Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mgcmntco Structured version   Visualization version   GIF version

Theorem mgcmntco 32920
Description: A Galois connection like statement, for two functions with same range. (Contributed by Thierry Arnoux, 26-Apr-2024.)
Hypotheses
Ref Expression
mgcoval.1 𝐴 = (Base‘𝑉)
mgcoval.2 𝐵 = (Base‘𝑊)
mgcoval.3 = (le‘𝑉)
mgcoval.4 = (le‘𝑊)
mgcval.1 𝐻 = (𝑉MGalConn𝑊)
mgcval.2 (𝜑𝑉 ∈ Proset )
mgcval.3 (𝜑𝑊 ∈ Proset )
mgccole.1 (𝜑𝐹𝐻𝐺)
mgcmntco.1 𝐶 = (Base‘𝑋)
mgcmntco.2 < = (le‘𝑋)
mgcmntco.3 (𝜑𝑋 ∈ Proset )
mgcmntco.4 (𝜑𝐾 ∈ (𝑉Monot𝑋))
mgcmntco.5 (𝜑𝐿 ∈ (𝑊Monot𝑋))
Assertion
Ref Expression
mgcmntco (𝜑 → (∀𝑥𝐴 (𝐾𝑥) < (𝐿‘(𝐹𝑥)) ↔ ∀𝑦𝐵 (𝐾‘(𝐺𝑦)) < (𝐿𝑦)))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑥,𝑉,𝑦   𝑥,𝑊,𝑦   𝑥,𝑋,𝑦   𝑥,𝐹,𝑦   𝑥,𝐺,𝑦   𝑥, < ,𝑦   𝑥,𝐾,𝑦   𝑥,𝐿,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐶(𝑥,𝑦)   𝐻(𝑥,𝑦)   (𝑥,𝑦)   (𝑥,𝑦)

Proof of Theorem mgcmntco
StepHypRef Expression
1 mgcmntco.3 . . . . 5 (𝜑𝑋 ∈ Proset )
21ad2antrr 726 . . . 4 (((𝜑 ∧ ∀𝑥𝐴 (𝐾𝑥) < (𝐿‘(𝐹𝑥))) ∧ 𝑦𝐵) → 𝑋 ∈ Proset )
3 mgcval.2 . . . . . . 7 (𝜑𝑉 ∈ Proset )
4 mgcmntco.4 . . . . . . 7 (𝜑𝐾 ∈ (𝑉Monot𝑋))
5 mgcoval.1 . . . . . . . 8 𝐴 = (Base‘𝑉)
6 mgcmntco.1 . . . . . . . 8 𝐶 = (Base‘𝑋)
75, 6mntf 32911 . . . . . . 7 ((𝑉 ∈ Proset ∧ 𝑋 ∈ Proset ∧ 𝐾 ∈ (𝑉Monot𝑋)) → 𝐾:𝐴𝐶)
83, 1, 4, 7syl3anc 1373 . . . . . 6 (𝜑𝐾:𝐴𝐶)
98ad2antrr 726 . . . . 5 (((𝜑 ∧ ∀𝑥𝐴 (𝐾𝑥) < (𝐿‘(𝐹𝑥))) ∧ 𝑦𝐵) → 𝐾:𝐴𝐶)
