Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mgcmnt1 Structured version   Visualization version   GIF version

Theorem mgcmnt1 32934
Description: The lower adjoint 𝐹 of a Galois connection is monotonically increasing. (Contributed by Thierry Arnoux, 26-Apr-2024.)
Hypotheses
Ref Expression
mgcoval.1 𝐴 = (Base‘𝑉)
mgcoval.2 𝐵 = (Base‘𝑊)
mgcoval.3 = (le‘𝑉)
mgcoval.4 = (le‘𝑊)
mgcval.1 𝐻 = (𝑉MGalConn𝑊)
mgcval.2 (𝜑𝑉 ∈ Proset )
mgcval.3 (𝜑𝑊 ∈ Proset )
mgccole.1 (𝜑𝐹𝐻𝐺)
mgcmnt1.1 (𝜑𝑋𝐴)
mgcmnt1.2 (𝜑𝑌𝐴)
mgcmnt1.3 (𝜑𝑋 𝑌)
Assertion
Ref Expression
mgcmnt1 (𝜑 → (𝐹𝑋) (𝐹𝑌))

Proof of Theorem mgcmnt1
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mgcval.2 . . 3 (𝜑𝑉 ∈ Proset )
2 mgcmnt1.1 . . 3 (𝜑𝑋𝐴)
3 mgcmnt1.2 . . 3 (𝜑𝑌𝐴)
4 mgccole.1 . . . . . 6 (𝜑𝐹𝐻𝐺)
5 mgcoval.1 . . . . . . 7 𝐴 = (Base‘𝑉)
6 mgcoval.2 . . . . . . 7 𝐵 = (Base‘𝑊)
7 mgcoval.3 . . . . . . 7 = (le‘𝑉)
8 mgcoval.4 . . . . . . 7 = (le‘𝑊)
9 mgcval.1 . . . . . . 7 𝐻 = (𝑉MGalConn𝑊)
10 mgcval.3 . . . . . . 7 (𝜑𝑊 ∈ Proset )
115, 6, 7, 8, 9, 1, 10mgcval 32929 . . . . . 6 (𝜑 → (𝐹𝐻𝐺 ↔ ((𝐹:𝐴𝐵𝐺:𝐵𝐴) ∧ ∀𝑥𝐴𝑦𝐵 ((𝐹𝑥) 𝑦𝑥 (𝐺𝑦)))))
124, 11mpbid 232 . . . . 5 (𝜑 → ((𝐹:𝐴𝐵𝐺:𝐵𝐴) ∧ ∀𝑥𝐴𝑦𝐵 ((𝐹𝑥) 𝑦𝑥 (𝐺𝑦))))
1312simplrd 769 . . . 4 (𝜑𝐺:𝐵𝐴)
1412simplld 767 . . . . 5 (𝜑𝐹:𝐴𝐵)
1514, 3ffvelcdmd 7019 . . . 4 (𝜑 → (𝐹𝑌) ∈ 𝐵)
1613, 15ffvelcdmd 7019 . . 3 (𝜑 → (𝐺‘(𝐹𝑌)) ∈ 𝐴)
17 mgcmnt1.3 . . 3 (𝜑𝑋 𝑌)
185, 6, 7, 8, 9, 1, 10, 4, 3mgccole1 32932 . . 3 (𝜑𝑌 (𝐺‘(𝐹𝑌)))
195, 7prstr 18205 . . 3 ((𝑉 ∈ Proset ∧ (𝑋𝐴𝑌𝐴 ∧ (𝐺‘(𝐹𝑌)) ∈ 𝐴) ∧ (𝑋 𝑌𝑌 (𝐺‘(𝐹𝑌)))) → 𝑋 (𝐺‘(𝐹𝑌)))
