![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elec | Structured version Visualization version GIF version |
Description: Membership in an equivalence class. Theorem 72 of [Suppes] p. 82. (Contributed by NM, 23-Jul-1995.) |
Ref | Expression |
---|---|
elec.1 | ⊢ 𝐴 ∈ V |
elec.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
elec | ⊢ (𝐴 ∈ [𝐵]𝑅 ↔ 𝐵𝑅𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elec.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | elec.2 | . 2 ⊢ 𝐵 ∈ V | |
3 | elecg 8067 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴 ∈ [𝐵]𝑅 ↔ 𝐵𝑅𝐴)) | |
4 | 1, 2, 3 | mp2an 682 | 1 ⊢ (𝐴 ∈ [𝐵]𝑅 ↔ 𝐵𝑅𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 198 ∈ wcel 2107 Vcvv 3398 class class class wbr 4886 [cec 8024 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-sep 5017 ax-nul 5025 ax-pr 5138 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ral 3095 df-rex 3096 df-rab 3099 df-v 3400 df-sbc 3653 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-nul 4142 df-if 4308 df-sn 4399 df-pr 4401 df-op 4405 df-br 4887 df-opab 4949 df-xp 5361 df-cnv 5363 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-ec 8028 |
This theorem is referenced by: ecid 8095 sylow2alem2 18417 sylow2a 18418 sylow2blem1 18419 efgval2 18521 efgrelexlemb 18549 efgcpbllemb 18554 frgpnabllem1 18662 tgpconncomp 22324 qustgphaus 22334 vitalilem2 23813 vitalilem3 23814 isbndx 34205 prtlem10 35019 prtlem19 35032 prter3 35036 |
Copyright terms: Public domain | W3C validator |