10 mgcoval.2 . . . . . . . 8 𝐵 = (Base‘𝑊)
11 mgcoval.3 . . . . . . . 8 = (le‘𝑉)
12 mgcoval.4 . . . . . . . 8 = (le‘𝑊)
13 mgcval.1 . . . . . . . 8 𝐻 = (𝑉MGalConn𝑊)
14 mgcval.3 . . . . . . . 8 (𝜑𝑊 ∈ Proset )
15 mgccole.1 . . . . . . . 8 (𝜑𝐹𝐻𝐺)
165, 10, 11, 12, 13, 3, 14, 15mgcf2 32915 . . . . . . 7 (𝜑𝐺:𝐵𝐴)
1716adantr 480 . . . . . 6 ((𝜑 ∧ ∀𝑥𝐴 (𝐾𝑥) < (𝐿‘(𝐹𝑥))) → 𝐺:𝐵𝐴)
1817ffvelcdmda 7056 . . . . 5 (((𝜑 ∧ ∀𝑥𝐴 (𝐾𝑥) < (𝐿‘(𝐹𝑥))) ∧ 𝑦𝐵) → (𝐺𝑦) ∈ 𝐴)
199, 18ffvelcdmd 7057 . . . 4 (((𝜑 ∧ ∀𝑥𝐴 (𝐾𝑥) < (𝐿‘(𝐹𝑥))) ∧ 𝑦𝐵) → (𝐾‘(𝐺𝑦)) ∈ 𝐶)
20 mgcmntco.5 . . . . . . 7 (𝜑𝐿 ∈ (𝑊Monot𝑋))
2110, 6mntf 32911 . . . . . . 7 ((𝑊 ∈ Proset ∧ 𝑋 ∈ Proset ∧ 𝐿 ∈ (𝑊Monot𝑋)) → 𝐿:𝐵𝐶)
2214, 1, 20, 21syl3anc 1373 . . . . . 6 (𝜑𝐿:𝐵𝐶)
2322ad2antrr 726 . . . . 5 (((𝜑 ∧ ∀𝑥𝐴 (𝐾𝑥) < (𝐿‘(𝐹𝑥))) ∧ 𝑦𝐵) → 𝐿:𝐵𝐶)
245, 10, 11, 12, 13, 3, 14, 15mgcf1 32914 . . . . . . 7 (𝜑𝐹:𝐴𝐵)
2524ad2antrr 726 . . . . . 6 (((𝜑 ∧ ∀𝑥𝐴 (𝐾𝑥) < (𝐿‘(𝐹𝑥))) ∧ 𝑦𝐵) → 𝐹:𝐴𝐵)
2625, 18ffvelcdmd 7057 . . . . 5 (((𝜑 ∧ ∀𝑥𝐴 (𝐾𝑥) < (𝐿‘(𝐹𝑥))) ∧ 𝑦𝐵) → (𝐹‘(𝐺𝑦)) ∈ 𝐵)
2723, 26ffvelcdmd 7057 . . . 4 (((𝜑 ∧ ∀𝑥𝐴 (𝐾𝑥) < (𝐿‘(𝐹𝑥))) ∧ 𝑦𝐵) → (𝐿‘(𝐹‘(𝐺𝑦))) ∈ 𝐶)
2822adantr 480 . . . . 5 ((𝜑 ∧ ∀𝑥𝐴 (𝐾𝑥) < (𝐿‘(𝐹𝑥))) → 𝐿:𝐵𝐶)
2928ffvelcdmda 7056 . . . 4 (((𝜑 ∧ ∀𝑥𝐴 (𝐾𝑥) < (𝐿‘(𝐹𝑥))) ∧ 𝑦𝐵) → (𝐿𝑦) ∈ 𝐶)
3016ffvelcdmda 7056 . . . . . . 7 ((𝜑𝑦𝐵) → (𝐺𝑦) ∈ 𝐴)
31 fveq2 6858 . . . . . . . . 9 (𝑥 = (𝐺𝑦) → (𝐾𝑥) = (𝐾‘(𝐺𝑦)))
32 2fveq3 6863 . . . . . . . . 9 (𝑥 = (𝐺𝑦) → (𝐿‘(𝐹𝑥)) = (𝐿‘(𝐹‘(𝐺𝑦))))
