MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwwf Structured version   Visualization version   GIF version

Theorem pwwf 8948
Description: A power set is well-founded iff the base set is. (Contributed by Mario Carneiro, 8-Jun-2013.) (Revised by Mario Carneiro, 16-Nov-2014.)
Assertion
Ref Expression
pwwf (𝐴 (𝑅1 “ On) ↔ 𝒫 𝐴 (𝑅1 “ On))

Proof of Theorem pwwf
StepHypRef Expression
1 r1rankidb 8945 . . . . . . 7 (𝐴 (𝑅1 “ On) → 𝐴 ⊆ (𝑅1‘(rank‘𝐴)))
2 sspwb 5139 . . . . . . 7 (𝐴 ⊆ (𝑅1‘(rank‘𝐴)) ↔ 𝒫 𝐴 ⊆ 𝒫 (𝑅1‘(rank‘𝐴)))
31, 2sylib 210 . . . . . 6 (𝐴 (𝑅1 “ On) → 𝒫 𝐴 ⊆ 𝒫 (𝑅1‘(rank‘𝐴)))
4 rankdmr1 8942 . . . . . . 7 (rank‘𝐴) ∈ dom 𝑅1
5 r1sucg 8910 . . . . . . 7 ((rank‘𝐴) ∈ dom 𝑅1 → (𝑅1‘suc (rank‘𝐴)) = 𝒫 (𝑅1‘(rank‘𝐴)))
64, 5ax-mp 5 . . . . . 6 (𝑅1‘suc (rank‘𝐴)) = 𝒫 (𝑅1‘(rank‘𝐴))
73, 6syl6sseqr 3878 . . . . 5 (𝐴 (𝑅1 “ On) → 𝒫 𝐴 ⊆ (𝑅1‘suc (rank‘𝐴)))
8 fvex 6447 . . . . . 6 (𝑅1‘suc (rank‘𝐴)) ∈ V
98elpw2 5051 . . . . 5 (𝒫 𝐴 ∈ 𝒫 (𝑅1‘suc (rank‘𝐴)) ↔ 𝒫 𝐴 ⊆ (𝑅1‘suc (rank‘𝐴)))
107, 9sylibr 226 . . . 4 (𝐴 (𝑅1 “ On) → 𝒫 𝐴 ∈ 𝒫 (𝑅1‘suc (rank‘𝐴)))
11 r1funlim 8907 . . . . . . . 8 (Fun 𝑅1 ∧ Lim dom 𝑅1)
1211simpri 481 . . . . . . 7 Lim dom 𝑅1
13 limsuc 7311 . . . . . . 7 (Lim dom 𝑅1 → ((rank‘𝐴) ∈ dom 𝑅1 ↔ suc (rank‘𝐴) ∈ dom 𝑅1))
1412, 13ax-mp 5 . . . . . 6 ((rank‘𝐴) ∈ dom 𝑅1 ↔ suc (rank‘𝐴) ∈ dom 𝑅1)
154, 14mpbi 222 . . . . 5 suc (rank‘𝐴) ∈ dom 𝑅1
16 r1sucg 8910 . . . . 5 (suc (rank‘𝐴) ∈ dom 𝑅1 → (𝑅1‘suc suc (rank‘𝐴)) = 𝒫 (𝑅1‘suc (rank‘𝐴)))
1715, 16ax-mp 5 . . . 4 (𝑅1‘suc suc (rank‘𝐴)) = 𝒫 (𝑅1‘suc (rank‘𝐴))
1810, 17syl6eleqr 2918 . . 3 (𝐴 (𝑅1 “ On) → 𝒫 𝐴 ∈ (𝑅1‘suc suc (rank‘𝐴)))
19 r1elwf 8937 . . 3 (𝒫 𝐴 ∈ (𝑅1‘suc suc (rank‘𝐴)) → 𝒫 𝐴 (𝑅1 “ On))
2018, 19syl 17 . 2 (𝐴 (𝑅1 “ On) → 𝒫 𝐴 (𝑅1 “ On))
21 r1elssi 8946 . . 3 (𝒫 𝐴 (𝑅1 “ On) → 𝒫 𝐴 (𝑅1 “ On))
22 pwexr 7235 . . . 4 (𝒫 𝐴 (𝑅1 “ On) → 𝐴 ∈ V)
23 pwidg 4394 . . . 4 (𝐴 ∈ V → 𝐴 ∈ 𝒫 𝐴)
2422, 23syl 17 . . 3 (𝒫 𝐴 (𝑅1 “ On) → 𝐴 ∈ 𝒫 𝐴)
2521, 24sseldd 3829 . 2 (𝒫 𝐴 (𝑅1 “ On) → 𝐴 (𝑅1 “ On))
2620, 25impbii 201 1 (𝐴 (𝑅1 “ On) ↔ 𝒫 𝐴 (𝑅1 “ On))
Colors of variables: wff setvar class
Syntax hints:  wb 198   = wceq 1658  wcel 2166  Vcvv 3415  wss 3799  𝒫 cpw 4379   cuni 4659  dom cdm 5343  cima 5346  Oncon0 5964  Lim wlim 5965  suc csuc 5966  Fun wfun 6118  cfv 6124  𝑅1cr1 8903  rankcrnk 8904
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2804  ax-sep 5006  ax-nul 5014  ax-pow 5066  ax-pr 5128  ax-un 7210
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2606  df-eu 2641  df-clab 2813  df-cleq 2819  df-clel 2822  df-nfc 2959  df-ne 3001  df-ral 3123  df-rex 3124  df-reu 3125  df-rab 3127  df-v 3417  df-sbc 3664  df-csb 3759  df-dif 3802  df-un 3804  df-in 3806  df-ss 3813  df-pss 3815  df-nul 4146  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4660  df-int 4699  df-iun 4743  df-br 4875  df-opab 4937  df-mpt 4954  df-tr 4977  df-id 5251  df-eprel 5256  df-po 5264  df-so 5265  df-fr 5302  df-we 5304  df-xp 5349  df-rel 5350  df-cnv 5351  df-co 5352  df-dm 5353  df-rn 5354  df-res 5355  df-ima 5356  df-pred 5921  df-ord 5967  df-on 5968  df-lim 5969  df-suc 5970  df-iota 6087  df-fun 6126  df-fn 6127  df-f 6128  df-f1 6129  df-fo 6130  df-f1o 6131  df-fv 6132  df-om 7328  df-wrecs 7673  df-recs 7735  df-rdg 7773  df-r1 8905  df-rank 8906
This theorem is referenced by:  snwf  8950  uniwf  8960  rankpwi  8964  r1pw  8986  r1pwcl  8988  dfac12r  9284  wfgru  9954
  Copyright terms: Public domain W3C validator