MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwfiOLD Structured version   Visualization version   GIF version

Theorem pwfiOLD 9044
Description: Obsolete version of pwfi 8923 as of 7-Sep-2024. (Contributed by NM, 26-Mar-2007.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
pwfiOLD (𝐴 ∈ Fin ↔ 𝒫 𝐴 ∈ Fin)

Proof of Theorem pwfiOLD
Dummy variables 𝑚 𝑘 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isfi 8719 . . 3 (𝐴 ∈ Fin ↔ ∃𝑚 ∈ ω 𝐴𝑚)
2 pweq 4546 . . . . . . 7 (𝑚 = ∅ → 𝒫 𝑚 = 𝒫 ∅)
32eleq1d 2823 . . . . . 6 (𝑚 = ∅ → (𝒫 𝑚 ∈ Fin ↔ 𝒫 ∅ ∈ Fin))
4 pweq 4546 . . . . . . 7 (𝑚 = 𝑘 → 𝒫 𝑚 = 𝒫 𝑘)
54eleq1d 2823 . . . . . 6 (𝑚 = 𝑘 → (𝒫 𝑚 ∈ Fin ↔ 𝒫 𝑘 ∈ Fin))
6 pweq 4546 . . . . . . . 8 (𝑚 = suc 𝑘 → 𝒫 𝑚 = 𝒫 suc 𝑘)
7 df-suc 6257 . . . . . . . . 9 suc 𝑘 = (𝑘 ∪ {𝑘})
87pweqi 4548 . . . . . . . 8 𝒫 suc 𝑘 = 𝒫 (𝑘 ∪ {𝑘})
96, 8eqtrdi 2795 . . . . . . 7 (𝑚 = suc 𝑘 → 𝒫 𝑚 = 𝒫 (𝑘 ∪ {𝑘}))
109eleq1d 2823 . . . . . 6 (𝑚 = suc 𝑘 → (𝒫 𝑚 ∈ Fin ↔ 𝒫 (𝑘 ∪ {𝑘}) ∈ Fin))
11 pw0 4742 . . . . . . . 8 𝒫 ∅ = {∅}
12 df1o2 8279 . . . . . . . 8 1o = {∅}
1311, 12eqtr4i 2769 . . . . . . 7 𝒫 ∅ = 1o
14 1onn 8432 . . . . . . . 8 1o ∈ ω
15 ssid 3939 . . . . . . . 8 1o ⊆ 1o
16 ssnnfi 8914 . . . . . . . 8 ((1o ∈ ω ∧ 1o ⊆ 1o) → 1o ∈ Fin)
1714, 15, 16mp2an 688 . . . . . . 7 1o ∈ Fin
1813, 17eqeltri 2835 . . . . . 6 𝒫 ∅ ∈ Fin
19 eqid 2738 . . . . . . . 8 (𝑐 ∈ 𝒫 𝑘 ↦ (𝑐 ∪ {𝑘})) = (𝑐 ∈ 𝒫 𝑘 ↦ (𝑐 ∪ {𝑘}))
2019pwfilem 8922 . . . . . . 7 (𝒫 𝑘 ∈ Fin → 𝒫 (𝑘 ∪ {𝑘}) ∈ Fin)
2120a1i 11 . . . . . 6 (𝑘 ∈ ω → (𝒫 𝑘 ∈ Fin → 𝒫 (𝑘 ∪ {𝑘}) ∈ Fin))
223, 5, 10, 18, 21finds1 7722 . . . . 5 (𝑚 ∈ ω → 𝒫 𝑚 ∈ Fin)
23 pwen 8886 . . . . 5 (𝐴𝑚 → 𝒫 𝐴 ≈ 𝒫 𝑚)
24 enfii 8932 . . . . 5 ((𝒫 𝑚 ∈ Fin ∧ 𝒫 𝐴 ≈ 𝒫 𝑚) → 𝒫 𝐴 ∈ Fin)
2522, 23, 24syl2an 595 . . . 4 ((𝑚 ∈ ω ∧ 𝐴𝑚) → 𝒫 𝐴 ∈ Fin)
2625rexlimiva 3209 . . 3 (∃𝑚 ∈ ω 𝐴𝑚 → 𝒫 𝐴 ∈ Fin)
271, 26sylbi 216 . 2 (𝐴 ∈ Fin → 𝒫 𝐴 ∈ Fin)
28 pwexr 7593 . . . 4 (𝒫 𝐴 ∈ Fin → 𝐴 ∈ V)
29 canth2g 8867 . . . 4 (𝐴 ∈ V → 𝐴 ≺ 𝒫 𝐴)
30 sdomdom 8723 . . . 4 (𝐴 ≺ 𝒫 𝐴𝐴 ≼ 𝒫 𝐴)
3128, 29, 303syl 18 . . 3 (𝒫 𝐴 ∈ Fin → 𝐴 ≼ 𝒫 𝐴)
32 domfi 8935 . . 3 ((𝒫 𝐴 ∈ Fin ∧ 𝐴 ≼ 𝒫 𝐴) → 𝐴 ∈ Fin)
3331, 32mpdan 683 . 2 (𝒫 𝐴 ∈ Fin → 𝐴 ∈ Fin)
3427, 33impbii 208 1 (𝐴 ∈ Fin ↔ 𝒫 𝐴 ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1539  wcel 2108  wrex 3064  Vcvv 3422  cun 3881  wss 3883  c0 4253  𝒫 cpw 4530  {csn 4558   class class class wbr 5070  cmpt 5153  suc csuc 6253  ωcom 7687  1oc1o 8260  cen 8688  cdom 8689  csdm 8690  Fincfn 8691
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-1o 8267  df-2o 8268  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator