MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fpwipodrs Structured version   Visualization version   GIF version

Theorem fpwipodrs 18555
Description: The finite subsets of any set are directed by inclusion. (Contributed by Stefan O'Rear, 2-Apr-2015.)
Assertion
Ref Expression
fpwipodrs (𝐴𝑉 → (toInc‘(𝒫 𝐴 ∩ Fin)) ∈ Dirset)

Proof of Theorem fpwipodrs
Dummy variables 𝑧 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pwexg 5353 . . 3 (𝐴𝑉 → 𝒫 𝐴 ∈ V)
2 inex1g 5294 . . 3 (𝒫 𝐴 ∈ V → (𝒫 𝐴 ∩ Fin) ∈ V)
31, 2syl 17 . 2 (𝐴𝑉 → (𝒫 𝐴 ∩ Fin) ∈ V)
4 0elpw 5331 . . . 4 ∅ ∈ 𝒫 𝐴
5 0fi 9061 . . . 4 ∅ ∈ Fin
64, 5elini 4179 . . 3 ∅ ∈ (𝒫 𝐴 ∩ Fin)
7 ne0i 4321 . . 3 (∅ ∈ (𝒫 𝐴 ∩ Fin) → (𝒫 𝐴 ∩ Fin) ≠ ∅)
86, 7mp1i 13 . 2 (𝐴𝑉 → (𝒫 𝐴 ∩ Fin) ≠ ∅)
9 elin 3947 . . . . . 6 (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↔ (𝑥 ∈ 𝒫 𝐴𝑥 ∈ Fin))
10 elin 3947 . . . . . 6 (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↔ (𝑦 ∈ 𝒫 𝐴𝑦 ∈ Fin))
11 pwuncl 7769 . . . . . . . 8 ((𝑥 ∈ 𝒫 𝐴𝑦 ∈ 𝒫 𝐴) → (𝑥𝑦) ∈ 𝒫 𝐴)
1211ad2ant2r 747 . . . . . . 7 (((𝑥 ∈ 𝒫 𝐴𝑥 ∈ Fin) ∧ (𝑦 ∈ 𝒫 𝐴𝑦 ∈ Fin)) → (𝑥𝑦) ∈ 𝒫 𝐴)
13 unfi 9190 . . . . . . . 8 ((𝑥 ∈ Fin ∧ 𝑦 ∈ Fin) → (𝑥𝑦) ∈ Fin)
1413ad2ant2l 746 . . . . . . 7 (((𝑥 ∈ 𝒫 𝐴𝑥 ∈ Fin) ∧ (𝑦 ∈ 𝒫 𝐴𝑦 ∈ Fin)) → (𝑥𝑦) ∈ Fin)
1512, 14elind 4180 . . . . . 6 (((𝑥 ∈ 𝒫 𝐴𝑥 ∈ Fin) ∧ (𝑦 ∈ 𝒫 𝐴𝑦 ∈ Fin)) → (𝑥𝑦) ∈ (𝒫 𝐴 ∩ Fin))
169, 10, 15syl2anb 598 . . . . 5 ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (𝑥𝑦) ∈ (𝒫 𝐴 ∩ Fin))
17 ssid 3986 . . . . 5 (𝑥𝑦) ⊆ (𝑥𝑦)
18 sseq2 3990 . . . . . 6 (𝑧 = (𝑥𝑦) → ((𝑥𝑦) ⊆ 𝑧 ↔ (𝑥𝑦) ⊆ (𝑥𝑦)))
1918rspcev 3606 . . . . 5 (((𝑥𝑦) ∈ (𝒫 𝐴 ∩ Fin) ∧ (𝑥𝑦) ⊆ (𝑥𝑦)) → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑥𝑦) ⊆ 𝑧)
2016, 17, 19sylancl 586 . . . 4 ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑥𝑦) ⊆ 𝑧)
2120rgen2 3185 . . 3 𝑥 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑥𝑦) ⊆ 𝑧
2221a1i 11 . 2 (𝐴𝑉 → ∀𝑥 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑥𝑦) ⊆ 𝑧)
23 isipodrs 18552 . 2 ((toInc‘(𝒫 𝐴 ∩ Fin)) ∈ Dirset ↔ ((𝒫 𝐴 ∩ Fin) ∈ V ∧ (𝒫 𝐴 ∩ Fin) ≠ ∅ ∧ ∀𝑥 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑥𝑦) ⊆ 𝑧))
243, 8, 22, 23syl3anbrc 1344 1 (𝐴𝑉 → (toInc‘(𝒫 𝐴 ∩ Fin)) ∈ Dirset)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  wne 2933  wral 3052  wrex 3061  Vcvv 3464  cun 3929  cin 3930  wss 3931  c0 4313  𝒫 cpw 4580  cfv 6536  Fincfn 8964  Dirsetcdrs 18310  toInccipo 18542
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12507  df-z 12594  df-dec 12714  df-uz 12858  df-fz 13530  df-struct 17171  df-slot 17206  df-ndx 17218  df-base 17234  df-tset 17295  df-ple 17296  df-ocomp 17297  df-proset 18311  df-drs 18312  df-poset 18330  df-ipo 18543
This theorem is referenced by:  isacs5lem  18560  isnacs3  42700
  Copyright terms: Public domain W3C validator