Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mgcmnt2 Structured version   Visualization version   GIF version

Theorem mgcmnt2 32926
Description: The upper adjoint 𝐺 of a Galois connection is monotonically increasing. (Contributed by Thierry Arnoux, 26-Apr-2024.)
Hypotheses
Ref Expression
mgcoval.1 𝐴 = (Base‘𝑉)
mgcoval.2 𝐵 = (Base‘𝑊)
mgcoval.3 = (le‘𝑉)
mgcoval.4 = (le‘𝑊)
mgcval.1 𝐻 = (𝑉MGalConn𝑊)
mgcval.2 (𝜑𝑉 ∈ Proset )
mgcval.3 (𝜑𝑊 ∈ Proset )
mgccole.1 (𝜑𝐹𝐻𝐺)
mgcmnt2.1 (𝜑𝑋𝐵)
mgcmnt2.2 (𝜑𝑌𝐵)
mgcmnt2.3 (𝜑𝑋 𝑌)
Assertion
Ref Expression
mgcmnt2 (𝜑 → (𝐺𝑋) (𝐺𝑌))

Proof of Theorem mgcmnt2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mgcval.3 . . 3 (𝜑𝑊 ∈ Proset )
2 mgccole.1 . . . . . 6 (𝜑𝐹𝐻𝐺)
3 mgcoval.1 . . . . . . 7 𝐴 = (Base‘𝑉)
4 mgcoval.2 . . . . . . 7 𝐵 = (Base‘𝑊)
5 mgcoval.3 . . . . . . 7 = (le‘𝑉)
6 mgcoval.4 . . . . . . 7 = (le‘𝑊)
7 mgcval.1 . . . . . . 7 𝐻 = (𝑉MGalConn𝑊)
8 mgcval.2 . . . . . . 7 (𝜑𝑉 ∈ Proset )
93, 4, 5, 6, 7, 8, 1mgcval 32920 . . . . . 6 (𝜑 → (𝐹𝐻𝐺 ↔ ((𝐹:𝐴𝐵𝐺:𝐵𝐴) ∧ ∀𝑥𝐴𝑦𝐵 ((𝐹𝑥) 𝑦𝑥 (𝐺𝑦)))))
102, 9mpbid 232 . . . . 5 (𝜑 → ((𝐹:𝐴𝐵𝐺:𝐵𝐴) ∧ ∀𝑥𝐴𝑦𝐵 ((𝐹𝑥) 𝑦𝑥 (𝐺𝑦))))
1110simplld 767 . . . 4 (𝜑𝐹:𝐴𝐵)
1210simplrd 769 . . . . 5 (𝜑𝐺:𝐵𝐴)
13 mgcmnt2.1 . . . . 5 (𝜑𝑋𝐵)
1412, 13ffvelcdmd 7060 . . . 4 (𝜑 → (𝐺𝑋) ∈ 𝐴)
1511, 14ffvelcdmd 7060 . . 3 (𝜑 → (𝐹‘(𝐺𝑋)) ∈ 𝐵)
16 mgcmnt2.2 . . 3 (𝜑𝑌𝐵)
173, 4, 5, 6, 7, 8, 1, 2, 13mgccole2 32924 . . 3 (𝜑 → (𝐹‘(𝐺𝑋)) 𝑋)
18 mgcmnt2.3 . . 3 (𝜑𝑋 𝑌)
194, 6prstr 18267 . . 3 ((𝑊 ∈ Proset ∧ ((𝐹‘(𝐺𝑋)) ∈ 𝐵𝑋𝐵𝑌𝐵) ∧ ((𝐹‘(𝐺𝑋)) 𝑋𝑋 𝑌)) → (𝐹‘(𝐺𝑋)) 𝑌)
201, 15, 13, 16, 17, 18, 19syl132anc 1390 . 2 (𝜑 → (𝐹‘(𝐺𝑋)) 𝑌)
21 breq2 5114 . . . 4 (𝑦 = 𝑌 → ((𝐹‘(𝐺𝑋)) 𝑦 ↔ (𝐹‘(𝐺𝑋)) 𝑌))
22 fveq2 6861 . . . . 5 (𝑦 = 𝑌 → (𝐺𝑦) = (𝐺𝑌))
2322breq2d 5122 . . . 4 (𝑦 = 𝑌 → ((𝐺𝑋) (𝐺𝑦) ↔ (𝐺𝑋) (𝐺𝑌)))
2421, 23bibi12d 345 . . 3 (𝑦 = 𝑌 → (((𝐹‘(𝐺𝑋)) 𝑦 ↔ (𝐺𝑋) (𝐺𝑦)) ↔ ((𝐹‘(𝐺𝑋)) 𝑌 ↔ (𝐺𝑋) (𝐺𝑌))))
25 fveq2 6861 . . . . . . 7 (𝑥 = (𝐺𝑋) → (𝐹𝑥) = (𝐹‘(𝐺𝑋)))
2625breq1d 5120 . . . . . 6 (𝑥 = (𝐺𝑋) → ((𝐹𝑥) 𝑦 ↔ (𝐹‘(𝐺𝑋)) 𝑦))
27 breq1 5113 . . . . . 6 (𝑥 = (𝐺𝑋) → (𝑥 (𝐺𝑦) ↔ (𝐺𝑋) (𝐺𝑦)))
2826, 27bibi12d 345 . . . . 5 (𝑥 = (𝐺𝑋) → (((𝐹𝑥) 𝑦𝑥 (𝐺𝑦)) ↔ ((𝐹‘(𝐺𝑋)) 𝑦 ↔ (𝐺𝑋) (𝐺𝑦))))
2928ralbidv 3157 . . . 4 (𝑥 = (𝐺𝑋) → (∀𝑦𝐵 ((𝐹𝑥) 𝑦𝑥 (𝐺𝑦)) ↔ ∀𝑦𝐵 ((𝐹‘(𝐺𝑋)) 𝑦 ↔ (𝐺𝑋) (𝐺𝑦))))
3010simprd 495 . . . 4 (𝜑 → ∀𝑥𝐴𝑦𝐵 ((𝐹𝑥) 𝑦𝑥 (𝐺𝑦)))
3129, 30, 14rspcdva 3592 . . 3 (𝜑 → ∀𝑦𝐵 ((𝐹‘(𝐺𝑋)) 𝑦 ↔ (𝐺𝑋) (𝐺𝑦)))
3224, 31, 16rspcdva 3592 . 2 (𝜑 → ((𝐹‘(𝐺𝑋)) 𝑌 ↔ (𝐺𝑋) (𝐺𝑌)))
3320, 32mpbid 232 1 (𝜑 → (𝐺𝑋) (𝐺𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3045   class class class wbr 5110  wf 6510  cfv 6514  (class class class)co 7390  Basecbs 17186  lecple 17234   Proset cproset 18260  MGalConncmgc 32912
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-map 8804  df-proset 18262  df-mgc 32914
This theorem is referenced by:  dfmgc2  32929  mgcf1olem2  32935
  Copyright terms: Public domain W3C validator