![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fpwipodrs | Structured version Visualization version GIF version |
Description: The finite subsets of any set are directed by inclusion. (Contributed by Stefan O'Rear, 2-Apr-2015.) |
Ref | Expression |
---|---|
fpwipodrs | β’ (π΄ β π β (toIncβ(π« π΄ β© Fin)) β Dirset) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pwexg 5375 | . . 3 β’ (π΄ β π β π« π΄ β V) | |
2 | inex1g 5318 | . . 3 β’ (π« π΄ β V β (π« π΄ β© Fin) β V) | |
3 | 1, 2 | syl 17 | . 2 β’ (π΄ β π β (π« π΄ β© Fin) β V) |
4 | 0elpw 5353 | . . . 4 β’ β β π« π΄ | |
5 | 0fin 9167 | . . . 4 β’ β β Fin | |
6 | 4, 5 | elini 4192 | . . 3 β’ β β (π« π΄ β© Fin) |
7 | ne0i 4333 | . . 3 β’ (β β (π« π΄ β© Fin) β (π« π΄ β© Fin) β β ) | |
8 | 6, 7 | mp1i 13 | . 2 β’ (π΄ β π β (π« π΄ β© Fin) β β ) |
9 | elin 3963 | . . . . . 6 β’ (π₯ β (π« π΄ β© Fin) β (π₯ β π« π΄ β§ π₯ β Fin)) | |
10 | elin 3963 | . . . . . 6 β’ (π¦ β (π« π΄ β© Fin) β (π¦ β π« π΄ β§ π¦ β Fin)) | |
11 | pwuncl 7753 | . . . . . . . 8 β’ ((π₯ β π« π΄ β§ π¦ β π« π΄) β (π₯ βͺ π¦) β π« π΄) | |
12 | 11 | ad2ant2r 745 | . . . . . . 7 β’ (((π₯ β π« π΄ β§ π₯ β Fin) β§ (π¦ β π« π΄ β§ π¦ β Fin)) β (π₯ βͺ π¦) β π« π΄) |
13 | unfi 9168 | . . . . . . . 8 β’ ((π₯ β Fin β§ π¦ β Fin) β (π₯ βͺ π¦) β Fin) | |
14 | 13 | ad2ant2l 744 | . . . . . . 7 β’ (((π₯ β π« π΄ β§ π₯ β Fin) β§ (π¦ β π« π΄ β§ π¦ β Fin)) β (π₯ βͺ π¦) β Fin) |
15 | 12, 14 | elind 4193 | . . . . . 6 β’ (((π₯ β π« π΄ β§ π₯ β Fin) β§ (π¦ β π« π΄ β§ π¦ β Fin)) β (π₯ βͺ π¦) β (π« π΄ β© Fin)) |
16 | 9, 10, 15 | syl2anb 598 | . . . . 5 β’ ((π₯ β (π« π΄ β© Fin) β§ π¦ β (π« π΄ β© Fin)) β (π₯ βͺ π¦) β (π« π΄ β© Fin)) |
17 | ssid 4003 | . . . . 5 β’ (π₯ βͺ π¦) β (π₯ βͺ π¦) | |
18 | sseq2 4007 | . . . . . 6 β’ (π§ = (π₯ βͺ π¦) β ((π₯ βͺ π¦) β π§ β (π₯ βͺ π¦) β (π₯ βͺ π¦))) | |
19 | 18 | rspcev 3612 | . . . . 5 β’ (((π₯ βͺ π¦) β (π« π΄ β© Fin) β§ (π₯ βͺ π¦) β (π₯ βͺ π¦)) β βπ§ β (π« π΄ β© Fin)(π₯ βͺ π¦) β π§) |
20 | 16, 17, 19 | sylancl 586 | . . . 4 β’ ((π₯ β (π« π΄ β© Fin) β§ π¦ β (π« π΄ β© Fin)) β βπ§ β (π« π΄ β© Fin)(π₯ βͺ π¦) β π§) |
21 | 20 | rgen2 3197 | . . 3 β’ βπ₯ β (π« π΄ β© Fin)βπ¦ β (π« π΄ β© Fin)βπ§ β (π« π΄ β© Fin)(π₯ βͺ π¦) β π§ |
22 | 21 | a1i 11 | . 2 β’ (π΄ β π β βπ₯ β (π« π΄ β© Fin)βπ¦ β (π« π΄ β© Fin)βπ§ β (π« π΄ β© Fin)(π₯ βͺ π¦) β π§) |
23 | isipodrs 18486 | . 2 β’ ((toIncβ(π« π΄ β© Fin)) β Dirset β ((π« π΄ β© Fin) β V β§ (π« π΄ β© Fin) β β β§ βπ₯ β (π« π΄ β© Fin)βπ¦ β (π« π΄ β© Fin)βπ§ β (π« π΄ β© Fin)(π₯ βͺ π¦) β π§)) | |
24 | 3, 8, 22, 23 | syl3anbrc 1343 | 1 β’ (π΄ β π β (toIncβ(π« π΄ β© Fin)) β Dirset) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 β wcel 2106 β wne 2940 βwral 3061 βwrex 3070 Vcvv 3474 βͺ cun 3945 β© cin 3946 β wss 3947 β c0 4321 π« cpw 4601 βcfv 6540 Fincfn 8935 Dirsetcdrs 18243 toInccipo 18476 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-2 12271 df-3 12272 df-4 12273 df-5 12274 df-6 12275 df-7 12276 df-8 12277 df-9 12278 df-n0 12469 df-z 12555 df-dec 12674 df-uz 12819 df-fz 13481 df-struct 17076 df-slot 17111 df-ndx 17123 df-base 17141 df-tset 17212 df-ple 17213 df-ocomp 17214 df-proset 18244 df-drs 18245 df-poset 18262 df-ipo 18477 |
This theorem is referenced by: isacs5lem 18494 isnacs3 41433 |
Copyright terms: Public domain | W3C validator |