MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwwf Structured version   Visualization version   GIF version

Theorem pwwf 9269
Description: A power set is well-founded iff the base set is. (Contributed by Mario Carneiro, 8-Jun-2013.) (Revised by Mario Carneiro, 16-Nov-2014.)
Assertion
Ref Expression
pwwf (𝐴 (𝑅1 “ On) ↔ 𝒫 𝐴 (𝑅1 “ On))

Proof of Theorem pwwf
StepHypRef Expression
1 r1rankidb 9266 . . . . . . 7 (𝐴 (𝑅1 “ On) → 𝐴 ⊆ (𝑅1‘(rank‘𝐴)))
21sspwd 4509 . . . . . 6 (𝐴 (𝑅1 “ On) → 𝒫 𝐴 ⊆ 𝒫 (𝑅1‘(rank‘𝐴)))
3 rankdmr1 9263 . . . . . . 7 (rank‘𝐴) ∈ dom 𝑅1
4 r1sucg 9231 . . . . . . 7 ((rank‘𝐴) ∈ dom 𝑅1 → (𝑅1‘suc (rank‘𝐴)) = 𝒫 (𝑅1‘(rank‘𝐴)))
53, 4ax-mp 5 . . . . . 6 (𝑅1‘suc (rank‘𝐴)) = 𝒫 (𝑅1‘(rank‘𝐴))
62, 5sseqtrrdi 3943 . . . . 5 (𝐴 (𝑅1 “ On) → 𝒫 𝐴 ⊆ (𝑅1‘suc (rank‘𝐴)))
7 fvex 6671 . . . . . 6 (𝑅1‘suc (rank‘𝐴)) ∈ V
87elpw2 5215 . . . . 5 (𝒫 𝐴 ∈ 𝒫 (𝑅1‘suc (rank‘𝐴)) ↔ 𝒫 𝐴 ⊆ (𝑅1‘suc (rank‘𝐴)))
96, 8sylibr 237 . . . 4 (𝐴 (𝑅1 “ On) → 𝒫 𝐴 ∈ 𝒫 (𝑅1‘suc (rank‘𝐴)))
10 r1funlim 9228 . . . . . . . 8 (Fun 𝑅1 ∧ Lim dom 𝑅1)
1110simpri 489 . . . . . . 7 Lim dom 𝑅1
12 limsuc 7563 . . . . . . 7 (Lim dom 𝑅1 → ((rank‘𝐴) ∈ dom 𝑅1 ↔ suc (rank‘𝐴) ∈ dom 𝑅1))
1311, 12ax-mp 5 . . . . . 6 ((rank‘𝐴) ∈ dom 𝑅1 ↔ suc (rank‘𝐴) ∈ dom 𝑅1)
143, 13mpbi 233 . . . . 5 suc (rank‘𝐴) ∈ dom 𝑅1
15 r1sucg 9231 . . . . 5 (suc (rank‘𝐴) ∈ dom 𝑅1 → (𝑅1‘suc suc (rank‘𝐴)) = 𝒫 (𝑅1‘suc (rank‘𝐴)))
1614, 15ax-mp 5 . . . 4 (𝑅1‘suc suc (rank‘𝐴)) = 𝒫 (𝑅1‘suc (rank‘𝐴))
179, 16eleqtrrdi 2863 . . 3 (𝐴 (𝑅1 “ On) → 𝒫 𝐴 ∈ (𝑅1‘suc suc (rank‘𝐴)))
18 r1elwf 9258 . . 3 (𝒫 𝐴 ∈ (𝑅1‘suc suc (rank‘𝐴)) → 𝒫 𝐴 (𝑅1 “ On))
1917, 18syl 17 . 2 (𝐴 (𝑅1 “ On) → 𝒫 𝐴 (𝑅1 “ On))
20 r1elssi 9267 . . 3 (𝒫 𝐴 (𝑅1 “ On) → 𝒫 𝐴 (𝑅1 “ On))
21 pwexr 7486 . . . 4 (𝒫 𝐴 (𝑅1 “ On) → 𝐴 ∈ V)
22 pwidg 4516 . . . 4 (𝐴 ∈ V → 𝐴 ∈ 𝒫 𝐴)
2321, 22syl 17 . . 3 (𝒫 𝐴 (𝑅1 “ On) → 𝐴 ∈ 𝒫 𝐴)
2420, 23sseldd 3893 . 2 (𝒫 𝐴 (𝑅1 “ On) → 𝐴 (𝑅1 “ On))
2519, 24impbii 212 1 (𝐴 (𝑅1 “ On) ↔ 𝒫 𝐴 (𝑅1 “ On))
Colors of variables: wff setvar class
Syntax hints:  wb 209   = wceq 1538  wcel 2111  Vcvv 3409  wss 3858  𝒫 cpw 4494   cuni 4798  dom cdm 5524  cima 5527  Oncon0 6169  Lim wlim 6170  suc csuc 6171  Fun wfun 6329  cfv 6335  𝑅1cr1 9224  rankcrnk 9225
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5169  ax-nul 5176  ax-pow 5234  ax-pr 5298  ax-un 7459
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-ral 3075  df-rex 3076  df-reu 3077  df-rab 3079  df-v 3411  df-sbc 3697  df-csb 3806  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-pss 3877  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-tp 4527  df-op 4529  df-uni 4799  df-int 4839  df-iun 4885  df-br 5033  df-opab 5095  df-mpt 5113  df-tr 5139  df-id 5430  df-eprel 5435  df-po 5443  df-so 5444  df-fr 5483  df-we 5485  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6294  df-fun 6337  df-fn 6338  df-f 6339  df-f1 6340  df-fo 6341  df-f1o 6342  df-fv 6343  df-om 7580  df-wrecs 7957  df-recs 8018  df-rdg 8056  df-r1 9226  df-rank 9227
This theorem is referenced by:  snwf  9271  uniwf  9281  rankpwi  9285  r1pw  9307  r1pwcl  9309  dfac12r  9606  wfgru  10276
  Copyright terms: Public domain W3C validator