201, 2, 3, 16, 17, 18, 19syl132anc 1390 . 2 (𝜑𝑋 (𝐺‘(𝐹𝑌)))
2112simprd 495 . . . 4 (𝜑 → ∀𝑥𝐴𝑦𝐵 ((𝐹𝑥) 𝑦𝑥 (𝐺𝑦)))
22 fveq2 6822 . . . . . . . . 9 (𝑥 = 𝑋 → (𝐹𝑥) = (𝐹𝑋))
2322breq1d 5102 . . . . . . . 8 (𝑥 = 𝑋 → ((𝐹𝑥) 𝑦 ↔ (𝐹𝑋) 𝑦))
24 breq1 5095 . . . . . . . 8 (𝑥 = 𝑋 → (𝑥 (𝐺𝑦) ↔ 𝑋 (𝐺𝑦)))
2523, 24bibi12d 345 . . . . . . 7 (𝑥 = 𝑋 → (((𝐹𝑥) 𝑦𝑥 (𝐺𝑦)) ↔ ((𝐹𝑋) 𝑦𝑋 (𝐺𝑦))))
2625adantl 481 . . . . . 6 ((𝜑𝑥 = 𝑋) → (((𝐹𝑥) 𝑦𝑥 (𝐺𝑦)) ↔ ((𝐹𝑋) 𝑦𝑋 (𝐺𝑦))))
2726ralbidv 3152 . . . . 5 ((𝜑𝑥 = 𝑋) → (∀𝑦𝐵 ((𝐹𝑥) 𝑦𝑥 (𝐺𝑦)) ↔ ∀𝑦𝐵 ((𝐹𝑋) 𝑦𝑋 (𝐺𝑦))))
282, 27rspcdv 3569 . . . 4 (𝜑 → (∀𝑥𝐴𝑦𝐵 ((𝐹𝑥) 𝑦𝑥 (𝐺𝑦)) → ∀𝑦𝐵 ((𝐹𝑋) 𝑦𝑋 (𝐺𝑦))))
2921, 28mpd 15 . . 3 (𝜑 → ∀𝑦𝐵 ((𝐹𝑋) 𝑦𝑋 (𝐺𝑦)))
30 simpr 484 . . . . . 6 ((𝜑𝑦 = (𝐹𝑌)) → 𝑦 = (𝐹𝑌))
3130breq2d 5104 . . . . 5 ((𝜑𝑦 = (𝐹𝑌)) → ((𝐹𝑋) 𝑦 ↔ (𝐹𝑋) (𝐹𝑌)))
3230fveq2d 6826 . . . . . 6 ((𝜑𝑦 = (𝐹𝑌)) → (𝐺𝑦) = (𝐺‘(𝐹𝑌)))
3332breq2d 5104 . . . . 5 ((𝜑𝑦 = (𝐹𝑌)) → (𝑋 (𝐺𝑦) ↔ 𝑋 (𝐺‘(𝐹𝑌))))
3431, 33bibi12d 345 . . . 4 ((𝜑𝑦 = (𝐹𝑌)) → (((𝐹𝑋) 𝑦𝑋 (𝐺𝑦)) ↔ ((𝐹𝑋) (𝐹𝑌) ↔ 𝑋 (𝐺‘(𝐹𝑌)))))
3515, 34rspcdv 3569 . . 3 (𝜑 → (∀𝑦𝐵 ((𝐹𝑋) 𝑦𝑋 (𝐺𝑦)) → ((𝐹𝑋) (𝐹𝑌) ↔ 𝑋 (𝐺‘(𝐹𝑌)))))
3629, 35mpd 15 . 2 (𝜑 → ((𝐹𝑋) (𝐹𝑌) ↔ 𝑋 (𝐺‘(𝐹𝑌))))
3720, 36mpbird 257 1 (𝜑 → (𝐹𝑋) (𝐹𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044   class class class wbr 5092  wf 6478  cfv 6482  (class class class)co 7349  Basecbs 17120  lecple 17168   Proset cproset 18198  MGalConncmgc 32921
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-map 8755  df-proset 18200  df-mgc 32923
This theorem is referenced by:  dfmgc2  32938  mgcf1olem1  32943
  Copyright terms: Public domain W3C validator