3331, 32breq12d 5120 . . . . . . . 8 (𝑥 = (𝐺𝑦) → ((𝐾𝑥) < (𝐿‘(𝐹𝑥)) ↔ (𝐾‘(𝐺𝑦)) < (𝐿‘(𝐹‘(𝐺𝑦)))))
3433adantl 481 . . . . . . 7 (((𝜑𝑦𝐵) ∧ 𝑥 = (𝐺𝑦)) → ((𝐾𝑥) < (𝐿‘(𝐹𝑥)) ↔ (𝐾‘(𝐺𝑦)) < (𝐿‘(𝐹‘(𝐺𝑦)))))
3530, 34rspcdv 3580 . . . . . 6 ((𝜑𝑦𝐵) → (∀𝑥𝐴 (𝐾𝑥) < (𝐿‘(𝐹𝑥)) → (𝐾‘(𝐺𝑦)) < (𝐿‘(𝐹‘(𝐺𝑦)))))
3635imp 406 . . . . 5 (((𝜑𝑦𝐵) ∧ ∀𝑥𝐴 (𝐾𝑥) < (𝐿‘(𝐹𝑥))) → (𝐾‘(𝐺𝑦)) < (𝐿‘(𝐹‘(𝐺𝑦))))
3736an32s 652 . . . 4 (((𝜑 ∧ ∀𝑥𝐴 (𝐾𝑥) < (𝐿‘(𝐹𝑥))) ∧ 𝑦𝐵) → (𝐾‘(𝐺𝑦)) < (𝐿‘(𝐹‘(𝐺𝑦))))
38 mgcmntco.2 . . . . 5 < = (le‘𝑋)
3914ad2antrr 726 . . . . 5 (((𝜑 ∧ ∀𝑥𝐴 (𝐾𝑥) < (𝐿‘(𝐹𝑥))) ∧ 𝑦𝐵) → 𝑊 ∈ Proset )
4020ad2antrr 726 . . . . 5 (((𝜑 ∧ ∀𝑥𝐴 (𝐾𝑥) < (𝐿‘(𝐹𝑥))) ∧ 𝑦𝐵) → 𝐿 ∈ (𝑊Monot𝑋))
41 simpr 484 . . . . 5 (((𝜑 ∧ ∀𝑥𝐴 (𝐾𝑥) < (𝐿‘(𝐹𝑥))) ∧ 𝑦𝐵) → 𝑦𝐵)
423ad2antrr 726 . . . . . 6 (((𝜑 ∧ ∀𝑥𝐴 (𝐾𝑥) < (𝐿‘(𝐹𝑥))) ∧ 𝑦𝐵) → 𝑉 ∈ Proset )
4315ad2antrr 726 . . . . . 6 (((𝜑 ∧ ∀𝑥𝐴 (𝐾𝑥) < (𝐿‘(𝐹𝑥))) ∧ 𝑦𝐵) → 𝐹𝐻𝐺)
445, 10, 11, 12, 13, 42, 39, 43, 41mgccole2 32917 . . . . 5 (((𝜑 ∧ ∀𝑥𝐴 (𝐾𝑥) < (𝐿‘(𝐹𝑥))) ∧ 𝑦𝐵) → (𝐹‘(𝐺𝑦)) 𝑦)
4510, 6, 12, 38, 39, 2, 40, 26, 41, 44ismntd 32910 . . . 4 (((𝜑 ∧ ∀𝑥𝐴 (𝐾𝑥) < (𝐿‘(𝐹𝑥))) ∧ 𝑦𝐵) → (𝐿‘(𝐹‘(𝐺𝑦))) < (𝐿𝑦))
466, 38prstr 18260 . . . 4 ((𝑋 ∈ Proset ∧ ((𝐾‘(𝐺𝑦)) ∈ 𝐶 ∧ (𝐿‘(𝐹‘(𝐺𝑦))) ∈ 𝐶 ∧ (𝐿𝑦) ∈ 𝐶) ∧ ((𝐾‘(𝐺𝑦)) < (𝐿‘(𝐹‘(𝐺𝑦))) ∧ (𝐿‘(𝐹‘(𝐺𝑦))) < (𝐿𝑦))) → (𝐾‘(𝐺𝑦)) < (𝐿𝑦))
472, 19, 27, 29, 37, 45, 46syl132anc 1390 . . 3 (((𝜑 ∧ ∀𝑥𝐴 (𝐾𝑥) < (𝐿‘(𝐹𝑥))) ∧ 𝑦𝐵) → (𝐾‘(𝐺𝑦)) < (𝐿𝑦))
4847ralrimiva 3125 . 2 ((𝜑 ∧ ∀𝑥𝐴 (𝐾𝑥) < (𝐿‘(𝐹𝑥))) → ∀𝑦𝐵 (𝐾‘(𝐺𝑦)) < (𝐿𝑦))
