![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pwfiOLD | Structured version Visualization version GIF version |
Description: Obsolete version of pwfi 9180 as of 7-Sep-2024. (Contributed by NM, 26-Mar-2007.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
pwfiOLD | ⊢ (𝐴 ∈ Fin ↔ 𝒫 𝐴 ∈ Fin) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isfi 8974 | . . 3 ⊢ (𝐴 ∈ Fin ↔ ∃𝑚 ∈ ω 𝐴 ≈ 𝑚) | |
2 | pweq 4616 | . . . . . . 7 ⊢ (𝑚 = ∅ → 𝒫 𝑚 = 𝒫 ∅) | |
3 | 2 | eleq1d 2818 | . . . . . 6 ⊢ (𝑚 = ∅ → (𝒫 𝑚 ∈ Fin ↔ 𝒫 ∅ ∈ Fin)) |
4 | pweq 4616 | . . . . . . 7 ⊢ (𝑚 = 𝑘 → 𝒫 𝑚 = 𝒫 𝑘) | |
5 | 4 | eleq1d 2818 | . . . . . 6 ⊢ (𝑚 = 𝑘 → (𝒫 𝑚 ∈ Fin ↔ 𝒫 𝑘 ∈ Fin)) |
6 | pweq 4616 | . . . . . . . 8 ⊢ (𝑚 = suc 𝑘 → 𝒫 𝑚 = 𝒫 suc 𝑘) | |
7 | df-suc 6370 | . . . . . . . . 9 ⊢ suc 𝑘 = (𝑘 ∪ {𝑘}) | |
8 | 7 | pweqi 4618 | . . . . . . . 8 ⊢ 𝒫 suc 𝑘 = 𝒫 (𝑘 ∪ {𝑘}) |
9 | 6, 8 | eqtrdi 2788 | . . . . . . 7 ⊢ (𝑚 = suc 𝑘 → 𝒫 𝑚 = 𝒫 (𝑘 ∪ {𝑘})) |
10 | 9 | eleq1d 2818 | . . . . . 6 ⊢ (𝑚 = suc 𝑘 → (𝒫 𝑚 ∈ Fin ↔ 𝒫 (𝑘 ∪ {𝑘}) ∈ Fin)) |
11 | pw0 4815 | . . . . . . . 8 ⊢ 𝒫 ∅ = {∅} | |
12 | df1o2 8475 | . . . . . . . 8 ⊢ 1o = {∅} | |
13 | 11, 12 | eqtr4i 2763 | . . . . . . 7 ⊢ 𝒫 ∅ = 1o |
14 | 1onn 8641 | . . . . . . . 8 ⊢ 1o ∈ ω | |
15 | ssid 4004 | . . . . . . . 8 ⊢ 1o ⊆ 1o | |
16 | ssnnfi 9171 | . . . . . . . 8 ⊢ ((1o ∈ ω ∧ 1o ⊆ 1o) → 1o ∈ Fin) | |
17 | 14, 15, 16 | mp2an 690 | . . . . . . 7 ⊢ 1o ∈ Fin |
18 | 13, 17 | eqeltri 2829 | . . . . . 6 ⊢ 𝒫 ∅ ∈ Fin |
19 | eqid 2732 | . . . . . . . 8 ⊢ (𝑐 ∈ 𝒫 𝑘 ↦ (𝑐 ∪ {𝑘})) = (𝑐 ∈ 𝒫 𝑘 ↦ (𝑐 ∪ {𝑘})) | |
20 | 19 | pwfilem 9179 | . . . . . . 7 ⊢ (𝒫 𝑘 ∈ Fin → 𝒫 (𝑘 ∪ {𝑘}) ∈ Fin) |
21 | 20 | a1i 11 | . . . . . 6 ⊢ (𝑘 ∈ ω → (𝒫 𝑘 ∈ Fin → 𝒫 (𝑘 ∪ {𝑘}) ∈ Fin)) |
22 | 3, 5, 10, 18, 21 | finds1 7894 | . . . . 5 ⊢ (𝑚 ∈ ω → 𝒫 𝑚 ∈ Fin) |
23 | pwen 9152 | . . . . 5 ⊢ (𝐴 ≈ 𝑚 → 𝒫 𝐴 ≈ 𝒫 𝑚) | |
24 | enfii 9191 | . . . . 5 ⊢ ((𝒫 𝑚 ∈ Fin ∧ 𝒫 𝐴 ≈ 𝒫 𝑚) → 𝒫 𝐴 ∈ Fin) | |
25 | 22, 23, 24 | syl2an 596 | . . . 4 ⊢ ((𝑚 ∈ ω ∧ 𝐴 ≈ 𝑚) → 𝒫 𝐴 ∈ Fin) |
26 | 25 | rexlimiva 3147 | . . 3 ⊢ (∃𝑚 ∈ ω 𝐴 ≈ 𝑚 → 𝒫 𝐴 ∈ Fin) |
27 | 1, 26 | sylbi 216 | . 2 ⊢ (𝐴 ∈ Fin → 𝒫 𝐴 ∈ Fin) |
28 | pwexr 7754 | . . . 4 ⊢ (𝒫 𝐴 ∈ Fin → 𝐴 ∈ V) | |
29 | canth2g 9133 | . . . 4 ⊢ (𝐴 ∈ V → 𝐴 ≺ 𝒫 𝐴) | |
30 | sdomdom 8978 | . . . 4 ⊢ (𝐴 ≺ 𝒫 𝐴 → 𝐴 ≼ 𝒫 𝐴) | |
31 | 28, 29, 30 | 3syl 18 | . . 3 ⊢ (𝒫 𝐴 ∈ Fin → 𝐴 ≼ 𝒫 𝐴) |
32 | domfi 9194 | . . 3 ⊢ ((𝒫 𝐴 ∈ Fin ∧ 𝐴 ≼ 𝒫 𝐴) → 𝐴 ∈ Fin) | |
33 | 31, 32 | mpdan 685 | . 2 ⊢ (𝒫 𝐴 ∈ Fin → 𝐴 ∈ Fin) |
34 | 27, 33 | impbii 208 | 1 ⊢ (𝐴 ∈ Fin ↔ 𝒫 𝐴 ∈ Fin) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1541 ∈ wcel 2106 ∃wrex 3070 Vcvv 3474 ∪ cun 3946 ⊆ wss 3948 ∅c0 4322 𝒫 cpw 4602 {csn 4628 class class class wbr 5148 ↦ cmpt 5231 suc csuc 6366 ωcom 7857 1oc1o 8461 ≈ cen 8938 ≼ cdom 8939 ≺ csdm 8940 Fincfn 8941 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7414 df-oprab 7415 df-mpo 7416 df-om 7858 df-1st 7977 df-2nd 7978 df-1o 8468 df-2o 8469 df-er 8705 df-map 8824 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |