ∀𝑦𝐵 (𝐾‘(𝐺𝑦)) < (𝐿𝑦)) ∧ 𝑥𝐴) → 𝐾 ∈ (𝑉Monot𝑋))
6214ad2antrr 723 . . . . . 6 (((𝜑 ∧ ∀𝑦𝐵 (𝐾‘(𝐺𝑦)) < (𝐿𝑦)) ∧ 𝑥𝐴) → 𝑊 ∈ Proset )
6315ad2antrr 723 . . . . . 6 (((𝜑 ∧ ∀𝑦𝐵 (𝐾‘(𝐺𝑦)) < (𝐿𝑦)) ∧ 𝑥𝐴) → 𝐹𝐻𝐺)
645, 10, 11, 12, 13, 60, 62, 63, 51mgccole1 31268 . . . . 5 (((𝜑 ∧ ∀𝑦𝐵 (𝐾‘(𝐺𝑦)) < (𝐿𝑦)) ∧ 𝑥𝐴) → 𝑥 (𝐺‘(𝐹𝑥)))
655, 6, 11, 38, 60, 49, 61, 51, 56, 64ismntd 31262 . . . 4 (((𝜑 ∧ ∀𝑦𝐵 (𝐾‘(𝐺𝑦)) < (𝐿𝑦)) ∧ 𝑥𝐴) → (𝐾𝑥) < (𝐾‘(𝐺‘(𝐹𝑥))))
6624ffvelrnda 6961 . . . . . . 7 ((𝜑𝑥𝐴) → (𝐹𝑥) ∈ 𝐵)
67 2fveq3 6779 . . . . . . . . 9 (𝑦 = (𝐹𝑥) → (𝐾‘(𝐺𝑦)) = (𝐾‘(𝐺‘(𝐹𝑥))))
68 fveq2 6774 . . . . . . . . 9 (𝑦 = (𝐹𝑥) → (𝐿𝑦) = (𝐿‘(𝐹𝑥)))
6967, 68breq12d 5087 . . . . . . . 8 (𝑦 = (𝐹𝑥) → ((𝐾‘(𝐺𝑦)) < (𝐿𝑦) ↔ (𝐾‘(𝐺‘(𝐹𝑥))) < (𝐿‘(𝐹𝑥))))
7069adantl 482 . . . . . . 7 (((𝜑𝑥𝐴) ∧ 𝑦 = (𝐹𝑥)) → ((𝐾‘(𝐺𝑦)) < (𝐿𝑦) ↔ (𝐾‘(𝐺‘(𝐹𝑥))) < (𝐿‘(𝐹𝑥))))
7166, 70rspcdv 3553 . . . . . 6 ((𝜑𝑥𝐴) → (∀𝑦𝐵 (𝐾‘(𝐺𝑦)) < (𝐿𝑦) → (𝐾‘(𝐺‘(𝐹𝑥))) < (𝐿‘(𝐹𝑥))))
7271imp 407 . . . . 5 (((𝜑𝑥𝐴) ∧ ∀𝑦𝐵 (𝐾‘(𝐺𝑦)) < (𝐿𝑦)) → (𝐾‘(𝐺‘(𝐹𝑥))) < (𝐿‘(𝐹𝑥)))
7372an32s 649 . . . 4 (((𝜑 ∧ ∀𝑦𝐵 (𝐾‘(𝐺𝑦)) < (𝐿𝑦)) ∧ 𝑥𝐴) → (𝐾‘(𝐺‘(𝐹𝑥))) < (𝐿‘(𝐹𝑥)))
746, 38prstr 18018 . . . 4 ((𝑋 ∈ Proset ∧ ((𝐾𝑥) ∈ 𝐶 ∧ (𝐾‘(𝐺‘(𝐹𝑥))) ∈ 𝐶 ∧ (𝐿‘(𝐹𝑥)) ∈ 𝐶) ∧ ((𝐾𝑥) < (𝐾‘(𝐺‘(𝐹𝑥))) ∧ (𝐾‘(𝐺‘(𝐹𝑥))) < (𝐿‘(𝐹𝑥)))) → (𝐾𝑥) < (𝐿‘(𝐹𝑥)))
7549, 52, 57, 59, 65, 73, 74syl132anc 1387 . . 3 (((𝜑 ∧ ∀𝑦𝐵 (𝐾‘(𝐺𝑦)) < (𝐿𝑦)) ∧ 𝑥𝐴) → (𝐾𝑥) < (𝐿‘(𝐹𝑥)))
7675ralrimiva 3103 . 2 ((𝜑 ∧ ∀𝑦𝐵 (𝐾‘(𝐺𝑦)) < (𝐿𝑦)) → ∀𝑥𝐴 (𝐾𝑥) < (𝐿‘(𝐹𝑥)))
7748, 76impbida 798 1 (𝜑 → (∀𝑥𝐴 (𝐾𝑥) < (𝐿‘(𝐹𝑥)) ↔ ∀𝑦𝐵 (𝐾‘(𝐺𝑦)) < (𝐿𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wral 3064   class class class wbr 5074  wf 6429  cfv 6433  (class class class)co 7275  Basecbs 16912  lecple 16969   Proset cproset 18011  Monotcmnt 31256  MGalConncmgc 31257
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-map 8617  df-proset 18013  df-mnt 31258  df-mgc 31259
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator