![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pwfiOLD | Structured version Visualization version GIF version |
Description: Obsolete version of pwfi 9385 as of 7-Sep-2024. (Contributed by NM, 26-Mar-2007.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
pwfiOLD | ⊢ (𝐴 ∈ Fin ↔ 𝒫 𝐴 ∈ Fin) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isfi 9036 | . . 3 ⊢ (𝐴 ∈ Fin ↔ ∃𝑚 ∈ ω 𝐴 ≈ 𝑚) | |
2 | pweq 4636 | . . . . . . 7 ⊢ (𝑚 = ∅ → 𝒫 𝑚 = 𝒫 ∅) | |
3 | 2 | eleq1d 2829 | . . . . . 6 ⊢ (𝑚 = ∅ → (𝒫 𝑚 ∈ Fin ↔ 𝒫 ∅ ∈ Fin)) |
4 | pweq 4636 | . . . . . . 7 ⊢ (𝑚 = 𝑘 → 𝒫 𝑚 = 𝒫 𝑘) | |
5 | 4 | eleq1d 2829 | . . . . . 6 ⊢ (𝑚 = 𝑘 → (𝒫 𝑚 ∈ Fin ↔ 𝒫 𝑘 ∈ Fin)) |
6 | pweq 4636 | . . . . . . . 8 ⊢ (𝑚 = suc 𝑘 → 𝒫 𝑚 = 𝒫 suc 𝑘) | |
7 | df-suc 6401 | . . . . . . . . 9 ⊢ suc 𝑘 = (𝑘 ∪ {𝑘}) | |
8 | 7 | pweqi 4638 | . . . . . . . 8 ⊢ 𝒫 suc 𝑘 = 𝒫 (𝑘 ∪ {𝑘}) |
9 | 6, 8 | eqtrdi 2796 | . . . . . . 7 ⊢ (𝑚 = suc 𝑘 → 𝒫 𝑚 = 𝒫 (𝑘 ∪ {𝑘})) |
10 | 9 | eleq1d 2829 | . . . . . 6 ⊢ (𝑚 = suc 𝑘 → (𝒫 𝑚 ∈ Fin ↔ 𝒫 (𝑘 ∪ {𝑘}) ∈ Fin)) |
11 | pw0 4837 | . . . . . . . 8 ⊢ 𝒫 ∅ = {∅} | |
12 | df1o2 8529 | . . . . . . . 8 ⊢ 1o = {∅} | |
13 | 11, 12 | eqtr4i 2771 | . . . . . . 7 ⊢ 𝒫 ∅ = 1o |
14 | 1onn 8696 | . . . . . . . 8 ⊢ 1o ∈ ω | |
15 | ssid 4031 | . . . . . . . 8 ⊢ 1o ⊆ 1o | |
16 | ssnnfi 9235 | . . . . . . . 8 ⊢ ((1o ∈ ω ∧ 1o ⊆ 1o) → 1o ∈ Fin) | |
17 | 14, 15, 16 | mp2an 691 | . . . . . . 7 ⊢ 1o ∈ Fin |
18 | 13, 17 | eqeltri 2840 | . . . . . 6 ⊢ 𝒫 ∅ ∈ Fin |
19 | eqid 2740 | . . . . . . . 8 ⊢ (𝑐 ∈ 𝒫 𝑘 ↦ (𝑐 ∪ {𝑘})) = (𝑐 ∈ 𝒫 𝑘 ↦ (𝑐 ∪ {𝑘})) | |
20 | 19 | pwfilem 9384 | . . . . . . 7 ⊢ (𝒫 𝑘 ∈ Fin → 𝒫 (𝑘 ∪ {𝑘}) ∈ Fin) |
21 | 20 | a1i 11 | . . . . . 6 ⊢ (𝑘 ∈ ω → (𝒫 𝑘 ∈ Fin → 𝒫 (𝑘 ∪ {𝑘}) ∈ Fin)) |
22 | 3, 5, 10, 18, 21 | finds1 7939 | . . . . 5 ⊢ (𝑚 ∈ ω → 𝒫 𝑚 ∈ Fin) |
23 | pwen 9216 | . . . . 5 ⊢ (𝐴 ≈ 𝑚 → 𝒫 𝐴 ≈ 𝒫 𝑚) | |
24 | enfii 9252 | . . . . 5 ⊢ ((𝒫 𝑚 ∈ Fin ∧ 𝒫 𝐴 ≈ 𝒫 𝑚) → 𝒫 𝐴 ∈ Fin) | |
25 | 22, 23, 24 | syl2an 595 | . . . 4 ⊢ ((𝑚 ∈ ω ∧ 𝐴 ≈ 𝑚) → 𝒫 𝐴 ∈ Fin) |
26 | 25 | rexlimiva 3153 | . . 3 ⊢ (∃𝑚 ∈ ω 𝐴 ≈ 𝑚 → 𝒫 𝐴 ∈ Fin) |
27 | 1, 26 | sylbi 217 | . 2 ⊢ (𝐴 ∈ Fin → 𝒫 𝐴 ∈ Fin) |
28 | pwexr 7800 | . . . 4 ⊢ (𝒫 𝐴 ∈ Fin → 𝐴 ∈ V) | |
29 | canth2g 9197 | . . . 4 ⊢ (𝐴 ∈ V → 𝐴 ≺ 𝒫 𝐴) | |
30 | sdomdom 9040 | . . . 4 ⊢ (𝐴 ≺ 𝒫 𝐴 → 𝐴 ≼ 𝒫 𝐴) | |
31 | 28, 29, 30 | 3syl 18 | . . 3 ⊢ (𝒫 𝐴 ∈ Fin → 𝐴 ≼ 𝒫 𝐴) |
32 | domfi 9255 | . . 3 ⊢ ((𝒫 𝐴 ∈ Fin ∧ 𝐴 ≼ 𝒫 𝐴) → 𝐴 ∈ Fin) | |
33 | 31, 32 | mpdan 686 | . 2 ⊢ (𝒫 𝐴 ∈ Fin → 𝐴 ∈ Fin) |
34 | 27, 33 | impbii 209 | 1 ⊢ (𝐴 ∈ Fin ↔ 𝒫 𝐴 ∈ Fin) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 ∈ wcel 2108 ∃wrex 3076 Vcvv 3488 ∪ cun 3974 ⊆ wss 3976 ∅c0 4352 𝒫 cpw 4622 {csn 4648 class class class wbr 5166 ↦ cmpt 5249 suc csuc 6397 ωcom 7903 1oc1o 8515 ≈ cen 9000 ≼ cdom 9001 ≺ csdm 9002 Fincfn 9003 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-1o 8522 df-2o 8523 df-er 8763 df-map 8886 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |