MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elec Structured version   Visualization version   GIF version

Theorem elec 8542
Description: Membership in an equivalence class. Theorem 72 of [Suppes] p. 82. (Contributed by NM, 23-Jul-1995.)
Hypotheses
Ref Expression
elec.1 𝐴 ∈ V
elec.2 𝐵 ∈ V
Assertion
Ref Expression
elec (𝐴 ∈ [𝐵]𝑅𝐵𝑅𝐴)

Proof of Theorem elec
StepHypRef Expression
1 elec.1 . 2 𝐴 ∈ V
2 elec.2 . 2 𝐵 ∈ V
3 elecg 8541 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴 ∈ [𝐵]𝑅𝐵𝑅𝐴))
41, 2, 3mp2an 689 1 (𝐴 ∈ [𝐵]𝑅𝐵𝑅𝐴)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wcel 2106  Vcvv 3432   class class class wbr 5074  [cec 8496
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-xp 5595  df-cnv 5597  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-ec 8500
This theorem is referenced by:  ecid  8571  sylow2alem2  19223  sylow2a  19224  sylow2blem1  19225  efgval2  19330  efgrelexlemb  19356  efgcpbllemb  19361  frgpnabllem1  19474  tgpconncomp  23264  qustgphaus  23274  vitalilem2  24773  vitalilem3  24774  isbndx  35940  prtlem10  36879  prtlem19  36892  prter3  36896
  Copyright terms: Public domain W3C validator