491ad2antrr 726 . . . 4 (((𝜑 ∧ ∀𝑦𝐵 (𝐾‘(𝐺𝑦)) < (𝐿𝑦)) ∧ 𝑥𝐴) → 𝑋 ∈ Proset )
508ad2antrr 726 . . . . 5 (((𝜑 ∧ ∀𝑦𝐵 (𝐾‘(𝐺𝑦)) < (𝐿𝑦)) ∧ 𝑥𝐴) → 𝐾:𝐴𝐶)
51 simpr 484 . . . . 5 (((𝜑 ∧ ∀𝑦𝐵 (𝐾‘(𝐺𝑦)) < (𝐿𝑦)) ∧ 𝑥𝐴) → 𝑥𝐴)
5250, 51ffvelcdmd 7057 . . . 4 (((𝜑 ∧ ∀𝑦𝐵 (𝐾‘(𝐺𝑦)) < (𝐿𝑦)) ∧ 𝑥𝐴) → (𝐾𝑥) ∈ 𝐶)
5316ad2antrr 726 . . . . . 6 (((𝜑 ∧ ∀𝑦𝐵 (𝐾‘(𝐺𝑦)) < (𝐿𝑦)) ∧ 𝑥𝐴) → 𝐺:𝐵𝐴)
5424adantr 480 . . . . . . 7 ((𝜑 ∧ ∀𝑦𝐵 (𝐾‘(𝐺𝑦)) < (𝐿𝑦)) → 𝐹:𝐴𝐵)
5554ffvelcdmda 7056 . . . . . 6 (((𝜑 ∧ ∀𝑦𝐵 (𝐾‘(𝐺𝑦)) < (𝐿𝑦)) ∧ 𝑥𝐴) → (𝐹𝑥) ∈ 𝐵)
5653, 55ffvelcdmd 7057 . . . . 5 (((𝜑 ∧ ∀𝑦𝐵 (𝐾‘(𝐺𝑦)) < (𝐿𝑦)) ∧ 𝑥𝐴) → (𝐺‘(𝐹𝑥)) ∈ 𝐴)
5750, 56ffvelcdmd 7057 . . . 4 (((𝜑 ∧ ∀𝑦𝐵 (𝐾‘(𝐺𝑦)) < (𝐿𝑦)) ∧ 𝑥𝐴) → (𝐾‘(𝐺‘(𝐹𝑥))) ∈ 𝐶)
5822ad2antrr 726 . . . . 5 (((𝜑 ∧ ∀𝑦𝐵 (𝐾‘(𝐺𝑦)) < (𝐿𝑦)) ∧ 𝑥𝐴) → 𝐿:𝐵𝐶)
5958, 55ffvelcdmd 7057 . . . 4 (((𝜑 ∧ ∀𝑦𝐵 (𝐾‘(𝐺𝑦)) < (𝐿𝑦)) ∧ 𝑥𝐴) → (𝐿‘(𝐹𝑥)) ∈ 𝐶)
603ad2antrr 726 . . . . 5 (((𝜑 ∧ ∀𝑦𝐵 (𝐾‘(𝐺𝑦)) < (𝐿𝑦)) ∧ 𝑥𝐴) → 𝑉 ∈ Proset )
614ad2antrr 726 . . . . 5 (((𝜑 ∧ ∀𝑦𝐵 (𝐾‘(𝐺𝑦)) < (𝐿𝑦)) ∧ 𝑥𝐴) → 𝐾 ∈ (𝑉Monot𝑋))
6214ad2antrr 726 . . . . . 6 (((𝜑 ∧ ∀𝑦𝐵 (𝐾‘(𝐺𝑦)) < (𝐿𝑦)) ∧ 𝑥𝐴) → 𝑊 ∈ Proset )
6315ad2antrr 726 . . . . . 6 (((𝜑 ∧ ∀𝑦𝐵 (𝐾‘(𝐺𝑦)) < (𝐿𝑦)) ∧ 𝑥𝐴) → 𝐹𝐻𝐺)
645, 10, 11, 12, 13, 60, 62, 63, 51mgccole1 32916 . . . . 5 (((𝜑 ∧ ∀𝑦𝐵 (𝐾‘(𝐺𝑦)) < (𝐿𝑦)) ∧ 𝑥𝐴) → 𝑥 (𝐺‘(𝐹𝑥)))
655, 6, 11, 38, 60, 49, 61, 51, 56, 64ismntd 32910 . . . 4 (((𝜑 ∧ ∀𝑦𝐵 (𝐾‘(𝐺𝑦)) < (𝐿𝑦)) ∧ 𝑥𝐴) → (𝐾𝑥) < (𝐾‘(𝐺‘(𝐹𝑥))))
