| Step | Hyp | Ref
| Expression |
| 1 | | mgcval.2 |
. . 3
⊢ (𝜑 → 𝑉 ∈ Proset ) |
| 2 | | mgcmnt1.1 |
. . 3
⊢ (𝜑 → 𝑋 ∈ 𝐴) |
| 3 | | mgcmnt1.2 |
. . 3
⊢ (𝜑 → 𝑌 ∈ 𝐴) |
| 4 | | mgccole.1 |
. . . . . 6
⊢ (𝜑 → 𝐹𝐻𝐺) |
| 5 | | mgcoval.1 |
. . . . . . 7
⊢ 𝐴 = (Base‘𝑉) |
| 6 | | mgcoval.2 |
. . . . . . 7
⊢ 𝐵 = (Base‘𝑊) |
| 7 | | mgcoval.3 |
. . . . . . 7
⊢ ≤ =
(le‘𝑉) |
| 8 | | mgcoval.4 |
. . . . . . 7
⊢ ≲ =
(le‘𝑊) |
| 9 | | mgcval.1 |
. . . . . . 7
⊢ 𝐻 = (𝑉MGalConn𝑊) |
| 10 | | mgcval.3 |
. . . . . . 7
⊢ (𝜑 → 𝑊 ∈ Proset ) |
| 11 | 5, 6, 7, 8, 9, 1, 10 | mgcval 32967 |
. . . . . 6
⊢ (𝜑 → (𝐹𝐻𝐺 ↔ ((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐵⟶𝐴) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ((𝐹‘𝑥) ≲ 𝑦 ↔ 𝑥 ≤ (𝐺‘𝑦))))) |
| 12 | 4, 11 | mpbid 232 |
. . . . 5
⊢ (𝜑 → ((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐵⟶𝐴) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ((𝐹‘𝑥) ≲ 𝑦 ↔ 𝑥 ≤ (𝐺‘𝑦)))) |
| 13 | 12 | simplrd 769 |
. . . 4
⊢ (𝜑 → 𝐺:𝐵⟶𝐴) |
| 14 | 12 | simplld 767 |
. . . . 5
⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
| 15 | 14, 3 | ffvelcdmd 7075 |
. . . 4
⊢ (𝜑 → (𝐹‘𝑌) ∈ 𝐵) |
| 16 | 13, 15 | ffvelcdmd 7075 |
. . 3
⊢ (𝜑 → (𝐺‘(𝐹‘𝑌)) ∈ 𝐴) |
| 17 | | mgcmnt1.3 |
. . 3
⊢ (𝜑 → 𝑋 ≤ 𝑌) |
| 18 | 5, 6, 7, 8, 9, 1, 10, 4, 3 | mgccole1 32970 |
. . 3
⊢ (𝜑 → 𝑌 ≤ (𝐺‘(𝐹‘𝑌))) |
| 19 | 5, 7 | prstr 18311 |
. . 3
⊢ ((𝑉 ∈ Proset ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ∧ (𝐺‘(𝐹‘𝑌)) ∈ 𝐴) ∧ (𝑋 ≤ 𝑌 ∧ 𝑌 ≤ (𝐺‘(𝐹‘𝑌)))) → 𝑋 ≤ (𝐺‘(𝐹‘𝑌))) |
| 20 | 1, 2, 3, 16, 17, 18, 19 | syl132anc 1390 |
. 2
⊢ (𝜑 → 𝑋 ≤ (𝐺‘(𝐹‘𝑌))) |
| 21 | 12 | simprd 495 |
. . . 4
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ((𝐹‘𝑥) ≲ 𝑦 ↔ 𝑥 ≤ (𝐺‘𝑦))) |
| 22 | | fveq2 6876 |
