Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fpwipodrs | Structured version Visualization version GIF version |
Description: The finite subsets of any set are directed by inclusion. (Contributed by Stefan O'Rear, 2-Apr-2015.) |
Ref | Expression |
---|---|
fpwipodrs | ⊢ (𝐴 ∈ 𝑉 → (toInc‘(𝒫 𝐴 ∩ Fin)) ∈ Dirset) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pwexg 5296 | . . 3 ⊢ (𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ V) | |
2 | inex1g 5238 | . . 3 ⊢ (𝒫 𝐴 ∈ V → (𝒫 𝐴 ∩ Fin) ∈ V) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝒫 𝐴 ∩ Fin) ∈ V) |
4 | 0elpw 5273 | . . . 4 ⊢ ∅ ∈ 𝒫 𝐴 | |
5 | 0fin 8916 | . . . 4 ⊢ ∅ ∈ Fin | |
6 | 4, 5 | elini 4123 | . . 3 ⊢ ∅ ∈ (𝒫 𝐴 ∩ Fin) |
7 | ne0i 4265 | . . 3 ⊢ (∅ ∈ (𝒫 𝐴 ∩ Fin) → (𝒫 𝐴 ∩ Fin) ≠ ∅) | |
8 | 6, 7 | mp1i 13 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝒫 𝐴 ∩ Fin) ≠ ∅) |
9 | elin 3899 | . . . . . 6 ⊢ (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↔ (𝑥 ∈ 𝒫 𝐴 ∧ 𝑥 ∈ Fin)) | |
10 | elin 3899 | . . . . . 6 ⊢ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↔ (𝑦 ∈ 𝒫 𝐴 ∧ 𝑦 ∈ Fin)) | |
11 | pwuncl 7598 | . . . . . . . 8 ⊢ ((𝑥 ∈ 𝒫 𝐴 ∧ 𝑦 ∈ 𝒫 𝐴) → (𝑥 ∪ 𝑦) ∈ 𝒫 𝐴) | |
12 | 11 | ad2ant2r 743 | . . . . . . 7 ⊢ (((𝑥 ∈ 𝒫 𝐴 ∧ 𝑥 ∈ Fin) ∧ (𝑦 ∈ 𝒫 𝐴 ∧ 𝑦 ∈ Fin)) → (𝑥 ∪ 𝑦) ∈ 𝒫 𝐴) |
13 | unfi 8917 | . . . . . . . 8 ⊢ ((𝑥 ∈ Fin ∧ 𝑦 ∈ Fin) → (𝑥 ∪ 𝑦) ∈ Fin) | |
14 | 13 | ad2ant2l 742 | . . . . . . 7 ⊢ (((𝑥 ∈ 𝒫 𝐴 ∧ 𝑥 ∈ Fin) ∧ (𝑦 ∈ 𝒫 𝐴 ∧ 𝑦 ∈ Fin)) → (𝑥 ∪ 𝑦) ∈ Fin) |
15 | 12, 14 | elind 4124 | . . . . . 6 ⊢ (((𝑥 ∈ 𝒫 𝐴 ∧ 𝑥 ∈ Fin) ∧ (𝑦 ∈ 𝒫 𝐴 ∧ 𝑦 ∈ Fin)) → (𝑥 ∪ 𝑦) ∈ (𝒫 𝐴 ∩ Fin)) |
16 | 9, 10, 15 | syl2anb 597 | . . . . 5 ⊢ ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (𝑥 ∪ 𝑦) ∈ (𝒫 𝐴 ∩ Fin)) |
17 | ssid 3939 | . . . . 5 ⊢ (𝑥 ∪ 𝑦) ⊆ (𝑥 ∪ 𝑦) | |
18 | sseq2 3943 | . . . . . 6 ⊢ (𝑧 = (𝑥 ∪ 𝑦) → ((𝑥 ∪ 𝑦) ⊆ 𝑧 ↔ (𝑥 ∪ 𝑦) ⊆ (𝑥 ∪ 𝑦))) | |
19 | 18 | rspcev 3552 | . . . . 5 ⊢ (((𝑥 ∪ 𝑦) ∈ (𝒫 𝐴 ∩ Fin) ∧ (𝑥 ∪ 𝑦) ⊆ (𝑥 ∪ 𝑦)) → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑥 ∪ 𝑦) ⊆ 𝑧) |
20 | 16, 17, 19 | sylancl 585 | . . . 4 ⊢ ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑥 ∪ 𝑦) ⊆ 𝑧) |
21 | 20 | rgen2 3126 | . . 3 ⊢ ∀𝑥 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑥 ∪ 𝑦) ⊆ 𝑧 |
22 | 21 | a1i 11 | . 2 ⊢ (𝐴 ∈ 𝑉 → ∀𝑥 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑥 ∪ 𝑦) ⊆ 𝑧) |
23 | isipodrs 18170 | . 2 ⊢ ((toInc‘(𝒫 𝐴 ∩ Fin)) ∈ Dirset ↔ ((𝒫 𝐴 ∩ Fin) ∈ V ∧ (𝒫 𝐴 ∩ Fin) ≠ ∅ ∧ ∀𝑥 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑥 ∪ 𝑦) ⊆ 𝑧)) | |
24 | 3, 8, 22, 23 | syl3anbrc 1341 | 1 ⊢ (𝐴 ∈ 𝑉 → (toInc‘(𝒫 𝐴 ∩ Fin)) ∈ Dirset) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 ≠ wne 2942 ∀wral 3063 ∃wrex 3064 Vcvv 3422 ∪ cun 3881 ∩ cin 3882 ⊆ wss 3883 ∅c0 4253 𝒫 cpw 4530 ‘cfv 6418 Fincfn 8691 Dirsetcdrs 17927 toInccipo 18160 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-uz 12512 df-fz 13169 df-struct 16776 df-slot 16811 df-ndx 16823 df-base 16841 df-tset 16907 df-ple 16908 df-ocomp 16909 df-proset 17928 df-drs 17929 df-poset 17946 df-ipo 18161 |
This theorem is referenced by: isacs5lem 18178 isnacs3 40448 |
Copyright terms: Public domain | W3C validator |