| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fpwipodrs | Structured version Visualization version GIF version | ||
| Description: The finite subsets of any set are directed by inclusion. (Contributed by Stefan O'Rear, 2-Apr-2015.) |
| Ref | Expression |
|---|---|
| fpwipodrs | ⊢ (𝐴 ∈ 𝑉 → (toInc‘(𝒫 𝐴 ∩ Fin)) ∈ Dirset) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwexg 5377 | . . 3 ⊢ (𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ V) | |
| 2 | inex1g 5318 | . . 3 ⊢ (𝒫 𝐴 ∈ V → (𝒫 𝐴 ∩ Fin) ∈ V) | |
| 3 | 1, 2 | syl 17 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝒫 𝐴 ∩ Fin) ∈ V) |
| 4 | 0elpw 5355 | . . . 4 ⊢ ∅ ∈ 𝒫 𝐴 | |
| 5 | 0fi 9083 | . . . 4 ⊢ ∅ ∈ Fin | |
| 6 | 4, 5 | elini 4198 | . . 3 ⊢ ∅ ∈ (𝒫 𝐴 ∩ Fin) |
| 7 | ne0i 4340 | . . 3 ⊢ (∅ ∈ (𝒫 𝐴 ∩ Fin) → (𝒫 𝐴 ∩ Fin) ≠ ∅) | |
| 8 | 6, 7 | mp1i 13 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝒫 𝐴 ∩ Fin) ≠ ∅) |
| 9 | elin 3966 | . . . . . 6 ⊢ (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↔ (𝑥 ∈ 𝒫 𝐴 ∧ 𝑥 ∈ Fin)) | |
| 10 | elin 3966 | . . . . . 6 ⊢ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↔ (𝑦 ∈ 𝒫 𝐴 ∧ 𝑦 ∈ Fin)) | |
| 11 | pwuncl 7791 | . . . . . . . 8 ⊢ ((𝑥 ∈ 𝒫 𝐴 ∧ 𝑦 ∈ 𝒫 𝐴) → (𝑥 ∪ 𝑦) ∈ 𝒫 𝐴) | |
| 12 | 11 | ad2ant2r 747 | . . . . . . 7 ⊢ (((𝑥 ∈ 𝒫 𝐴 ∧ 𝑥 ∈ Fin) ∧ (𝑦 ∈ 𝒫 𝐴 ∧ 𝑦 ∈ Fin)) → (𝑥 ∪ 𝑦) ∈ 𝒫 𝐴) |
| 13 | unfi 9212 | . . . . . . . 8 ⊢ ((𝑥 ∈ Fin ∧ 𝑦 ∈ Fin) → (𝑥 ∪ 𝑦) ∈ Fin) | |
| 14 | 13 | ad2ant2l 746 | . . . . . . 7 ⊢ (((𝑥 ∈ 𝒫 𝐴 ∧ 𝑥 ∈ Fin) ∧ (𝑦 ∈ 𝒫 𝐴 ∧ 𝑦 ∈ Fin)) → (𝑥 ∪ 𝑦) ∈ Fin) |
| 15 | 12, 14 | elind 4199 | . . . . . 6 ⊢ (((𝑥 ∈ 𝒫 𝐴 ∧ 𝑥 ∈ Fin) ∧ (𝑦 ∈ 𝒫 𝐴 ∧ 𝑦 ∈ Fin)) → (𝑥 ∪ 𝑦) ∈ (𝒫 𝐴 ∩ Fin)) |
| 16 | 9, 10, 15 | syl2anb 598 | . . . . 5 ⊢ ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (𝑥 ∪ 𝑦) ∈ (𝒫 𝐴 ∩ Fin)) |
| 17 | ssid 4005 | . . . . 5 ⊢ (𝑥 ∪ 𝑦) ⊆ (𝑥 ∪ 𝑦) | |
| 18 | sseq2 4009 | . . . . . 6 ⊢ (𝑧 = (𝑥 ∪ 𝑦) → ((𝑥 ∪ 𝑦) ⊆ 𝑧 ↔ (𝑥 ∪ 𝑦) ⊆ (𝑥 ∪ 𝑦))) | |
| 19 | 18 | rspcev 3621 | . . . . 5 ⊢ (((𝑥 ∪ 𝑦) ∈ (𝒫 𝐴 ∩ Fin) ∧ (𝑥 ∪ 𝑦) ⊆ (𝑥 ∪ 𝑦)) → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑥 ∪ 𝑦) ⊆ 𝑧) |
