MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwfiOLD Structured version   Visualization version   GIF version

Theorem pwfiOLD 9417
Description: Obsolete version of pwfi 9385 as of 7-Sep-2024. (Contributed by NM, 26-Mar-2007.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
pwfiOLD (𝐴 ∈ Fin ↔ 𝒫 𝐴 ∈ Fin)

Proof of Theorem pwfiOLD
Dummy variables 𝑚 𝑘 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isfi 9036 . . 3 (𝐴 ∈ Fin ↔ ∃𝑚 ∈ ω 𝐴𝑚)
2 pweq 4636 . . . . . . 7 (𝑚 = ∅ → 𝒫 𝑚 = 𝒫 ∅)
32eleq1d 2829 . . . . . 6 (𝑚 = ∅ → (𝒫 𝑚 ∈ Fin ↔ 𝒫 ∅ ∈ Fin))
4 pweq 4636 . . . . . . 7 (𝑚 = 𝑘 → 𝒫 𝑚 = 𝒫 𝑘)
54eleq1d 2829 . . . . . 6 (𝑚 = 𝑘 → (𝒫 𝑚 ∈ Fin ↔ 𝒫 𝑘 ∈ Fin))
6 pweq 4636 . . . . . . . 8 (𝑚 = suc 𝑘 → 𝒫 𝑚 = 𝒫 suc 𝑘)
7 df-suc 6401 . . . . . . . . 9 suc 𝑘 = (𝑘 ∪ {𝑘})
87pweqi 4638 . . . . . . . 8 𝒫 suc 𝑘 = 𝒫 (𝑘 ∪ {𝑘})
96, 8eqtrdi 2796 . . . . . . 7 (𝑚 = suc 𝑘 → 𝒫 𝑚 = 𝒫 (𝑘 ∪ {𝑘}))
109eleq1d 2829 . . . . . 6 (𝑚 = suc 𝑘 → (𝒫 𝑚 ∈ Fin ↔ 𝒫 (𝑘 ∪ {𝑘}) ∈ Fin))
11 pw0 4837 . . . . . . . 8 𝒫 ∅ = {∅}
12 df1o2 8529 . . . . . . . 8 1o = {∅}
1311, 12eqtr4i 2771 . . . . . . 7 𝒫 ∅ = 1o
14 1onn 8696 . . . . . . . 8 1o ∈ ω
15 ssid 4031 . . . . . . . 8 1o ⊆ 1o
16 ssnnfi 9235 . . . . . . . 8 ((1o ∈ ω ∧ 1o ⊆ 1o) → 1o ∈ Fin)
1714, 15, 16mp2an 691 . . . . . . 7 1o ∈ Fin
1813, 17eqeltri 2840 . . . . . 6 𝒫 ∅ ∈ Fin
19 eqid 2740 . . . . . . . 8 (𝑐 ∈ 𝒫 𝑘 ↦ (𝑐 ∪ {𝑘})) = (𝑐 ∈ 𝒫 𝑘 ↦ (𝑐 ∪ {𝑘}))
2019pwfilem 9384 . . . . . . 7 (𝒫 𝑘 ∈ Fin → 𝒫 (𝑘 ∪ {𝑘}) ∈ Fin)
2120a1i 11 . . . . . 6 (𝑘 ∈ ω → (𝒫 𝑘 ∈ Fin → 𝒫 (𝑘 ∪ {𝑘}) ∈ Fin))
223, 5, 10, 18, 21finds1 7939 . . . . 5 (𝑚 ∈ ω → 𝒫 𝑚 ∈ Fin)
23 pwen 9216 . . . . 5 (𝐴𝑚 → 𝒫 𝐴 ≈ 𝒫 𝑚)
24 enfii 9252 . . . . 5 ((𝒫 𝑚 ∈ Fin ∧ 𝒫 𝐴 ≈ 𝒫 𝑚) → 𝒫 𝐴 ∈ Fin)
2522, 23, 24syl2an 595 . . . 4 ((𝑚 ∈ ω ∧ 𝐴𝑚) → 𝒫 𝐴 ∈ Fin)
2625rexlimiva 3153 . . 3 (∃𝑚 ∈ ω 𝐴𝑚 → 𝒫 𝐴 ∈ Fin)
271, 26sylbi 217 . 2 (𝐴 ∈ Fin → 𝒫 𝐴 ∈ Fin)
28 pwexr 7800 . . . 4 (𝒫 𝐴 ∈ Fin → 𝐴 ∈ V)
29 canth2g 9197 . . . 4 (𝐴 ∈ V → 𝐴 ≺ 𝒫 𝐴)
30 sdomdom 9040 . . . 4 (𝐴 ≺ 𝒫 𝐴𝐴 ≼ 𝒫 𝐴)
3128, 29, 303syl 18 . . 3 (𝒫 𝐴 ∈ Fin → 𝐴 ≼ 𝒫 𝐴)
32 domfi 9255 . . 3 ((𝒫 𝐴 ∈ Fin ∧ 𝐴 ≼ 𝒫 𝐴) → 𝐴 ∈ Fin)
3331, 32mpdan 686 . 2 (𝒫 𝐴 ∈ Fin → 𝐴 ∈ Fin)
3427, 33impbii 209 1 (𝐴 ∈ Fin ↔ 𝒫 𝐴 ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1537  wcel 2108  wrex 3076  Vcvv 3488  cun 3974  wss 3976  c0 4352  𝒫 cpw 4622  {csn 4648   class class class wbr 5166  cmpt 5249  suc csuc 6397  ωcom 7903  1oc1o 8515  cen 9000  cdom 9001  csdm 9002  Fincfn 9003
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator