Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pwfiOLD | Structured version Visualization version GIF version |
Description: Obsolete version of pwfi 8776 as of 7-Sep-2024. (Contributed by NM, 26-Mar-2007.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
pwfiOLD | ⊢ (𝐴 ∈ Fin ↔ 𝒫 𝐴 ∈ Fin) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isfi 8579 | . . 3 ⊢ (𝐴 ∈ Fin ↔ ∃𝑚 ∈ ω 𝐴 ≈ 𝑚) | |
2 | pweq 4504 | . . . . . . 7 ⊢ (𝑚 = ∅ → 𝒫 𝑚 = 𝒫 ∅) | |
3 | 2 | eleq1d 2817 | . . . . . 6 ⊢ (𝑚 = ∅ → (𝒫 𝑚 ∈ Fin ↔ 𝒫 ∅ ∈ Fin)) |
4 | pweq 4504 | . . . . . . 7 ⊢ (𝑚 = 𝑘 → 𝒫 𝑚 = 𝒫 𝑘) | |
5 | 4 | eleq1d 2817 | . . . . . 6 ⊢ (𝑚 = 𝑘 → (𝒫 𝑚 ∈ Fin ↔ 𝒫 𝑘 ∈ Fin)) |
6 | pweq 4504 | . . . . . . . 8 ⊢ (𝑚 = suc 𝑘 → 𝒫 𝑚 = 𝒫 suc 𝑘) | |
7 | df-suc 6178 | . . . . . . . . 9 ⊢ suc 𝑘 = (𝑘 ∪ {𝑘}) | |
8 | 7 | pweqi 4506 | . . . . . . . 8 ⊢ 𝒫 suc 𝑘 = 𝒫 (𝑘 ∪ {𝑘}) |
9 | 6, 8 | eqtrdi 2789 | . . . . . . 7 ⊢ (𝑚 = suc 𝑘 → 𝒫 𝑚 = 𝒫 (𝑘 ∪ {𝑘})) |
10 | 9 | eleq1d 2817 | . . . . . 6 ⊢ (𝑚 = suc 𝑘 → (𝒫 𝑚 ∈ Fin ↔ 𝒫 (𝑘 ∪ {𝑘}) ∈ Fin)) |
11 | pw0 4700 | . . . . . . . 8 ⊢ 𝒫 ∅ = {∅} | |
12 | df1o2 8143 | . . . . . . . 8 ⊢ 1o = {∅} | |
13 | 11, 12 | eqtr4i 2764 | . . . . . . 7 ⊢ 𝒫 ∅ = 1o |
14 | 1onn 8296 | . . . . . . . 8 ⊢ 1o ∈ ω | |
15 | ssid 3899 | . . . . . . . 8 ⊢ 1o ⊆ 1o | |
16 | ssnnfi 8768 | . . . . . . . 8 ⊢ ((1o ∈ ω ∧ 1o ⊆ 1o) → 1o ∈ Fin) | |
17 | 14, 15, 16 | mp2an 692 | . . . . . . 7 ⊢ 1o ∈ Fin |
18 | 13, 17 | eqeltri 2829 | . . . . . 6 ⊢ 𝒫 ∅ ∈ Fin |
19 | eqid 2738 | . . . . . . . 8 ⊢ (𝑐 ∈ 𝒫 𝑘 ↦ (𝑐 ∪ {𝑘})) = (𝑐 ∈ 𝒫 𝑘 ↦ (𝑐 ∪ {𝑘})) | |
20 | 19 | pwfilem 8775 | . . . . . . 7 ⊢ (𝒫 𝑘 ∈ Fin → 𝒫 (𝑘 ∪ {𝑘}) ∈ Fin) |
21 | 20 | a1i 11 | . . . . . 6 ⊢ (𝑘 ∈ ω → (𝒫 𝑘 ∈ Fin → 𝒫 (𝑘 ∪ {𝑘}) ∈ Fin)) |
22 | 3, 5, 10, 18, 21 | finds1 7632 | . . . . 5 ⊢ (𝑚 ∈ ω → 𝒫 𝑚 ∈ Fin) |
23 | pwen 8740 | . . . . 5 ⊢ (𝐴 ≈ 𝑚 → 𝒫 𝐴 ≈ 𝒫 𝑚) | |
24 | enfii 8784 | . . . . 5 ⊢ ((𝒫 𝑚 ∈ Fin ∧ 𝒫 𝐴 ≈ 𝒫 𝑚) → 𝒫 𝐴 ∈ Fin) | |
25 | 22, 23, 24 | syl2an 599 | . . . 4 ⊢ ((𝑚 ∈ ω ∧ 𝐴 ≈ 𝑚) → 𝒫 𝐴 ∈ Fin) |
26 | 25 | rexlimiva 3191 | . . 3 ⊢ (∃𝑚 ∈ ω 𝐴 ≈ 𝑚 → 𝒫 𝐴 ∈ Fin) |
27 | 1, 26 | sylbi 220 | . 2 ⊢ (𝐴 ∈ Fin → 𝒫 𝐴 ∈ Fin) |
28 | pwexr 7506 | . . . 4 ⊢ (𝒫 𝐴 ∈ Fin → 𝐴 ∈ V) | |
29 | canth2g 8721 | . . . 4 ⊢ (𝐴 ∈ V → 𝐴 ≺ 𝒫 𝐴) | |
30 | sdomdom 8583 | . . . 4 ⊢ (𝐴 ≺ 𝒫 𝐴 → 𝐴 ≼ 𝒫 𝐴) | |
31 | 28, 29, 30 | 3syl 18 | . . 3 ⊢ (𝒫 𝐴 ∈ Fin → 𝐴 ≼ 𝒫 𝐴) |
32 | domfi 8817 | . . 3 ⊢ ((𝒫 𝐴 ∈ Fin ∧ 𝐴 ≼ 𝒫 𝐴) → 𝐴 ∈ Fin) | |
33 | 31, 32 | mpdan 687 | . 2 ⊢ (𝒫 𝐴 ∈ Fin → 𝐴 ∈ Fin) |
34 | 27, 33 | impbii 212 | 1 ⊢ (𝐴 ∈ Fin ↔ 𝒫 𝐴 ∈ Fin) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 = wceq 1542 ∈ wcel 2114 ∃wrex 3054 Vcvv 3398 ∪ cun 3841 ⊆ wss 3843 ∅c0 4211 𝒫 cpw 4488 {csn 4516 class class class wbr 5030 ↦ cmpt 5110 suc csuc 6174 ωcom 7599 1oc1o 8124 ≈ cen 8552 ≼ cdom 8553 ≺ csdm 8554 Fincfn 8555 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2710 ax-sep 5167 ax-nul 5174 ax-pow 5232 ax-pr 5296 ax-un 7479 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-ral 3058 df-rex 3059 df-reu 3060 df-rab 3062 df-v 3400 df-sbc 3681 df-csb 3791 df-dif 3846 df-un 3848 df-in 3850 df-ss 3860 df-pss 3862 df-nul 4212 df-if 4415 df-pw 4490 df-sn 4517 df-pr 4519 df-tp 4521 df-op 4523 df-uni 4797 df-iun 4883 df-br 5031 df-opab 5093 df-mpt 5111 df-tr 5137 df-id 5429 df-eprel 5434 df-po 5442 df-so 5443 df-fr 5483 df-we 5485 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-ord 6175 df-on 6176 df-lim 6177 df-suc 6178 df-iota 6297 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-ov 7173 df-oprab 7174 df-mpo 7175 df-om 7600 df-1st 7714 df-2nd 7715 df-1o 8131 df-2o 8132 df-er 8320 df-map 8439 df-en 8556 df-dom 8557 df-sdom 8558 df-fin 8559 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |