Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mgcmnt2 Structured version   Visualization version   GIF version

Theorem mgcmnt2 32922
Description: The upper adjoint 𝐺 of a Galois connection is monotonically increasing. (Contributed by Thierry Arnoux, 26-Apr-2024.)
Hypotheses
Ref Expression
mgcoval.1 𝐴 = (Base‘𝑉)
mgcoval.2 𝐵 = (Base‘𝑊)
mgcoval.3 = (le‘𝑉)
mgcoval.4 = (le‘𝑊)
mgcval.1 𝐻 = (𝑉MGalConn𝑊)
mgcval.2 (𝜑𝑉 ∈ Proset )
mgcval.3 (𝜑𝑊 ∈ Proset )
mgccole.1 (𝜑𝐹𝐻𝐺)
mgcmnt2.1 (𝜑𝑋𝐵)
mgcmnt2.2 (𝜑𝑌𝐵)
mgcmnt2.3 (𝜑𝑋 𝑌)
Assertion
Ref Expression
mgcmnt2 (𝜑 → (𝐺𝑋) (𝐺𝑌))

Proof of Theorem mgcmnt2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mgcval.3 . . 3 (𝜑𝑊 ∈ Proset )
2 mgccole.1 . . . . . 6 (𝜑𝐹𝐻𝐺)
3 mgcoval.1 . . . . . . 7 𝐴 = (Base‘𝑉)
4 mgcoval.2 . . . . . . 7 𝐵 = (Base‘𝑊)
5 mgcoval.3 . . . . . . 7 = (le‘𝑉)
6 mgcoval.4 . . . . . . 7 = (le‘𝑊)
7 mgcval.1 . . . . . . 7 𝐻 = (𝑉MGalConn𝑊)
8 mgcval.2 . . . . . . 7 (𝜑𝑉 ∈ Proset )
93, 4, 5, 6, 7, 8, 1mgcval 32916 . . . . . 6 (𝜑 → (𝐹𝐻𝐺 ↔ ((𝐹:𝐴𝐵𝐺:𝐵𝐴) ∧ ∀𝑥𝐴𝑦𝐵 ((𝐹𝑥) 𝑦𝑥 (𝐺𝑦)))))
102, 9mpbid 232 . . . . 5 (𝜑 → ((𝐹:𝐴𝐵𝐺:𝐵𝐴) ∧ ∀𝑥𝐴𝑦𝐵 ((𝐹𝑥) 𝑦𝑥 (𝐺𝑦))))
1110simplld 767 . . . 4 (𝜑𝐹:𝐴𝐵)
1210simplrd 769 . . . . 5 (𝜑𝐺:𝐵𝐴)
13 mgcmnt2.1 . . . . 5 (𝜑𝑋𝐵)
1412, 13ffvelcdmd 7085 . . . 4 (𝜑 → (𝐺𝑋) ∈ 𝐴)
1511, 14ffvelcdmd 7085 . . 3 (𝜑 → (𝐹‘(𝐺𝑋)) ∈ 𝐵)
16 mgcmnt2.2 . . 3 (𝜑𝑌𝐵)
173, 4, 5, 6, 7, 8, 1, 2, 13mgccole2 32920 . . 3 (𝜑 → (𝐹‘(𝐺𝑋)) 𝑋)
18 mgcmnt2.3 . . 3 (𝜑𝑋 𝑌)
194, 6prstr 18315 . . 3 ((𝑊 ∈ Proset ∧ ((𝐹‘(𝐺𝑋)) ∈ 𝐵𝑋𝐵𝑌𝐵) ∧ ((𝐹‘(𝐺𝑋)) 𝑋𝑋 𝑌)) → (𝐹‘(𝐺𝑋)) 𝑌)
201, 15, 13, 16, 17, 18, 19syl132anc 1389 . 2 (𝜑 → (𝐹‘(𝐺𝑋)) 𝑌)
21 breq2 5127 . . . 4 (𝑦 = 𝑌 → ((𝐹‘(𝐺𝑋)) 𝑦 ↔ (𝐹‘(𝐺𝑋)) 𝑌))
22 fveq2 6886 . . . . 5 (𝑦 = 𝑌 → (𝐺𝑦) = (𝐺𝑌))
2322breq2d 5135 . . . 4 (𝑦 = 𝑌 → ((𝐺𝑋) (𝐺𝑦) ↔ (𝐺𝑋) (𝐺𝑌)))
2421, 23bibi12d 345 . . 3 (𝑦 = 𝑌 → (((𝐹‘(𝐺𝑋)) 𝑦 ↔ (𝐺𝑋) (𝐺𝑦)) ↔ ((𝐹‘(𝐺𝑋)) 𝑌 ↔ (𝐺𝑋) (𝐺𝑌))))
25 fveq2 6886 . . . . . . 7 (𝑥 = (𝐺𝑋) → (𝐹𝑥) = (𝐹‘(𝐺𝑋)))
2625breq1d 5133 . . . . . 6 (𝑥 = (𝐺𝑋) → ((𝐹𝑥) 𝑦 ↔ (𝐹‘(𝐺𝑋)) 𝑦))
27 breq1 5126 . . . . . 6 (𝑥 = (𝐺𝑋) → (𝑥 (𝐺𝑦) ↔ (𝐺𝑋) (𝐺𝑦)))
2826, 27bibi12d 345 . . . . 5 (𝑥 = (𝐺𝑋) → (((𝐹𝑥) 𝑦𝑥 (𝐺𝑦)) ↔ ((𝐹‘(𝐺𝑋)) 𝑦 ↔ (𝐺𝑋) (𝐺𝑦))))
2928ralbidv 3165 . . . 4 (𝑥 = (𝐺𝑋) → (∀𝑦𝐵 ((𝐹𝑥) 𝑦𝑥 (𝐺𝑦)) ↔ ∀𝑦𝐵 ((𝐹‘(𝐺𝑋)) 𝑦 ↔ (𝐺𝑋) (𝐺𝑦))))
3010simprd 495 . . . 4 (𝜑 → ∀𝑥𝐴𝑦𝐵 ((𝐹𝑥) 𝑦𝑥 (𝐺𝑦)))
3129, 30, 14rspcdva 3606 . . 3 (𝜑 → ∀𝑦𝐵 ((𝐹‘(𝐺𝑋)) 𝑦 ↔ (𝐺𝑋) (𝐺𝑦)))
3224, 31, 16rspcdva 3606 . 2 (𝜑 → ((𝐹‘(𝐺𝑋)) 𝑌 ↔ (𝐺𝑋) (𝐺𝑌)))
3320, 32mpbid 232 1 (𝜑 → (𝐺𝑋) (𝐺𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107  wral 3050   class class class wbr 5123  wf 6537  cfv 6541  (class class class)co 7413  Basecbs 17229  lecple 17280   Proset cproset 18308  MGalConncmgc 32908
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-br 5124  df-opab 5186  df-id 5558  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-fv 6549  df-ov 7416  df-oprab 7417  df-mpo 7418  df-map 8850  df-proset 18310  df-mgc 32910
This theorem is referenced by:  dfmgc2  32925  mgcf1olem2  32931
  Copyright terms: Public domain W3C validator