| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elec | Structured version Visualization version GIF version | ||
| Description: Membership in an equivalence class. Theorem 72 of [Suppes] p. 82. (Contributed by NM, 23-Jul-1995.) |
| Ref | Expression |
|---|---|
| elec.1 | ⊢ 𝐴 ∈ V |
| elec.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| elec | ⊢ (𝐴 ∈ [𝐵]𝑅 ↔ 𝐵𝑅𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elec.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | elec.2 | . 2 ⊢ 𝐵 ∈ V | |
| 3 | elecg 8666 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴 ∈ [𝐵]𝑅 ↔ 𝐵𝑅𝐴)) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ (𝐴 ∈ [𝐵]𝑅 ↔ 𝐵𝑅𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∈ wcel 2111 Vcvv 3436 class class class wbr 5091 [cec 8620 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-br 5092 df-opab 5154 df-xp 5622 df-cnv 5624 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-ec 8624 |
| This theorem is referenced by: ecid 8704 sylow2alem2 19528 sylow2a 19529 sylow2blem1 19530 efgval2 19634 efgrelexlemb 19660 efgcpbllemb 19665 frgpnabllem1 19783 tgpconncomp 24026 qustgphaus 24036 vitalilem2 25535 vitalilem3 25536 isbndx 37821 prtlem10 38903 prtlem19 38916 prter3 38920 |
| Copyright terms: Public domain | W3C validator |