Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mgcmnt1 Structured version   Visualization version   GIF version

Theorem mgcmnt1 31852
Description: The lower adjoint 𝐹 of a Galois connection is monotonically increasing. (Contributed by Thierry Arnoux, 26-Apr-2024.)
Hypotheses
Ref Expression
mgcoval.1 𝐴 = (Base‘𝑉)
mgcoval.2 𝐵 = (Base‘𝑊)
mgcoval.3 = (le‘𝑉)
mgcoval.4 = (le‘𝑊)
mgcval.1 𝐻 = (𝑉MGalConn𝑊)
mgcval.2 (𝜑𝑉 ∈ Proset )
mgcval.3 (𝜑𝑊 ∈ Proset )
mgccole.1 (𝜑𝐹𝐻𝐺)
mgcmnt1.1 (𝜑𝑋𝐴)
mgcmnt1.2 (𝜑𝑌𝐴)
mgcmnt1.3 (𝜑𝑋 𝑌)
Assertion
Ref Expression
mgcmnt1 (𝜑 → (𝐹𝑋) (𝐹𝑌))

Proof of Theorem mgcmnt1
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mgcval.2 . . 3 (𝜑𝑉 ∈ Proset )
2 mgcmnt1.1 . . 3 (𝜑𝑋𝐴)
3 mgcmnt1.2 . . 3 (𝜑𝑌𝐴)
4 mgccole.1 . . . . . 6 (𝜑𝐹𝐻𝐺)
5 mgcoval.1 . . . . . . 7 𝐴 = (Base‘𝑉)
6 mgcoval.2 . . . . . . 7 𝐵 = (Base‘𝑊)
7 mgcoval.3 . . . . . . 7 = (le‘𝑉)
8 mgcoval.4 . . . . . . 7 = (le‘𝑊)
9 mgcval.1 . . . . . . 7 𝐻 = (𝑉MGalConn𝑊)
10 mgcval.3 . . . . . . 7 (𝜑𝑊 ∈ Proset )
115, 6, 7, 8, 9, 1, 10mgcval 31847 . . . . . 6 (𝜑 → (𝐹𝐻𝐺 ↔ ((𝐹:𝐴𝐵𝐺:𝐵𝐴) ∧ ∀𝑥𝐴𝑦𝐵 ((𝐹𝑥) 𝑦𝑥 (𝐺𝑦)))))
124, 11mpbid 231 . . . . 5 (𝜑 → ((𝐹:𝐴𝐵𝐺:𝐵𝐴) ∧ ∀𝑥𝐴𝑦𝐵 ((𝐹𝑥) 𝑦𝑥 (𝐺𝑦))))
1312simplrd 768 . . . 4 (𝜑𝐺:𝐵𝐴)
1412simplld 766 . . . . 5 (𝜑𝐹:𝐴𝐵)
1514, 3ffvelcdmd 7036 . . . 4 (𝜑 → (𝐹𝑌) ∈ 𝐵)
1613, 15ffvelcdmd 7036 . . 3 (𝜑 → (𝐺‘(𝐹𝑌)) ∈ 𝐴)
17 mgcmnt1.3 . . 3 (𝜑𝑋 𝑌)
185, 6, 7, 8, 9, 1, 10, 4, 3mgccole1 31850 . . 3 (𝜑𝑌 (𝐺‘(𝐹𝑌)))
195, 7prstr 18189 . . 3 ((𝑉 ∈ Proset ∧ (𝑋𝐴𝑌𝐴 ∧ (𝐺‘(𝐹𝑌)) ∈ 𝐴) ∧ (𝑋 𝑌𝑌 (𝐺‘(𝐹𝑌)))) → 𝑋 (𝐺‘(𝐹𝑌)))
201, 2, 3, 16, 17, 18, 19syl132anc 1388 . 2 (𝜑𝑋 (𝐺‘(𝐹𝑌)))
2112simprd 496 . . . 4 (𝜑 → ∀𝑥𝐴𝑦𝐵 ((𝐹𝑥) 𝑦𝑥 (𝐺𝑦)))
