MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cutlt Structured version   Visualization version   GIF version

Theorem cutlt 27984
Description: Eliminating all elements below a given element of a cut does not affect the cut. (Contributed by Scott Fenton, 13-Mar-2025.)
Hypotheses
Ref Expression
cutlt.1 (𝜑𝐿 <<s 𝑅)
cutlt.2 (𝜑𝐴 = (𝐿 |s 𝑅))
cutlt.3 (𝜑𝑋𝐿)
Assertion
Ref Expression
cutlt (𝜑𝐴 = (({𝑋} ∪ {𝑦𝐿𝑋 <s 𝑦}) |s 𝑅))
Distinct variable groups:   𝑦,𝐿   𝑦,𝑋
Allowed substitution hints:   𝜑(𝑦)   𝐴(𝑦)   𝑅(𝑦)

Proof of Theorem cutlt
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cutlt.2 . 2 (𝜑𝐴 = (𝐿 |s 𝑅))
2 cutlt.1 . . 3 (𝜑𝐿 <<s 𝑅)
3 ssltss1 27851 . . . . . . 7 (𝐿 <<s 𝑅𝐿 No )
42, 3syl 17 . . . . . 6 (𝜑𝐿 No )
5 cutlt.3 . . . . . 6 (𝜑𝑋𝐿)
64, 5sseldd 4009 . . . . 5 (𝜑𝑋 No )
7 snelpwi 5463 . . . . 5 (𝑋 No → {𝑋} ∈ 𝒫 No )
86, 7syl 17 . . . 4 (𝜑 → {𝑋} ∈ 𝒫 No )
9 ssltex1 27849 . . . . . 6 (𝐿 <<s 𝑅𝐿 ∈ V)
10 rabexg 5355 . . . . . 6 (𝐿 ∈ V → {𝑦𝐿𝑋 <s 𝑦} ∈ V)
112, 9, 103syl 18 . . . . 5 (𝜑 → {𝑦𝐿𝑋 <s 𝑦} ∈ V)
12 ssrab2 4103 . . . . . 6 {𝑦𝐿𝑋 <s 𝑦} ⊆ 𝐿
1312, 4sstrid 4020 . . . . 5 (𝜑 → {𝑦𝐿𝑋 <s 𝑦} ⊆ No )
1411, 13elpwd 4628 . . . 4 (𝜑 → {𝑦𝐿𝑋 <s 𝑦} ∈ 𝒫 No )
15 pwuncl 7805 . . . 4 (({𝑋} ∈ 𝒫 No ∧ {𝑦𝐿𝑋 <s 𝑦} ∈ 𝒫 No ) → ({𝑋} ∪ {𝑦𝐿𝑋 <s 𝑦}) ∈ 𝒫 No )
168, 14, 15syl2anc 583 . . 3 (𝜑 → ({𝑋} ∪ {𝑦𝐿𝑋 <s 𝑦}) ∈ 𝒫 No )
17 ssltex2 27850 . . . . 5 (𝐿 <<s 𝑅𝑅 ∈ V)
182, 17syl 17 . . . 4 (𝜑𝑅 ∈ V)
19 ssltss2 27852 . . . . 5 (𝐿 <<s 𝑅𝑅 No )
202, 19syl 17 . . . 4 (𝜑𝑅 No )
2118, 20elpwd 4628 . . 3 (𝜑𝑅 ∈ 𝒫 No )
22 snidg 4682 . . . . . . . . 9 (𝑋𝐿𝑋 ∈ {𝑋})
23 elun1 4205 . . . . . . . . 9 (𝑋 ∈ {𝑋} → 𝑋 ∈ ({𝑋} ∪ {𝑦𝐿𝑋 <s 𝑦}))
245, 22, 233syl 18 . . . . . . . 8 (𝜑𝑋 ∈ ({𝑋} ∪ {𝑦𝐿𝑋 <s 𝑦}))
2524adantr 480 . . . . . . 7 ((𝜑𝑎𝐿) → 𝑋 ∈ ({𝑋} ∪ {𝑦𝐿𝑋 <s 𝑦}))
26 breq2 5170 . . . . . . . 8 (𝑏 = 𝑋 → (𝑎 ≤s 𝑏𝑎 ≤s 𝑋))
2726rspcev 3635 . . . . . . 7 ((𝑋 ∈ ({𝑋} ∪ {𝑦𝐿𝑋 <s 𝑦}) ∧ 𝑎 ≤s 𝑋) → ∃𝑏 ∈ ({𝑋} ∪ {𝑦𝐿𝑋 <s 𝑦})𝑎 ≤s 𝑏)
2825, 27sylan 579 . . . . . 6 (((𝜑𝑎𝐿) ∧ 𝑎 ≤s 𝑋) → ∃𝑏 ∈ ({𝑋} ∪ {𝑦𝐿𝑋 <s 𝑦})𝑎 ≤s 𝑏)
2928ex 412 . . . . 5 ((𝜑𝑎𝐿) → (𝑎 ≤s 𝑋 → ∃𝑏 ∈ ({𝑋} ∪ {𝑦𝐿𝑋 <s 𝑦})𝑎 ≤s 𝑏))
306adantr 480 . . . . . . 7 ((𝜑𝑎𝐿) → 𝑋 No )
314sselda 4008 . . . . . . 7 ((𝜑𝑎𝐿) → 𝑎 No )
32 sltnle 27816 . . . . . . 7 ((𝑋 No 𝑎 No ) → (𝑋 <s 𝑎 ↔ ¬ 𝑎 ≤s 𝑋))
3330, 31, 32syl2anc 583 . . . . . 6 ((𝜑𝑎𝐿) → (𝑋 <s 𝑎 ↔ ¬ 𝑎 ≤s 𝑋))
34 breq2 5170 . . . . . . . . . 10 (𝑦 = 𝑎 → (𝑋 <s 𝑦𝑋 <s 𝑎))
3534elrab 3708 . . . . . . . . 9 (𝑎 ∈ {𝑦𝐿𝑋 <s 𝑦} ↔ (𝑎𝐿𝑋 <s 𝑎))
36 elun2 4206 . . . . . . . . 9 (𝑎 ∈ {𝑦𝐿𝑋 <s 𝑦} → 𝑎 ∈ ({𝑋} ∪ {𝑦𝐿𝑋 <s 𝑦}))
3735, 36sylbir 235 . . . . . . . 8 ((𝑎𝐿𝑋 <s 𝑎) → 𝑎 ∈ ({𝑋} ∪ {𝑦𝐿𝑋 <s 𝑦}))
38 slerflex 27826 . . . . . . . . . 10 (𝑎 No 𝑎 ≤s 𝑎)
3931, 38syl 17 . . . . . . . . 9 ((𝜑𝑎𝐿) → 𝑎 ≤s 𝑎)
4039adantrr 716 . . . . . . . 8 ((𝜑 ∧ (𝑎𝐿𝑋 <s 𝑎)) → 𝑎 ≤s 𝑎)
41 breq2 5170 . . . . . . . . 9 (𝑏 = 𝑎 → (𝑎 ≤s 𝑏𝑎 ≤s 𝑎))
4241rspcev 3635 . . . . . . . 8 ((𝑎 ∈ ({𝑋} ∪ {𝑦𝐿𝑋 <s 𝑦}) ∧ 𝑎 ≤s 𝑎) → ∃𝑏 ∈ ({𝑋} ∪ {𝑦𝐿𝑋 <s 𝑦})𝑎 ≤s 𝑏)
4337, 40, 42syl2an2 685 . . . . . . 7 ((𝜑 ∧ (𝑎𝐿𝑋 <s 𝑎)) → ∃𝑏 ∈ ({𝑋} ∪ {𝑦𝐿𝑋 <s 𝑦})𝑎 ≤s 𝑏)
4443expr 456 . . . . . 6 ((𝜑𝑎𝐿) → (𝑋 <s 𝑎 → ∃𝑏 ∈ ({𝑋} ∪ {𝑦𝐿𝑋 <s 𝑦})𝑎 ≤s 𝑏))
4533, 44sylbird 260 . . . . 5 ((𝜑𝑎𝐿) → (¬ 𝑎 ≤s 𝑋 → ∃𝑏 ∈ ({𝑋} ∪ {𝑦𝐿𝑋 <s 𝑦})𝑎 ≤s 𝑏))
4629, 45pm2.61d 179 . . . 4 ((𝜑𝑎𝐿) → ∃𝑏 ∈ ({𝑋} ∪ {𝑦𝐿𝑋 <s 𝑦})𝑎 ≤s 𝑏)
4746ralrimiva 3152 . . 3 (𝜑 → ∀𝑎𝐿𝑏 ∈ ({𝑋} ∪ {𝑦𝐿𝑋 <s 𝑦})𝑎 ≤s 𝑏)
48 ssidd 4032 . . . 4 (𝜑𝑅𝑅)
4920, 48coiniss 27983 . . 3 (𝜑 → ∀𝑎𝑅𝑏𝑅 𝑏 ≤s 𝑎)
505snssd 4834 . . . . 5 (𝜑 → {𝑋} ⊆ 𝐿)
5112a1i 11 . . . . 5 (𝜑 → {𝑦𝐿𝑋 <s 𝑦} ⊆ 𝐿)
5250, 51unssd 4215 . . . 4 (𝜑 → ({𝑋} ∪ {𝑦𝐿𝑋 <s 𝑦}) ⊆ 𝐿)
534, 52cofss 27982 . . 3 (𝜑 → ∀𝑎 ∈ ({𝑋} ∪ {𝑦𝐿𝑋 <s 𝑦})∃𝑏𝐿 𝑎 ≤s 𝑏)
542, 16, 21, 47, 49, 53, 49cofcut2d 27975 . 2 (𝜑 → (𝐿 |s 𝑅) = (({𝑋} ∪ {𝑦𝐿𝑋 <s 𝑦}) |s 𝑅))
551, 54eqtrd 2780 1 (𝜑𝐴 = (({𝑋} ∪ {𝑦𝐿𝑋 <s 𝑦}) |s 𝑅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wrex 3076  {crab 3443  Vcvv 3488  cun 3974  wss 3976  𝒫 cpw 4622  {csn 4648   class class class wbr 5166  (class class class)co 7448   No csur 27702   <s cslt 27703   ≤s csle 27807   <<s csslt 27843   |s cscut 27845
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-ord 6398  df-on 6399  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1o 8522  df-2o 8523  df-no 27705  df-slt 27706  df-bday 27707  df-sle 27808  df-sslt 27844  df-scut 27846
This theorem is referenced by:  cutpos  27985
  Copyright terms: Public domain W3C validator