MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elec Structured version   Visualization version   GIF version

Theorem elec 8765
Description: Membership in an equivalence class. Theorem 72 of [Suppes] p. 82. (Contributed by NM, 23-Jul-1995.)
Hypotheses
Ref Expression
elec.1 𝐴 ∈ V
elec.2 𝐵 ∈ V
Assertion
Ref Expression
elec (𝐴 ∈ [𝐵]𝑅𝐵𝑅𝐴)

Proof of Theorem elec
StepHypRef Expression
1 elec.1 . 2 𝐴 ∈ V
2 elec.2 . 2 𝐵 ∈ V
3 elecg 8763 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴 ∈ [𝐵]𝑅𝐵𝑅𝐴))
41, 2, 3mp2an 692 1 (𝐴 ∈ [𝐵]𝑅𝐵𝑅𝐴)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wcel 2108  Vcvv 3459   class class class wbr 5119  [cec 8717
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-br 5120  df-opab 5182  df-xp 5660  df-cnv 5662  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-ec 8721
This theorem is referenced by:  ecid  8796  sylow2alem2  19599  sylow2a  19600  sylow2blem1  19601  efgval2  19705  efgrelexlemb  19731  efgcpbllemb  19736  frgpnabllem1  19854  tgpconncomp  24051  qustgphaus  24061  vitalilem2  25562  vitalilem3  25563  isbndx  37806  prtlem10  38883  prtlem19  38896  prter3  38900
  Copyright terms: Public domain W3C validator