6624ffvelcdmda 7056 . . . . . . 7 ((𝜑𝑥𝐴) → (𝐹𝑥) ∈ 𝐵)
67 2fveq3 6863 . . . . . . . . 9 (𝑦 = (𝐹𝑥) → (𝐾‘(𝐺𝑦)) = (𝐾‘(𝐺‘(𝐹𝑥))))
68 fveq2 6858 . . . . . . . . 9 (𝑦 = (𝐹𝑥) → (𝐿𝑦) = (𝐿‘(𝐹𝑥)))
6967, 68breq12d 5120 . . . . . . . 8 (𝑦 = (𝐹𝑥) → ((𝐾‘(𝐺𝑦)) < (𝐿𝑦) ↔ (𝐾‘(𝐺‘(𝐹𝑥))) < (𝐿‘(𝐹𝑥))))
7069adantl 481 . . . . . . 7 (((𝜑𝑥𝐴) ∧ 𝑦 = (𝐹𝑥)) → ((𝐾‘(𝐺𝑦)) < (𝐿𝑦) ↔ (𝐾‘(𝐺‘(𝐹𝑥))) < (𝐿‘(𝐹𝑥))))
7166, 70rspcdv 3580 . . . . . 6 ((𝜑𝑥𝐴) → (∀𝑦𝐵 (𝐾‘(𝐺𝑦)) < (𝐿𝑦) → (𝐾‘(𝐺‘(𝐹𝑥))) < (𝐿‘(𝐹𝑥))))
7271imp 406 . . . . 5 (((𝜑𝑥𝐴) ∧ ∀𝑦𝐵 (𝐾‘(𝐺𝑦)) < (𝐿𝑦)) → (𝐾‘(𝐺‘(𝐹𝑥))) < (𝐿‘(𝐹𝑥)))
7372an32s 652 . . . 4 (((𝜑 ∧ ∀𝑦𝐵 (𝐾‘(𝐺𝑦)) < (𝐿𝑦)) ∧ 𝑥𝐴) → (𝐾‘(𝐺‘(𝐹𝑥))) < (𝐿‘(𝐹𝑥)))
746, 38prstr 18260 . . . 4 ((𝑋 ∈ Proset ∧ ((𝐾𝑥) ∈ 𝐶 ∧ (𝐾‘(𝐺‘(𝐹𝑥))) ∈ 𝐶 ∧ (𝐿‘(𝐹𝑥)) ∈ 𝐶) ∧ ((𝐾𝑥) < (𝐾‘(𝐺‘(𝐹𝑥))) ∧ (𝐾‘(𝐺‘(𝐹𝑥))) < (𝐿‘(𝐹𝑥)))) → (𝐾𝑥) < (𝐿‘(𝐹𝑥)))
7549, 52, 57, 59, 65, 73, 74syl132anc 1390 . . 3 (((𝜑 ∧ ∀𝑦𝐵 (𝐾‘(𝐺𝑦)) < (𝐿𝑦)) ∧ 𝑥𝐴) → (𝐾𝑥) < (𝐿‘(𝐹𝑥)))
7675ralrimiva 3125 . 2 ((𝜑 ∧ ∀𝑦𝐵 (𝐾‘(𝐺𝑦)) < (𝐿𝑦)) → ∀𝑥𝐴 (𝐾𝑥) < (𝐿‘(𝐹𝑥)))
7748, 76impbida 800 1 (𝜑 → (∀𝑥𝐴 (𝐾𝑥) < (𝐿‘(𝐹𝑥)) ↔ ∀𝑦𝐵 (𝐾‘(𝐺𝑦)) < (𝐿𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044   class class class wbr 5107  wf 6507  cfv 6511  (class class class)co 7387  Basecbs 17179  lecple 17227   Proset cproset 18253  Monotcmnt 32904  MGalConncmgc 32905
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-map 8801  df-proset 18255  df-mnt 32906  df-mgc 32907
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator