| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fpwipodrs | Structured version Visualization version GIF version | ||
| Description: The finite subsets of any set are directed by inclusion. (Contributed by Stefan O'Rear, 2-Apr-2015.) |
| Ref | Expression |
|---|---|
| fpwipodrs | ⊢ (𝐴 ∈ 𝑉 → (toInc‘(𝒫 𝐴 ∩ Fin)) ∈ Dirset) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwexg 5318 | . . 3 ⊢ (𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ V) | |
| 2 | inex1g 5259 | . . 3 ⊢ (𝒫 𝐴 ∈ V → (𝒫 𝐴 ∩ Fin) ∈ V) | |
| 3 | 1, 2 | syl 17 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝒫 𝐴 ∩ Fin) ∈ V) |
| 4 | 0elpw 5296 | . . . 4 ⊢ ∅ ∈ 𝒫 𝐴 | |
| 5 | 0fi 8971 | . . . 4 ⊢ ∅ ∈ Fin | |
| 6 | 4, 5 | elini 4148 | . . 3 ⊢ ∅ ∈ (𝒫 𝐴 ∩ Fin) |
| 7 | ne0i 4290 | . . 3 ⊢ (∅ ∈ (𝒫 𝐴 ∩ Fin) → (𝒫 𝐴 ∩ Fin) ≠ ∅) | |
| 8 | 6, 7 | mp1i 13 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝒫 𝐴 ∩ Fin) ≠ ∅) |
| 9 | elin 3914 | . . . . . 6 ⊢ (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↔ (𝑥 ∈ 𝒫 𝐴 ∧ 𝑥 ∈ Fin)) | |
| 10 | elin 3914 | . . . . . 6 ⊢ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↔ (𝑦 ∈ 𝒫 𝐴 ∧ 𝑦 ∈ Fin)) | |
| 11 | pwuncl 7709 | . . . . . . . 8 ⊢ ((𝑥 ∈ 𝒫 𝐴 ∧ 𝑦 ∈ 𝒫 𝐴) → (𝑥 ∪ 𝑦) ∈ 𝒫 𝐴) | |
| 12 | 11 | ad2ant2r 747 | . . . . . . 7 ⊢ (((𝑥 ∈ 𝒫 𝐴 ∧ 𝑥 ∈ Fin) ∧ (𝑦 ∈ 𝒫 𝐴 ∧ 𝑦 ∈ Fin)) → (𝑥 ∪ 𝑦) ∈ 𝒫 𝐴) |
| 13 | unfi 9087 | . . . . . . . 8 ⊢ ((𝑥 ∈ Fin ∧ 𝑦 ∈ Fin) → (𝑥 ∪ 𝑦) ∈ Fin) | |
| 14 | 13 | ad2ant2l 746 | . . . . . . 7 ⊢ (((𝑥 ∈ 𝒫 𝐴 ∧ 𝑥 ∈ Fin) ∧ (𝑦 ∈ 𝒫 𝐴 ∧ 𝑦 ∈ Fin)) → (𝑥 ∪ 𝑦) ∈ Fin) |
| 15 | 12, 14 | elind 4149 | . . . . . 6 ⊢ (((𝑥 ∈ 𝒫 𝐴 ∧ 𝑥 ∈ Fin) ∧ (𝑦 ∈ 𝒫 𝐴 ∧ 𝑦 ∈ Fin)) → (𝑥 ∪ 𝑦) ∈ (𝒫 𝐴 ∩ Fin)) |
| 16 | 9, 10, 15 | syl2anb 598 | . . . . 5 ⊢ ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (𝑥 ∪ 𝑦) ∈ (𝒫 𝐴 ∩ Fin)) |
| 17 | ssid 3953 | . . . . 5 ⊢ (𝑥 ∪ 𝑦) ⊆ (𝑥 ∪ 𝑦) | |
| 18 | sseq2 3957 | . . . . . 6 ⊢ (𝑧 = (𝑥 ∪ 𝑦) → ((𝑥 ∪ 𝑦) ⊆ 𝑧 ↔ (𝑥 ∪ 𝑦) ⊆ (𝑥 ∪ 𝑦))) | |
| 19 | 18 | rspcev 3573 | . . . . 5 ⊢ (((𝑥 ∪ 𝑦) ∈ (𝒫 𝐴 ∩ Fin) ∧ (𝑥 ∪ 𝑦) ⊆ (𝑥 ∪ 𝑦)) → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑥 ∪ 𝑦) ⊆ 𝑧) |
| 20 | 16, 17, 19 | sylancl 586 | . . . 4 ⊢ ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑥 ∪ 𝑦) ⊆ 𝑧) |
| 21 | 20 | rgen2 3173 | . . 3 ⊢ ∀𝑥 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑥 ∪ 𝑦) ⊆ 𝑧 |
| 22 | 21 | a1i 11 | . 2 ⊢ (𝐴 ∈ 𝑉 → ∀𝑥 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑥 ∪ 𝑦) ⊆ 𝑧) |
| 23 | isipodrs 18445 | . 2 ⊢ ((toInc‘(𝒫 𝐴 ∩ Fin)) ∈ Dirset ↔ ((𝒫 𝐴 ∩ Fin) ∈ V ∧ (𝒫 𝐴 ∩ Fin) ≠ ∅ ∧ ∀𝑥 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑥 ∪ 𝑦) ⊆ 𝑧)) | |
| 24 | 3, 8, 22, 23 | syl3anbrc 1344 | 1 ⊢ (𝐴 ∈ 𝑉 → (toInc‘(𝒫 𝐴 ∩ Fin)) ∈ Dirset) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2113 ≠ wne 2929 ∀wral 3048 ∃wrex 3057 Vcvv 3437 ∪ cun 3896 ∩ cin 3897 ⊆ wss 3898 ∅c0 4282 𝒫 cpw 4549 ‘cfv 6486 Fincfn 8875 Dirsetcdrs 18201 toInccipo 18435 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-nn 12133 df-2 12195 df-3 12196 df-4 12197 df-5 12198 df-6 12199 df-7 12200 df-8 12201 df-9 12202 df-n0 12389 df-z 12476 df-dec 12595 df-uz 12739 df-fz 13410 df-struct 17060 df-slot 17095 df-ndx 17107 df-base 17123 df-tset 17182 df-ple 17183 df-ocomp 17184 df-proset 18202 df-drs 18203 df-poset 18221 df-ipo 18436 |
| This theorem is referenced by: isacs5lem 18453 isnacs3 42827 |
| Copyright terms: Public domain | W3C validator |