Step | Hyp | Ref
| Expression |
1 | | mgcval.2 |
. . 3
⊢ (𝜑 → 𝑉 ∈ Proset ) |
2 | | mgcmnt1.1 |
. . 3
⊢ (𝜑 → 𝑋 ∈ 𝐴) |
3 | | mgcmnt1.2 |
. . 3
⊢ (𝜑 → 𝑌 ∈ 𝐴) |
4 | | mgccole.1 |
. . . . . 6
⊢ (𝜑 → 𝐹𝐻𝐺) |
5 | | mgcoval.1 |
. . . . . . 7
⊢ 𝐴 = (Base‘𝑉) |
6 | | mgcoval.2 |
. . . . . . 7
⊢ 𝐵 = (Base‘𝑊) |
7 | | mgcoval.3 |
. . . . . . 7
⊢ ≤ =
(le‘𝑉) |
8 | | mgcoval.4 |
. . . . . . 7
⊢ ≲ =
(le‘𝑊) |
9 | | mgcval.1 |
. . . . . . 7
⊢ 𝐻 = (𝑉MGalConn𝑊) |
10 | | mgcval.3 |
. . . . . . 7
⊢ (𝜑 → 𝑊 ∈ Proset ) |
11 | 5, 6, 7, 8, 9, 1, 10 | mgcval 30791 |
. . . . . 6
⊢ (𝜑 → (𝐹𝐻𝐺 ↔ ((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐵⟶𝐴) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ((𝐹‘𝑥) ≲ 𝑦 ↔ 𝑥 ≤ (𝐺‘𝑦))))) |
12 | 4, 11 | mpbid 235 |
. . . . 5
⊢ (𝜑 → ((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐵⟶𝐴) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ((𝐹‘𝑥) ≲ 𝑦 ↔ 𝑥 ≤ (𝐺‘𝑦)))) |
13 | 12 | simplrd 769 |
. . . 4
⊢ (𝜑 → 𝐺:𝐵⟶𝐴) |
14 | 12 | simplld 767 |
. . . . 5
⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
15 | 14, 3 | ffvelrnd 6843 |
. . . 4
⊢ (𝜑 → (𝐹‘𝑌) ∈ 𝐵) |
16 | 13, 15 | ffvelrnd 6843 |
. . 3
⊢ (𝜑 → (𝐺‘(𝐹‘𝑌)) ∈ 𝐴) |
17 | | mgcmnt1.3 |
. . 3
⊢ (𝜑 → 𝑋 ≤ 𝑌) |
18 | 5, 6, 7, 8, 9, 1, 10, 4, 3 | mgccole1 30794 |
. . 3
⊢ (𝜑 → 𝑌 ≤ (𝐺‘(𝐹‘𝑌))) |
19 | 5, 7 | prstr 17609 |
. . 3
⊢ ((𝑉 ∈ Proset ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ (𝐺‘(𝐹‘𝑌)) ∈ 𝐴) ∧ (𝑋 ≤ 𝑌 ∧ 𝑌 ≤ (𝐺‘(𝐹‘𝑌)))) → 𝑋 ≤ (𝐺‘(𝐹‘𝑌))) |
20 | 1, 2, 3, 16, 17, 18, 19 | syl132anc 1385 |
. 2
⊢ (𝜑 → 𝑋 ≤ (𝐺‘(𝐹‘𝑌))) |
21 | 12 | simprd 499 |
. . . 4
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ((𝐹‘𝑥) ≲ 𝑦 ↔ 𝑥 ≤ (𝐺‘𝑦))) |
22 | | fveq2 6658 |
