| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pwwf | Structured version Visualization version GIF version | ||
| Description: A power set is well-founded iff the base set is. (Contributed by Mario Carneiro, 8-Jun-2013.) (Revised by Mario Carneiro, 16-Nov-2014.) |
| Ref | Expression |
|---|---|
| pwwf | ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) ↔ 𝒫 𝐴 ∈ ∪ (𝑅1 “ On)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r1rankidb 9719 | . . . . . . 7 ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → 𝐴 ⊆ (𝑅1‘(rank‘𝐴))) | |
| 2 | 1 | sspwd 4566 | . . . . . 6 ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → 𝒫 𝐴 ⊆ 𝒫 (𝑅1‘(rank‘𝐴))) |
| 3 | rankdmr1 9716 | . . . . . . 7 ⊢ (rank‘𝐴) ∈ dom 𝑅1 | |
| 4 | r1sucg 9684 | . . . . . . 7 ⊢ ((rank‘𝐴) ∈ dom 𝑅1 → (𝑅1‘suc (rank‘𝐴)) = 𝒫 (𝑅1‘(rank‘𝐴))) | |
| 5 | 3, 4 | ax-mp 5 | . . . . . 6 ⊢ (𝑅1‘suc (rank‘𝐴)) = 𝒫 (𝑅1‘(rank‘𝐴)) |
| 6 | 2, 5 | sseqtrrdi 3979 | . . . . 5 ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → 𝒫 𝐴 ⊆ (𝑅1‘suc (rank‘𝐴))) |
| 7 | fvex 6839 | . . . . . 6 ⊢ (𝑅1‘suc (rank‘𝐴)) ∈ V | |
| 8 | 7 | elpw2 5276 | . . . . 5 ⊢ (𝒫 𝐴 ∈ 𝒫 (𝑅1‘suc (rank‘𝐴)) ↔ 𝒫 𝐴 ⊆ (𝑅1‘suc (rank‘𝐴))) |
| 9 | 6, 8 | sylibr 234 | . . . 4 ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → 𝒫 𝐴 ∈ 𝒫 (𝑅1‘suc (rank‘𝐴))) |
| 10 | r1funlim 9681 | . . . . . . . 8 ⊢ (Fun 𝑅1 ∧ Lim dom 𝑅1) | |
| 11 | 10 | simpri 485 | . . . . . . 7 ⊢ Lim dom 𝑅1 |
| 12 | limsuc 7789 | . . . . . . 7 ⊢ (Lim dom 𝑅1 → ((rank‘𝐴) ∈ dom 𝑅1 ↔ suc (rank‘𝐴) ∈ dom 𝑅1)) | |
| 13 | 11, 12 | ax-mp 5 | . . . . . 6 ⊢ ((rank‘𝐴) ∈ dom 𝑅1 ↔ suc (rank‘𝐴) ∈ dom 𝑅1) |
| 14 | 3, 13 | mpbi 230 | . . . . 5 ⊢ suc (rank‘𝐴) ∈ dom 𝑅1 |
| 15 | r1sucg 9684 | . . . . 5 ⊢ (suc (rank‘𝐴) ∈ dom 𝑅1 → (𝑅1‘suc suc (rank‘𝐴)) = 𝒫 (𝑅1‘suc (rank‘𝐴))) | |
| 16 | 14, 15 | ax-mp 5 | . . . 4 ⊢ (𝑅1‘suc suc (rank‘𝐴)) = 𝒫 (𝑅1‘suc (rank‘𝐴)) |
| 17 | 9, 16 | eleqtrrdi 2839 | . . 3 ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → 𝒫 𝐴 ∈ (𝑅1‘suc suc (rank‘𝐴))) |
| 18 | r1elwf 9711 | . . 3 ⊢ (𝒫 𝐴 ∈ (𝑅1‘suc suc (rank‘𝐴)) → 𝒫 𝐴 ∈ ∪ (𝑅1 “ On)) | |
| 19 | 17, 18 | syl 17 | . 2 ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → 𝒫 𝐴 ∈ ∪ (𝑅1 “ On)) |
| 20 | r1elssi 9720 | . . 3 ⊢ (𝒫 𝐴 ∈ ∪ (𝑅1 “ On) → 𝒫 𝐴 ⊆ ∪ (𝑅1 “ On)) | |
| 21 | pwexr 7705 | . . . 4 ⊢ (𝒫 𝐴 ∈ ∪ (𝑅1 “ On) → 𝐴 ∈ V) | |
| 22 | pwidg 4573 | . . . 4 ⊢ (𝐴 ∈ V → 𝐴 ∈ 𝒫 𝐴) | |
| 23 | 21, 22 | syl 17 | . . 3 ⊢ (𝒫 𝐴 ∈ ∪ (𝑅1 “ On) → 𝐴 ∈ 𝒫 𝐴) |
| 24 | 20, 23 | sseldd 3938 | . 2 ⊢ (𝒫 𝐴 ∈ ∪ (𝑅1 “ On) → 𝐴 ∈ ∪ (𝑅1 “ On)) |
| 25 | 19, 24 | impbii 209 | 1 ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) ↔ 𝒫 𝐴 ∈ ∪ (𝑅1 “ On)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∈ wcel 2109 Vcvv 3438 ⊆ wss 3905 𝒫 cpw 4553 ∪ cuni 4861 dom cdm 5623 “ cima 5626 Oncon0 6311 Lim wlim 6312 suc csuc 6313 Fun wfun 6480 ‘cfv 6486 𝑅1cr1 9677 rankcrnk 9678 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7356 df-om 7807 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-r1 9679 df-rank 9680 |
| This theorem is referenced by: snwf 9724 uniwf 9734 rankpwi 9738 r1pw 9760 r1pwcl 9762 dfac12r 10060 wfgru 10729 xpwf 44938 wfaxsep 44969 wfaxpow 44971 |
| Copyright terms: Public domain | W3C validator |