Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elec | Structured version Visualization version GIF version |
Description: Membership in an equivalence class. Theorem 72 of [Suppes] p. 82. (Contributed by NM, 23-Jul-1995.) |
Ref | Expression |
---|---|
elec.1 | ⊢ 𝐴 ∈ V |
elec.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
elec | ⊢ (𝐴 ∈ [𝐵]𝑅 ↔ 𝐵𝑅𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elec.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | elec.2 | . 2 ⊢ 𝐵 ∈ V | |
3 | elecg 8499 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴 ∈ [𝐵]𝑅 ↔ 𝐵𝑅𝐴)) | |
4 | 1, 2, 3 | mp2an 688 | 1 ⊢ (𝐴 ∈ [𝐵]𝑅 ↔ 𝐵𝑅𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∈ wcel 2108 Vcvv 3422 class class class wbr 5070 [cec 8454 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-xp 5586 df-cnv 5588 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-ec 8458 |
This theorem is referenced by: ecid 8529 sylow2alem2 19138 sylow2a 19139 sylow2blem1 19140 efgval2 19245 efgrelexlemb 19271 efgcpbllemb 19276 frgpnabllem1 19389 tgpconncomp 23172 qustgphaus 23182 vitalilem2 24678 vitalilem3 24679 isbndx 35867 prtlem10 36806 prtlem19 36819 prter3 36823 |
Copyright terms: Public domain | W3C validator |