Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pwfiOLD | Structured version Visualization version GIF version |
Description: Obsolete version of pwfi 8961 as of 7-Sep-2024. (Contributed by NM, 26-Mar-2007.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
pwfiOLD | ⊢ (𝐴 ∈ Fin ↔ 𝒫 𝐴 ∈ Fin) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isfi 8764 | . . 3 ⊢ (𝐴 ∈ Fin ↔ ∃𝑚 ∈ ω 𝐴 ≈ 𝑚) | |
2 | pweq 4549 | . . . . . . 7 ⊢ (𝑚 = ∅ → 𝒫 𝑚 = 𝒫 ∅) | |
3 | 2 | eleq1d 2823 | . . . . . 6 ⊢ (𝑚 = ∅ → (𝒫 𝑚 ∈ Fin ↔ 𝒫 ∅ ∈ Fin)) |
4 | pweq 4549 | . . . . . . 7 ⊢ (𝑚 = 𝑘 → 𝒫 𝑚 = 𝒫 𝑘) | |
5 | 4 | eleq1d 2823 | . . . . . 6 ⊢ (𝑚 = 𝑘 → (𝒫 𝑚 ∈ Fin ↔ 𝒫 𝑘 ∈ Fin)) |
6 | pweq 4549 | . . . . . . . 8 ⊢ (𝑚 = suc 𝑘 → 𝒫 𝑚 = 𝒫 suc 𝑘) | |
7 | df-suc 6272 | . . . . . . . . 9 ⊢ suc 𝑘 = (𝑘 ∪ {𝑘}) | |
8 | 7 | pweqi 4551 | . . . . . . . 8 ⊢ 𝒫 suc 𝑘 = 𝒫 (𝑘 ∪ {𝑘}) |
9 | 6, 8 | eqtrdi 2794 | . . . . . . 7 ⊢ (𝑚 = suc 𝑘 → 𝒫 𝑚 = 𝒫 (𝑘 ∪ {𝑘})) |
10 | 9 | eleq1d 2823 | . . . . . 6 ⊢ (𝑚 = suc 𝑘 → (𝒫 𝑚 ∈ Fin ↔ 𝒫 (𝑘 ∪ {𝑘}) ∈ Fin)) |
11 | pw0 4745 | . . . . . . . 8 ⊢ 𝒫 ∅ = {∅} | |
12 | df1o2 8304 | . . . . . . . 8 ⊢ 1o = {∅} | |
13 | 11, 12 | eqtr4i 2769 | . . . . . . 7 ⊢ 𝒫 ∅ = 1o |
14 | 1onn 8470 | . . . . . . . 8 ⊢ 1o ∈ ω | |
15 | ssid 3943 | . . . . . . . 8 ⊢ 1o ⊆ 1o | |
16 | ssnnfi 8952 | . . . . . . . 8 ⊢ ((1o ∈ ω ∧ 1o ⊆ 1o) → 1o ∈ Fin) | |
17 | 14, 15, 16 | mp2an 689 | . . . . . . 7 ⊢ 1o ∈ Fin |
18 | 13, 17 | eqeltri 2835 | . . . . . 6 ⊢ 𝒫 ∅ ∈ Fin |
19 | eqid 2738 | . . . . . . . 8 ⊢ (𝑐 ∈ 𝒫 𝑘 ↦ (𝑐 ∪ {𝑘})) = (𝑐 ∈ 𝒫 𝑘 ↦ (𝑐 ∪ {𝑘})) | |
20 | 19 | pwfilem 8960 | . . . . . . 7 ⊢ (𝒫 𝑘 ∈ Fin → 𝒫 (𝑘 ∪ {𝑘}) ∈ Fin) |
21 | 20 | a1i 11 | . . . . . 6 ⊢ (𝑘 ∈ ω → (𝒫 𝑘 ∈ Fin → 𝒫 (𝑘 ∪ {𝑘}) ∈ Fin)) |
22 | 3, 5, 10, 18, 21 | finds1 7748 | . . . . 5 ⊢ (𝑚 ∈ ω → 𝒫 𝑚 ∈ Fin) |
23 | pwen 8937 | . . . . 5 ⊢ (𝐴 ≈ 𝑚 → 𝒫 𝐴 ≈ 𝒫 𝑚) | |
24 | enfii 8972 | . . . . 5 ⊢ ((𝒫 𝑚 ∈ Fin ∧ 𝒫 𝐴 ≈ 𝒫 𝑚) → 𝒫 𝐴 ∈ Fin) | |
25 | 22, 23, 24 | syl2an 596 | . . . 4 ⊢ ((𝑚 ∈ ω ∧ 𝐴 ≈ 𝑚) → 𝒫 𝐴 ∈ Fin) |
26 | 25 | rexlimiva 3210 | . . 3 ⊢ (∃𝑚 ∈ ω 𝐴 ≈ 𝑚 → 𝒫 𝐴 ∈ Fin) |
27 | 1, 26 | sylbi 216 | . 2 ⊢ (𝐴 ∈ Fin → 𝒫 𝐴 ∈ Fin) |
28 | pwexr 7615 | . . . 4 ⊢ (𝒫 𝐴 ∈ Fin → 𝐴 ∈ V) | |
29 | canth2g 8918 | . . . 4 ⊢ (𝐴 ∈ V → 𝐴 ≺ 𝒫 𝐴) | |
30 | sdomdom 8768 | . . . 4 ⊢ (𝐴 ≺ 𝒫 𝐴 → 𝐴 ≼ 𝒫 𝐴) | |
31 | 28, 29, 30 | 3syl 18 | . . 3 ⊢ (𝒫 𝐴 ∈ Fin → 𝐴 ≼ 𝒫 𝐴) |
32 | domfi 8975 | . . 3 ⊢ ((𝒫 𝐴 ∈ Fin ∧ 𝐴 ≼ 𝒫 𝐴) → 𝐴 ∈ Fin) | |
33 | 31, 32 | mpdan 684 | . 2 ⊢ (𝒫 𝐴 ∈ Fin → 𝐴 ∈ Fin) |
34 | 27, 33 | impbii 208 | 1 ⊢ (𝐴 ∈ Fin ↔ 𝒫 𝐴 ∈ Fin) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ∈ wcel 2106 ∃wrex 3065 Vcvv 3432 ∪ cun 3885 ⊆ wss 3887 ∅c0 4256 𝒫 cpw 4533 {csn 4561 class class class wbr 5074 ↦ cmpt 5157 suc csuc 6268 ωcom 7712 1oc1o 8290 ≈ cen 8730 ≼ cdom 8731 ≺ csdm 8732 Fincfn 8733 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-1o 8297 df-2o 8298 df-er 8498 df-map 8617 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |