MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwfiOLD Structured version   Visualization version   GIF version

Theorem pwfiOLD 8892
Description: Obsolete version of pwfi 8776 as of 7-Sep-2024. (Contributed by NM, 26-Mar-2007.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
pwfiOLD (𝐴 ∈ Fin ↔ 𝒫 𝐴 ∈ Fin)

Proof of Theorem pwfiOLD
Dummy variables 𝑚 𝑘 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isfi 8579 . . 3 (𝐴 ∈ Fin ↔ ∃𝑚 ∈ ω 𝐴𝑚)
2 pweq 4504 . . . . . . 7 (𝑚 = ∅ → 𝒫 𝑚 = 𝒫 ∅)
32eleq1d 2817 . . . . . 6 (𝑚 = ∅ → (𝒫 𝑚 ∈ Fin ↔ 𝒫 ∅ ∈ Fin))
4 pweq 4504 . . . . . . 7 (𝑚 = 𝑘 → 𝒫 𝑚 = 𝒫 𝑘)
54eleq1d 2817 . . . . . 6 (𝑚 = 𝑘 → (𝒫 𝑚 ∈ Fin ↔ 𝒫 𝑘 ∈ Fin))
6 pweq 4504 . . . . . . . 8 (𝑚 = suc 𝑘 → 𝒫 𝑚 = 𝒫 suc 𝑘)
7 df-suc 6178 . . . . . . . . 9 suc 𝑘 = (𝑘 ∪ {𝑘})
87pweqi 4506 . . . . . . . 8 𝒫 suc 𝑘 = 𝒫 (𝑘 ∪ {𝑘})
96, 8eqtrdi 2789 . . . . . . 7 (𝑚 = suc 𝑘 → 𝒫 𝑚 = 𝒫 (𝑘 ∪ {𝑘}))
109eleq1d 2817 . . . . . 6 (𝑚 = suc 𝑘 → (𝒫 𝑚 ∈ Fin ↔ 𝒫 (𝑘 ∪ {𝑘}) ∈ Fin))
11 pw0 4700 . . . . . . . 8 𝒫 ∅ = {∅}
12 df1o2 8143 . . . . . . . 8 1o = {∅}
1311, 12eqtr4i 2764 . . . . . . 7 𝒫 ∅ = 1o
14 1onn 8296 . . . . . . . 8 1o ∈ ω
15 ssid 3899 . . . . . . . 8 1o ⊆ 1o
16 ssnnfi 8768 . . . . . . . 8 ((1o ∈ ω ∧ 1o ⊆ 1o) → 1o ∈ Fin)
1714, 15, 16mp2an 692 . . . . . . 7 1o ∈ Fin
1813, 17eqeltri 2829 . . . . . 6 𝒫 ∅ ∈ Fin
19 eqid 2738 . . . . . . . 8 (𝑐 ∈ 𝒫 𝑘 ↦ (𝑐 ∪ {𝑘})) = (𝑐 ∈ 𝒫 𝑘 ↦ (𝑐 ∪ {𝑘}))
2019pwfilem 8775 . . . . . . 7 (𝒫 𝑘 ∈ Fin → 𝒫 (𝑘 ∪ {𝑘}) ∈ Fin)
2120a1i 11 . . . . . 6 (𝑘 ∈ ω → (𝒫 𝑘 ∈ Fin → 𝒫 (𝑘 ∪ {𝑘}) ∈ Fin))
223, 5, 10, 18, 21finds1 7632 . . . . 5 (𝑚 ∈ ω → 𝒫 𝑚 ∈ Fin)
23 pwen 8740 . . . . 5 (𝐴𝑚 → 𝒫 𝐴 ≈ 𝒫 𝑚)
24 enfii 8784 . . . . 5 ((𝒫 𝑚 ∈ Fin ∧ 𝒫 𝐴 ≈ 𝒫 𝑚) → 𝒫 𝐴 ∈ Fin)
2522, 23, 24syl2an 599 . . . 4 ((𝑚 ∈ ω ∧ 𝐴𝑚) → 𝒫 𝐴 ∈ Fin)
2625rexlimiva 3191 . . 3 (∃𝑚 ∈ ω 𝐴𝑚 → 𝒫 𝐴 ∈ Fin)
271, 26sylbi 220 . 2 (𝐴 ∈ Fin → 𝒫 𝐴 ∈ Fin)
28 pwexr 7506 . . . 4 (𝒫 𝐴 ∈ Fin → 𝐴 ∈ V)
29 canth2g 8721 . . . 4 (𝐴 ∈ V → 𝐴 ≺ 𝒫 𝐴)
30 sdomdom 8583 . . . 4 (𝐴 ≺ 𝒫 𝐴𝐴 ≼ 𝒫 𝐴)
3128, 29, 303syl 18 . . 3 (𝒫 𝐴 ∈ Fin → 𝐴 ≼ 𝒫 𝐴)
32 domfi 8817 . . 3 ((𝒫 𝐴 ∈ Fin ∧ 𝐴 ≼ 𝒫 𝐴) → 𝐴 ∈ Fin)
3331, 32mpdan 687 . 2 (𝒫 𝐴 ∈ Fin → 𝐴 ∈ Fin)
3427, 33impbii 212 1 (𝐴 ∈ Fin ↔ 𝒫 𝐴 ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209   = wceq 1542  wcel 2114  wrex 3054  Vcvv 3398  cun 3841  wss 3843  c0 4211  𝒫 cpw 4488  {csn 4516   class class class wbr 5030  cmpt 5110  suc csuc 6174  ωcom 7599  1oc1o 8124  cen 8552  cdom 8553  csdm 8554  Fincfn 8555
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296  ax-un 7479
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-ral 3058  df-rex 3059  df-reu 3060  df-rab 3062  df-v 3400  df-sbc 3681  df-csb 3791  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-pss 3862  df-nul 4212  df-if 4415  df-pw 4490  df-sn 4517  df-pr 4519  df-tp 4521  df-op 4523  df-uni 4797  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5429  df-eprel 5434  df-po 5442  df-so 5443  df-fr 5483  df-we 5485  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-ord 6175  df-on 6176  df-lim 6177  df-suc 6178  df-iota 6297  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-ov 7173  df-oprab 7174  df-mpo 7175  df-om 7600  df-1st 7714  df-2nd 7715  df-1o 8131  df-2o 8132  df-er 8320  df-map 8439  df-en 8556  df-dom 8557  df-sdom 8558  df-fin 8559
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator