| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elec | Structured version Visualization version GIF version | ||
| Description: Membership in an equivalence class. Theorem 72 of [Suppes] p. 82. (Contributed by NM, 23-Jul-1995.) |
| Ref | Expression |
|---|---|
| elec.1 | ⊢ 𝐴 ∈ V |
| elec.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| elec | ⊢ (𝐴 ∈ [𝐵]𝑅 ↔ 𝐵𝑅𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elec.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | elec.2 | . 2 ⊢ 𝐵 ∈ V | |
| 3 | elecg 8676 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴 ∈ [𝐵]𝑅 ↔ 𝐵𝑅𝐴)) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ (𝐴 ∈ [𝐵]𝑅 ↔ 𝐵𝑅𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∈ wcel 2109 Vcvv 3438 class class class wbr 5095 [cec 8630 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-br 5096 df-opab 5158 df-xp 5629 df-cnv 5631 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-ec 8634 |
| This theorem is referenced by: ecid 8714 sylow2alem2 19515 sylow2a 19516 sylow2blem1 19517 efgval2 19621 efgrelexlemb 19647 efgcpbllemb 19652 frgpnabllem1 19770 tgpconncomp 24016 qustgphaus 24026 vitalilem2 25526 vitalilem3 25527 isbndx 37761 prtlem10 38843 prtlem19 38856 prter3 38860 |
| Copyright terms: Public domain | W3C validator |