| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pwwf | Structured version Visualization version GIF version | ||
| Description: A power set is well-founded iff the base set is. (Contributed by Mario Carneiro, 8-Jun-2013.) (Revised by Mario Carneiro, 16-Nov-2014.) |
| Ref | Expression |
|---|---|
| pwwf | ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) ↔ 𝒫 𝐴 ∈ ∪ (𝑅1 “ On)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r1rankidb 9703 | . . . . . . 7 ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → 𝐴 ⊆ (𝑅1‘(rank‘𝐴))) | |
| 2 | 1 | sspwd 4562 | . . . . . 6 ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → 𝒫 𝐴 ⊆ 𝒫 (𝑅1‘(rank‘𝐴))) |
| 3 | rankdmr1 9700 | . . . . . . 7 ⊢ (rank‘𝐴) ∈ dom 𝑅1 | |
| 4 | r1sucg 9668 | . . . . . . 7 ⊢ ((rank‘𝐴) ∈ dom 𝑅1 → (𝑅1‘suc (rank‘𝐴)) = 𝒫 (𝑅1‘(rank‘𝐴))) | |
| 5 | 3, 4 | ax-mp 5 | . . . . . 6 ⊢ (𝑅1‘suc (rank‘𝐴)) = 𝒫 (𝑅1‘(rank‘𝐴)) |
| 6 | 2, 5 | sseqtrrdi 3971 | . . . . 5 ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → 𝒫 𝐴 ⊆ (𝑅1‘suc (rank‘𝐴))) |
| 7 | fvex 6841 | . . . . . 6 ⊢ (𝑅1‘suc (rank‘𝐴)) ∈ V | |
| 8 | 7 | elpw2 5274 | . . . . 5 ⊢ (𝒫 𝐴 ∈ 𝒫 (𝑅1‘suc (rank‘𝐴)) ↔ 𝒫 𝐴 ⊆ (𝑅1‘suc (rank‘𝐴))) |
| 9 | 6, 8 | sylibr 234 | . . . 4 ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → 𝒫 𝐴 ∈ 𝒫 (𝑅1‘suc (rank‘𝐴))) |
| 10 | r1funlim 9665 | . . . . . . . 8 ⊢ (Fun 𝑅1 ∧ Lim dom 𝑅1) | |
| 11 | 10 | simpri 485 | . . . . . . 7 ⊢ Lim dom 𝑅1 |
| 12 | limsuc 7785 | . . . . . . 7 ⊢ (Lim dom 𝑅1 → ((rank‘𝐴) ∈ dom 𝑅1 ↔ suc (rank‘𝐴) ∈ dom 𝑅1)) | |
| 13 | 11, 12 | ax-mp 5 | . . . . . 6 ⊢ ((rank‘𝐴) ∈ dom 𝑅1 ↔ suc (rank‘𝐴) ∈ dom 𝑅1) |
| 14 | 3, 13 | mpbi 230 | . . . . 5 ⊢ suc (rank‘𝐴) ∈ dom 𝑅1 |
| 15 | r1sucg 9668 | . . . . 5 ⊢ (suc (rank‘𝐴) ∈ dom 𝑅1 → (𝑅1‘suc suc (rank‘𝐴)) = 𝒫 (𝑅1‘suc (rank‘𝐴))) | |
| 16 | 14, 15 | ax-mp 5 | . . . 4 ⊢ (𝑅1‘suc suc (rank‘𝐴)) = 𝒫 (𝑅1‘suc (rank‘𝐴)) |
| 17 | 9, 16 | eleqtrrdi 2842 | . . 3 ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → 𝒫 𝐴 ∈ (𝑅1‘suc suc (rank‘𝐴))) |
| 18 | r1elwf 9695 | . . 3 ⊢ (𝒫 𝐴 ∈ (𝑅1‘suc suc (rank‘𝐴)) → 𝒫 𝐴 ∈ ∪ (𝑅1 “ On)) | |
| 19 | 17, 18 | syl 17 | . 2 ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → 𝒫 𝐴 ∈ ∪ (𝑅1 “ On)) |
| 20 | r1elssi 9704 | . . 3 ⊢ (𝒫 𝐴 ∈ ∪ (𝑅1 “ On) → 𝒫 𝐴 ⊆ ∪ (𝑅1 “ On)) | |
| 21 | pwexr 7704 | . . . 4 ⊢ (𝒫 𝐴 ∈ ∪ (𝑅1 “ On) → 𝐴 ∈ V) | |
| 22 | pwidg 4569 | . . . 4 ⊢ (𝐴 ∈ V → 𝐴 ∈ 𝒫 𝐴) | |
| 23 | 21, 22 | syl 17 | . . 3 ⊢ (𝒫 𝐴 ∈ ∪ (𝑅1 “ On) → 𝐴 ∈ 𝒫 𝐴) |
| 24 | 20, 23 | sseldd 3930 | . 2 ⊢ (𝒫 𝐴 ∈ ∪ (𝑅1 “ On) → 𝐴 ∈ ∪ (𝑅1 “ On)) |
| 25 | 19, 24 | impbii 209 | 1 ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) ↔ 𝒫 𝐴 ∈ ∪ (𝑅1 “ On)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ⊆ wss 3897 𝒫 cpw 4549 ∪ cuni 4858 dom cdm 5619 “ cima 5622 Oncon0 6312 Lim wlim 6313 suc csuc 6314 Fun wfun 6481 ‘cfv 6487 𝑅1cr1 9661 rankcrnk 9662 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6254 df-ord 6315 df-on 6316 df-lim 6317 df-suc 6318 df-iota 6443 df-fun 6489 df-fn 6490 df-f 6491 df-f1 6492 df-fo 6493 df-f1o 6494 df-fv 6495 df-ov 7355 df-om 7803 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-r1 9663 df-rank 9664 |
| This theorem is referenced by: snwf 9708 uniwf 9718 rankpwi 9722 r1pw 9744 r1pwcl 9746 dfac12r 10044 wfgru 10713 xpwf 45062 wfaxsep 45093 wfaxpow 45095 |
| Copyright terms: Public domain | W3C validator |