22 fveq2 6842 . . . . . . . . 9 (𝑥 = 𝑋 → (𝐹𝑥) = (𝐹𝑋))
2322breq1d 5115 . . . . . . . 8 (𝑥 = 𝑋 → ((𝐹𝑥) 𝑦 ↔ (𝐹𝑋) 𝑦))
24 breq1 5108 . . . . . . . 8 (𝑥 = 𝑋 → (𝑥 (𝐺𝑦) ↔ 𝑋 (𝐺𝑦)))
2523, 24bibi12d 345 . . . . . . 7 (𝑥 = 𝑋 → (((𝐹𝑥) 𝑦𝑥 (𝐺𝑦)) ↔ ((𝐹𝑋) 𝑦𝑋 (𝐺𝑦))))
2625adantl 482 . . . . . 6 ((𝜑𝑥 = 𝑋) → (((𝐹𝑥) 𝑦𝑥 (𝐺𝑦)) ↔ ((𝐹𝑋) 𝑦𝑋 (𝐺𝑦))))
2726ralbidv 3174 . . . . 5 ((𝜑𝑥 = 𝑋) → (∀𝑦𝐵 ((𝐹𝑥) 𝑦𝑥 (𝐺𝑦)) ↔ ∀𝑦𝐵 ((𝐹𝑋) 𝑦𝑋 (𝐺𝑦))))
282, 27rspcdv 3573 . . . 4 (𝜑 → (∀𝑥𝐴𝑦𝐵 ((𝐹𝑥) 𝑦𝑥 (𝐺𝑦)) → ∀𝑦𝐵 ((𝐹𝑋) 𝑦𝑋 (𝐺𝑦))))
2921, 28mpd 15 . . 3 (𝜑 → ∀𝑦𝐵 ((𝐹𝑋) 𝑦𝑋 (𝐺𝑦)))
30 simpr 485 . . . . . 6 ((𝜑𝑦 = (𝐹𝑌)) → 𝑦 = (𝐹𝑌))
3130breq2d 5117 . . . . 5 ((𝜑𝑦 = (𝐹𝑌)) → ((𝐹𝑋) 𝑦 ↔ (𝐹𝑋) (𝐹𝑌)))
3230fveq2d 6846 . . . . . 6 ((𝜑𝑦 = (𝐹𝑌)) → (𝐺𝑦) = (𝐺‘(𝐹𝑌)))
3332breq2d 5117 . . . . 5 ((𝜑𝑦 = (𝐹𝑌)) → (𝑋 (𝐺𝑦) ↔ 𝑋 (𝐺‘(𝐹𝑌))))
3431, 33bibi12d 345 . . . 4 ((𝜑𝑦 = (𝐹𝑌)) → (((𝐹𝑋) 𝑦𝑋 (𝐺𝑦)) ↔ ((𝐹𝑋) (𝐹𝑌) ↔ 𝑋 (𝐺‘(𝐹𝑌)))))
3515, 34rspcdv 3573 . . 3 (𝜑 → (∀𝑦𝐵 ((𝐹𝑋) 𝑦𝑋 (𝐺𝑦)) → ((𝐹𝑋) (𝐹𝑌) ↔ 𝑋 (𝐺‘(𝐹𝑌)))))
3629, 35mpd 15 . 2 (𝜑 → ((𝐹𝑋) (𝐹𝑌) ↔ 𝑋 (𝐺‘(𝐹𝑌))))
3720, 36mpbird 256 1 (𝜑 → (𝐹𝑋) (𝐹𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wral 3064   class class class wbr 5105  wf 6492  cfv 6496  (class class class)co 7357  Basecbs 17083  lecple 17140   Proset cproset 18182  MGalConncmgc 31839
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-br 5106  df-opab 5168  df-id 5531  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-fv 6504  df-ov 7360  df-oprab 7361  df-mpo 7362  df-map 8767  df-proset 18184  df-mgc 31841
This theorem is referenced by:  dfmgc2  31856  mgcf1olem1  31861
  Copyright terms: Public domain W3C validator