| 20 | 16, 17, 19 | sylancl 586 | . . . 4 ⊢ ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑥 ∪ 𝑦) ⊆ 𝑧) |
| 21 | 20 | rgen2 3198 | . . 3 ⊢ ∀𝑥 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑥 ∪ 𝑦) ⊆ 𝑧 |
| 22 | 21 | a1i 11 | . 2 ⊢ (𝐴 ∈ 𝑉 → ∀𝑥 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑥 ∪ 𝑦) ⊆ 𝑧) |
| 23 | isipodrs 18583 | . 2 ⊢ ((toInc‘(𝒫 𝐴 ∩ Fin)) ∈ Dirset ↔ ((𝒫 𝐴 ∩ Fin) ∈ V ∧ (𝒫 𝐴 ∩ Fin) ≠ ∅ ∧ ∀𝑥 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑥 ∪ 𝑦) ⊆ 𝑧)) | |
| 24 | 3, 8, 22, 23 | syl3anbrc 1343 | 1 ⊢ (𝐴 ∈ 𝑉 → (toInc‘(𝒫 𝐴 ∩ Fin)) ∈ Dirset) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2107 ≠ wne 2939 ∀wral 3060 ∃wrex 3069 Vcvv 3479 ∪ cun 3948 ∩ cin 3949 ⊆ wss 3950 ∅c0 4332 𝒫 cpw 4599 ‘cfv 6560 Fincfn 8986 Dirsetcdrs 18340 toInccipo 18573 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-cnex 11212 ax-resscn 11213 ax-1cn 11214 ax-icn 11215 ax-addcl 11216 ax-addrcl 11217 ax-mulcl 11218 ax-mulrcl 11219 ax-mulcom 11220 ax-addass 11221 ax-mulass 11222 ax-distr 11223 ax-i2m1 11224 ax-1ne0 11225 ax-1rid 11226 ax-rnegex 11227 ax-rrecex 11228 ax-cnre 11229 ax-pre-lttri 11230 ax-pre-lttrn 11231 ax-pre-ltadd 11232 ax-pre-mulgt0 11233 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6320 df-ord 6386 df-on 6387 df-lim 6388 df-suc 6389 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-riota 7389 df-ov 7435 df-oprab 7436 df-mpo 7437 df-om 7889 df-1st 8015 df-2nd 8016 df-frecs 8307 df-wrecs 8338 df-recs 8412 df-rdg 8451 df-1o 8507 df-er 8746 df-en 8987 df-dom 8988 df-sdom 8989 df-fin 8990 df-pnf 11298 df-mnf 11299 df-xr 11300 df-ltxr 11301 df-le 11302 df-sub 11495 df-neg 11496 df-nn 12268 df-2 12330 df-3 12331 df-4 12332 df-5 12333 df-6 12334 df-7 12335 df-8 12336 df-9 12337 df-n0 12529 df-z 12616 df-dec 12736 df-uz 12880 df-fz 13549 df-struct 17185 df-slot 17220 df-ndx 17232 df-base 17249 df-tset 17317 df-ple 17318 df-ocomp 17319 df-proset 18341 df-drs 18342 df-poset 18360 df-ipo 18574 |
| This theorem is referenced by: isacs5lem 18591 isnacs3 42726 |
| Copyright terms: Public domain | W3C validator |