. . . . . . . . 9
⊢ (𝑥 = 𝑋 → (𝐹‘𝑥) = (𝐹‘𝑋)) |
23 | 22 | breq1d 5042 |
. . . . . . . 8
⊢ (𝑥 = 𝑋 → ((𝐹‘𝑥) ≲ 𝑦 ↔ (𝐹‘𝑋) ≲ 𝑦)) |
24 | | breq1 5035 |
. . . . . . . 8
⊢ (𝑥 = 𝑋 → (𝑥 ≤ (𝐺‘𝑦) ↔ 𝑋 ≤ (𝐺‘𝑦))) |
25 | 23, 24 | bibi12d 349 |
. . . . . . 7
⊢ (𝑥 = 𝑋 → (((𝐹‘𝑥) ≲ 𝑦 ↔ 𝑥 ≤ (𝐺‘𝑦)) ↔ ((𝐹‘𝑋) ≲ 𝑦 ↔ 𝑋 ≤ (𝐺‘𝑦)))) |
26 | 25 | adantl 485 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 = 𝑋) → (((𝐹‘𝑥) ≲ 𝑦 ↔ 𝑥 ≤ (𝐺‘𝑦)) ↔ ((𝐹‘𝑋) ≲ 𝑦 ↔ 𝑋 ≤ (𝐺‘𝑦)))) |
27 | 26 | ralbidv 3126 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 = 𝑋) → (∀𝑦 ∈ 𝐵 ((𝐹‘𝑥) ≲ 𝑦 ↔ 𝑥 ≤ (𝐺‘𝑦)) ↔ ∀𝑦 ∈ 𝐵 ((𝐹‘𝑋) ≲ 𝑦 ↔ 𝑋 ≤ (𝐺‘𝑦)))) |
28 | 2, 27 | rspcdv 3533 |
. . . 4
⊢ (𝜑 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ((𝐹‘𝑥) ≲ 𝑦 ↔ 𝑥 ≤ (𝐺‘𝑦)) → ∀𝑦 ∈ 𝐵 ((𝐹‘𝑋) ≲ 𝑦 ↔ 𝑋 ≤ (𝐺‘𝑦)))) |
29 | 21, 28 | mpd 15 |
. . 3
⊢ (𝜑 → ∀𝑦 ∈ 𝐵 ((𝐹‘𝑋) ≲ 𝑦 ↔ 𝑋 ≤ (𝐺‘𝑦))) |
30 | | simpr 488 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 = (𝐹‘𝑌)) → 𝑦 = (𝐹‘𝑌)) |
31 | 30 | breq2d 5044 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 = (𝐹‘𝑌)) → ((𝐹‘𝑋) ≲ 𝑦 ↔ (𝐹‘𝑋) ≲ (𝐹‘𝑌))) |
32 | 30 | fveq2d 6662 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 = (𝐹‘𝑌)) → (𝐺‘𝑦) = (𝐺‘(𝐹‘𝑌))) |
33 | 32 | breq2d 5044 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 = (𝐹‘𝑌)) → (𝑋 ≤ (𝐺‘𝑦) ↔ 𝑋 ≤ (𝐺‘(𝐹‘𝑌)))) |
34 | 31, 33 | bibi12d 349 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 = (𝐹‘𝑌)) → (((𝐹‘𝑋) ≲ 𝑦 ↔ 𝑋 ≤ (𝐺‘𝑦)) ↔ ((𝐹‘𝑋) ≲ (𝐹‘𝑌) ↔ 𝑋 ≤ (𝐺‘(𝐹‘𝑌))))) |
35 | 15, 34 | rspcdv 3533 |
. . 3
⊢ (𝜑 → (∀𝑦 ∈ 𝐵 ((𝐹‘𝑋) ≲ 𝑦 ↔ 𝑋 ≤ (𝐺‘𝑦)) → ((𝐹‘𝑋) ≲ (𝐹‘𝑌) ↔ 𝑋 ≤ (𝐺‘(𝐹‘𝑌))))) |
36 | 29, 35 | mpd 15 |
. 2
⊢ (𝜑 → ((𝐹‘𝑋) ≲ (𝐹‘𝑌) ↔ 𝑋 ≤ (𝐺‘(𝐹‘𝑌)))) |
37 | 20, 36 | mpbird 260 |
1
⊢ (𝜑 → (𝐹‘𝑋) ≲ (𝐹‘𝑌)) |