MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elec Structured version   Visualization version   GIF version

Theorem elec 8791
Description: Membership in an equivalence class. Theorem 72 of [Suppes] p. 82. (Contributed by NM, 23-Jul-1995.)
Hypotheses
Ref Expression
elec.1 𝐴 ∈ V
elec.2 𝐵 ∈ V
Assertion
Ref Expression
elec (𝐴 ∈ [𝐵]𝑅𝐵𝑅𝐴)

Proof of Theorem elec
StepHypRef Expression
1 elec.1 . 2 𝐴 ∈ V
2 elec.2 . 2 𝐵 ∈ V
3 elecg 8789 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴 ∈ [𝐵]𝑅𝐵𝑅𝐴))
41, 2, 3mp2an 692 1 (𝐴 ∈ [𝐵]𝑅𝐵𝑅𝐴)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wcel 2108  Vcvv 3480   class class class wbr 5143  [cec 8743
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-br 5144  df-opab 5206  df-xp 5691  df-cnv 5693  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-ec 8747
This theorem is referenced by:  ecid  8822  sylow2alem2  19636  sylow2a  19637  sylow2blem1  19638  efgval2  19742  efgrelexlemb  19768  efgcpbllemb  19773  frgpnabllem1  19891  tgpconncomp  24121  qustgphaus  24131  vitalilem2  25644  vitalilem3  25645  isbndx  37789  prtlem10  38866  prtlem19  38879  prter3  38883
  Copyright terms: Public domain W3C validator