Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mgcmnt2 Structured version   Visualization version   GIF version

Theorem mgcmnt2 32595
Description: The upper adjoint 𝐺 of a Galois connection is monotonically increasing. (Contributed by Thierry Arnoux, 26-Apr-2024.)
Hypotheses
Ref Expression
mgcoval.1 𝐴 = (Base‘𝑉)
mgcoval.2 𝐵 = (Base‘𝑊)
mgcoval.3 = (le‘𝑉)
mgcoval.4 = (le‘𝑊)
mgcval.1 𝐻 = (𝑉MGalConn𝑊)
mgcval.2 (𝜑𝑉 ∈ Proset )
mgcval.3 (𝜑𝑊 ∈ Proset )
mgccole.1 (𝜑𝐹𝐻𝐺)
mgcmnt2.1 (𝜑𝑋𝐵)
mgcmnt2.2 (𝜑𝑌𝐵)
mgcmnt2.3 (𝜑𝑋 𝑌)
Assertion
Ref Expression
mgcmnt2 (𝜑 → (𝐺𝑋) (𝐺𝑌))

Proof of Theorem mgcmnt2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mgcval.3 . . 3 (𝜑𝑊 ∈ Proset )
2 mgccole.1 . . . . . 6 (𝜑𝐹𝐻𝐺)
3 mgcoval.1 . . . . . . 7 𝐴 = (Base‘𝑉)
4 mgcoval.2 . . . . . . 7 𝐵 = (Base‘𝑊)
5 mgcoval.3 . . . . . . 7 = (le‘𝑉)
6 mgcoval.4 . . . . . . 7 = (le‘𝑊)
7 mgcval.1 . . . . . . 7 𝐻 = (𝑉MGalConn𝑊)
8 mgcval.2 . . . . . . 7 (𝜑𝑉 ∈ Proset )
93, 4, 5, 6, 7, 8, 1mgcval 32589 . . . . . 6 (𝜑 → (𝐹𝐻𝐺 ↔ ((𝐹:𝐴𝐵𝐺:𝐵𝐴) ∧ ∀𝑥𝐴𝑦𝐵 ((𝐹𝑥) 𝑦𝑥 (𝐺𝑦)))))
102, 9mpbid 231 . . . . 5 (𝜑 → ((𝐹:𝐴𝐵𝐺:𝐵𝐴) ∧ ∀𝑥𝐴𝑦𝐵 ((𝐹𝑥) 𝑦𝑥 (𝐺𝑦))))
1110simplld 765 . . . 4 (𝜑𝐹:𝐴𝐵)
1210simplrd 767 . . . . 5 (𝜑𝐺:𝐵𝐴)
13 mgcmnt2.1 . . . . 5 (𝜑𝑋𝐵)
1412, 13ffvelcdmd 7087 . . . 4 (𝜑 → (𝐺𝑋) ∈ 𝐴)
1511, 14ffvelcdmd 7087 . . 3 (𝜑 → (𝐹‘(𝐺𝑋)) ∈ 𝐵)
16 mgcmnt2.2 . . 3 (𝜑𝑌𝐵)
173, 4, 5, 6, 7, 8, 1, 2, 13mgccole2 32593 . . 3 (𝜑 → (𝐹‘(𝐺𝑋)) 𝑋)
18 mgcmnt2.3 . . 3 (𝜑𝑋 𝑌)
194, 6prstr 18263 . . 3 ((𝑊 ∈ Proset ∧ ((𝐹‘(𝐺𝑋)) ∈ 𝐵𝑋𝐵𝑌𝐵) ∧ ((𝐹‘(𝐺𝑋)) 𝑋𝑋 𝑌)) → (𝐹‘(𝐺𝑋)) 𝑌)
201, 15, 13, 16, 17, 18, 19syl132anc 1387 . 2 (𝜑 → (𝐹‘(𝐺𝑋)) 𝑌)
21 breq2 5152 . . . 4 (𝑦 = 𝑌 → ((𝐹‘(𝐺𝑋)) 𝑦 ↔ (𝐹‘(𝐺𝑋)) 𝑌))
22 fveq2 6891 . . . . 5 (𝑦 = 𝑌 → (𝐺𝑦) = (𝐺𝑌))
2322breq2d 5160 . . . 4 (𝑦 = 𝑌 → ((𝐺𝑋) (𝐺𝑦) ↔ (𝐺𝑋) (𝐺𝑌)))
2421, 23bibi12d 345 . . 3 (𝑦 = 𝑌 → (((𝐹‘(𝐺𝑋)) 𝑦 ↔ (𝐺𝑋) (𝐺𝑦)) ↔ ((𝐹‘(𝐺𝑋)) 𝑌 ↔ (𝐺𝑋) (𝐺𝑌))))
25 fveq2 6891 . . . . . . 7 (𝑥 = (𝐺𝑋) → (𝐹𝑥) = (𝐹‘(𝐺𝑋)))
2625breq1d 5158 . . . . . 6 (𝑥 = (𝐺𝑋) → ((𝐹𝑥) 𝑦 ↔ (𝐹‘(𝐺𝑋)) 𝑦))
27 breq1 5151 . . . . . 6 (𝑥 = (𝐺𝑋) → (𝑥 (𝐺𝑦) ↔ (𝐺𝑋) (𝐺𝑦)))
2826, 27bibi12d 345 . . . . 5 (𝑥 = (𝐺𝑋) → (((𝐹𝑥) 𝑦𝑥 (𝐺𝑦)) ↔ ((𝐹‘(𝐺𝑋)) 𝑦 ↔ (𝐺𝑋) (𝐺𝑦))))
2928ralbidv 3176 . . . 4 (𝑥 = (𝐺𝑋) → (∀𝑦𝐵 ((𝐹𝑥) 𝑦𝑥 (𝐺𝑦)) ↔ ∀𝑦𝐵 ((𝐹‘(𝐺𝑋)) 𝑦 ↔ (𝐺𝑋) (𝐺𝑦))))
3010simprd 495 . . . 4 (𝜑 → ∀𝑥𝐴𝑦𝐵 ((𝐹𝑥) 𝑦𝑥 (𝐺𝑦)))
3129, 30, 14rspcdva 3613 . . 3 (𝜑 → ∀𝑦𝐵 ((𝐹‘(𝐺𝑋)) 𝑦 ↔ (𝐺𝑋) (𝐺𝑦)))
3224, 31, 16rspcdva 3613 . 2 (𝜑 → ((𝐹‘(𝐺𝑋)) 𝑌 ↔ (𝐺𝑋) (𝐺𝑌)))
3320, 32mpbid 231 1 (𝜑 → (𝐺𝑋) (𝐺𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1540  wcel 2105  wral 3060   class class class wbr 5148  wf 6539  cfv 6543  (class class class)co 7412  Basecbs 17151  lecple 17211   Proset cproset 18256  MGalConncmgc 32581
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-fv 6551  df-ov 7415  df-oprab 7416  df-mpo 7417  df-map 8828  df-proset 18258  df-mgc 32583
This theorem is referenced by:  dfmgc2  32598  mgcf1olem2  32604
  Copyright terms: Public domain W3C validator