. . . . . . . . 9
⊢ (𝑥 = 𝑋 → (𝐹‘𝑥) = (𝐹‘𝑋)) |
| 23 | 22 | breq1d 5129 |
. . . . . . . 8
⊢ (𝑥 = 𝑋 → ((𝐹‘𝑥) ≲ 𝑦 ↔ (𝐹‘𝑋) ≲ 𝑦)) |
| 24 | | breq1 5122 |
. . . . . . . 8
⊢ (𝑥 = 𝑋 → (𝑥 ≤ (𝐺‘𝑦) ↔ 𝑋 ≤ (𝐺‘𝑦))) |
| 25 | 23, 24 | bibi12d 345 |
. . . . . . 7
⊢ (𝑥 = 𝑋 → (((𝐹‘𝑥) ≲ 𝑦 ↔ 𝑥 ≤ (𝐺‘𝑦)) ↔ ((𝐹‘𝑋) ≲ 𝑦 ↔ 𝑋 ≤ (𝐺‘𝑦)))) |
| 26 | 25 | adantl 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 = 𝑋) → (((𝐹‘𝑥) ≲ 𝑦 ↔ 𝑥 ≤ (𝐺‘𝑦)) ↔ ((𝐹‘𝑋) ≲ 𝑦 ↔ 𝑋 ≤ (𝐺‘𝑦)))) |
| 27 | 26 | ralbidv 3163 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 = 𝑋) → (∀𝑦 ∈ 𝐵 ((𝐹‘𝑥) ≲ 𝑦 ↔ 𝑥 ≤ (𝐺‘𝑦)) ↔ ∀𝑦 ∈ 𝐵 ((𝐹‘𝑋) ≲ 𝑦 ↔ 𝑋 ≤ (𝐺‘𝑦)))) |
| 28 | 2, 27 | rspcdv 3593 |
. . . 4
⊢ (𝜑 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ((𝐹‘𝑥) ≲ 𝑦 ↔ 𝑥 ≤ (𝐺‘𝑦)) → ∀𝑦 ∈ 𝐵 ((𝐹‘𝑋) ≲ 𝑦 ↔ 𝑋 ≤ (𝐺‘𝑦)))) |
| 29 | 21, 28 | mpd 15 |
. . 3
⊢ (𝜑 → ∀𝑦 ∈ 𝐵 ((𝐹‘𝑋) ≲ 𝑦 ↔ 𝑋 ≤ (𝐺‘𝑦))) |
| 30 | | simpr 484 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 = (𝐹‘𝑌)) → 𝑦 = (𝐹‘𝑌)) |
| 31 | 30 | breq2d 5131 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 = (𝐹‘𝑌)) → ((𝐹‘𝑋) ≲ 𝑦 ↔ (𝐹‘𝑋) ≲ (𝐹‘𝑌))) |
| 32 | 30 | fveq2d 6880 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 = (𝐹‘𝑌)) → (𝐺‘𝑦) = (𝐺‘(𝐹‘𝑌))) |
| 33 | 32 | breq2d 5131 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 = (𝐹‘𝑌)) → (𝑋 ≤ (𝐺‘𝑦) ↔ 𝑋 ≤ (𝐺‘(𝐹‘𝑌)))) |
| 34 | 31, 33 | bibi12d 345 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 = (𝐹‘𝑌)) → (((𝐹‘𝑋) ≲ 𝑦 ↔ 𝑋 ≤ (𝐺‘𝑦)) ↔ ((𝐹‘𝑋) ≲ (𝐹‘𝑌) ↔ 𝑋 ≤ (𝐺‘(𝐹‘𝑌))))) |
| 35 | 15, 34 | rspcdv 3593 |
. . 3
⊢ (𝜑 → (∀𝑦 ∈ 𝐵 ((𝐹‘𝑋) ≲ 𝑦 ↔ 𝑋 ≤ (𝐺‘𝑦)) → ((𝐹‘𝑋) ≲ (𝐹‘𝑌) ↔ 𝑋 ≤ (𝐺‘(𝐹‘𝑌))))) |
| 36 | 29, 35 | mpd 15 |
. 2
⊢ (𝜑 → ((𝐹‘𝑋) ≲ (𝐹‘𝑌) ↔ 𝑋 ≤ (𝐺‘(𝐹‘𝑌)))) |
| 37 | 20, 36 | mpbird 257 |
1
⊢ (𝜑 → (𝐹‘𝑋) ≲ (𝐹‘𝑌)) |