| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pwwf | Structured version Visualization version GIF version | ||
| Description: A power set is well-founded iff the base set is. (Contributed by Mario Carneiro, 8-Jun-2013.) (Revised by Mario Carneiro, 16-Nov-2014.) |
| Ref | Expression |
|---|---|
| pwwf | ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) ↔ 𝒫 𝐴 ∈ ∪ (𝑅1 “ On)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r1rankidb 9763 | . . . . . . 7 ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → 𝐴 ⊆ (𝑅1‘(rank‘𝐴))) | |
| 2 | 1 | sspwd 4578 | . . . . . 6 ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → 𝒫 𝐴 ⊆ 𝒫 (𝑅1‘(rank‘𝐴))) |
| 3 | rankdmr1 9760 | . . . . . . 7 ⊢ (rank‘𝐴) ∈ dom 𝑅1 | |
| 4 | r1sucg 9728 | . . . . . . 7 ⊢ ((rank‘𝐴) ∈ dom 𝑅1 → (𝑅1‘suc (rank‘𝐴)) = 𝒫 (𝑅1‘(rank‘𝐴))) | |
| 5 | 3, 4 | ax-mp 5 | . . . . . 6 ⊢ (𝑅1‘suc (rank‘𝐴)) = 𝒫 (𝑅1‘(rank‘𝐴)) |
| 6 | 2, 5 | sseqtrrdi 3990 | . . . . 5 ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → 𝒫 𝐴 ⊆ (𝑅1‘suc (rank‘𝐴))) |
| 7 | fvex 6873 | . . . . . 6 ⊢ (𝑅1‘suc (rank‘𝐴)) ∈ V | |
| 8 | 7 | elpw2 5291 | . . . . 5 ⊢ (𝒫 𝐴 ∈ 𝒫 (𝑅1‘suc (rank‘𝐴)) ↔ 𝒫 𝐴 ⊆ (𝑅1‘suc (rank‘𝐴))) |
| 9 | 6, 8 | sylibr 234 | . . . 4 ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → 𝒫 𝐴 ∈ 𝒫 (𝑅1‘suc (rank‘𝐴))) |
| 10 | r1funlim 9725 | . . . . . . . 8 ⊢ (Fun 𝑅1 ∧ Lim dom 𝑅1) | |
| 11 | 10 | simpri 485 | . . . . . . 7 ⊢ Lim dom 𝑅1 |
| 12 | limsuc 7827 | . . . . . . 7 ⊢ (Lim dom 𝑅1 → ((rank‘𝐴) ∈ dom 𝑅1 ↔ suc (rank‘𝐴) ∈ dom 𝑅1)) | |
| 13 | 11, 12 | ax-mp 5 | . . . . . 6 ⊢ ((rank‘𝐴) ∈ dom 𝑅1 ↔ suc (rank‘𝐴) ∈ dom 𝑅1) |
| 14 | 3, 13 | mpbi 230 | . . . . 5 ⊢ suc (rank‘𝐴) ∈ dom 𝑅1 |
| 15 | r1sucg 9728 | . . . . 5 ⊢ (suc (rank‘𝐴) ∈ dom 𝑅1 → (𝑅1‘suc suc (rank‘𝐴)) = 𝒫 (𝑅1‘suc (rank‘𝐴))) | |
| 16 | 14, 15 | ax-mp 5 | . . . 4 ⊢ (𝑅1‘suc suc (rank‘𝐴)) = 𝒫 (𝑅1‘suc (rank‘𝐴)) |
| 17 | 9, 16 | eleqtrrdi 2840 | . . 3 ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → 𝒫 𝐴 ∈ (𝑅1‘suc suc (rank‘𝐴))) |
| 18 | r1elwf 9755 | . . 3 ⊢ (𝒫 𝐴 ∈ (𝑅1‘suc suc (rank‘𝐴)) → 𝒫 𝐴 ∈ ∪ (𝑅1 “ On)) | |
| 19 | 17, 18 | syl 17 | . 2 ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → 𝒫 𝐴 ∈ ∪ (𝑅1 “ On)) |
| 20 | r1elssi 9764 | . . 3 ⊢ (𝒫 𝐴 ∈ ∪ (𝑅1 “ On) → 𝒫 𝐴 ⊆ ∪ (𝑅1 “ On)) | |
| 21 | pwexr 7743 | . . . 4 ⊢ (𝒫 𝐴 ∈ ∪ (𝑅1 “ On) → 𝐴 ∈ V) | |
| 22 | pwidg 4585 | . . . 4 ⊢ (𝐴 ∈ V → 𝐴 ∈ 𝒫 𝐴) | |
| 23 | 21, 22 | syl 17 | . . 3 ⊢ (𝒫 𝐴 ∈ ∪ (𝑅1 “ On) → 𝐴 ∈ 𝒫 𝐴) |
| 24 | 20, 23 | sseldd 3949 | . 2 ⊢ (𝒫 𝐴 ∈ ∪ (𝑅1 “ On) → 𝐴 ∈ ∪ (𝑅1 “ On)) |
| 25 | 19, 24 | impbii 209 | 1 ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) ↔ 𝒫 𝐴 ∈ ∪ (𝑅1 “ On)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∈ wcel 2109 Vcvv 3450 ⊆ wss 3916 𝒫 cpw 4565 ∪ cuni 4873 dom cdm 5640 “ cima 5643 Oncon0 6334 Lim wlim 6335 suc csuc 6336 Fun wfun 6507 ‘cfv 6513 𝑅1cr1 9721 rankcrnk 9722 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-pss 3936 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-int 4913 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-tr 5217 df-id 5535 df-eprel 5540 df-po 5548 df-so 5549 df-fr 5593 df-we 5595 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-pred 6276 df-ord 6337 df-on 6338 df-lim 6339 df-suc 6340 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-ov 7392 df-om 7845 df-2nd 7971 df-frecs 8262 df-wrecs 8293 df-recs 8342 df-rdg 8380 df-r1 9723 df-rank 9724 |
| This theorem is referenced by: snwf 9768 uniwf 9778 rankpwi 9782 r1pw 9804 r1pwcl 9806 dfac12r 10106 wfgru 10775 xpwf 44947 wfaxsep 44978 wfaxpow 44980 |
| Copyright terms: Public domain | W3C validator |