| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elec | Structured version Visualization version GIF version | ||
| Description: Membership in an equivalence class. Theorem 72 of [Suppes] p. 82. (Contributed by NM, 23-Jul-1995.) |
| Ref | Expression |
|---|---|
| elec.1 | ⊢ 𝐴 ∈ V |
| elec.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| elec | ⊢ (𝐴 ∈ [𝐵]𝑅 ↔ 𝐵𝑅𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elec.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | elec.2 | . 2 ⊢ 𝐵 ∈ V | |
| 3 | elecg 8718 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴 ∈ [𝐵]𝑅 ↔ 𝐵𝑅𝐴)) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ (𝐴 ∈ [𝐵]𝑅 ↔ 𝐵𝑅𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∈ wcel 2109 Vcvv 3450 class class class wbr 5110 [cec 8672 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-xp 5647 df-cnv 5649 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-ec 8676 |
| This theorem is referenced by: ecid 8756 sylow2alem2 19555 sylow2a 19556 sylow2blem1 19557 efgval2 19661 efgrelexlemb 19687 efgcpbllemb 19692 frgpnabllem1 19810 tgpconncomp 24007 qustgphaus 24017 vitalilem2 25517 vitalilem3 25518 isbndx 37783 prtlem10 38865 prtlem19 38878 prter3 38882 |
| Copyright terms: Public domain | W3C validator |