MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fpwipodrs Structured version   Visualization version   GIF version

Theorem fpwipodrs 18443
Description: The finite subsets of any set are directed by inclusion. (Contributed by Stefan O'Rear, 2-Apr-2015.)
Assertion
Ref Expression
fpwipodrs (𝐴𝑉 → (toInc‘(𝒫 𝐴 ∩ Fin)) ∈ Dirset)

Proof of Theorem fpwipodrs
Dummy variables 𝑧 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pwexg 5316 . . 3 (𝐴𝑉 → 𝒫 𝐴 ∈ V)
2 inex1g 5257 . . 3 (𝒫 𝐴 ∈ V → (𝒫 𝐴 ∩ Fin) ∈ V)
31, 2syl 17 . 2 (𝐴𝑉 → (𝒫 𝐴 ∩ Fin) ∈ V)
4 0elpw 5294 . . . 4 ∅ ∈ 𝒫 𝐴
5 0fi 8964 . . . 4 ∅ ∈ Fin
64, 5elini 4149 . . 3 ∅ ∈ (𝒫 𝐴 ∩ Fin)
7 ne0i 4291 . . 3 (∅ ∈ (𝒫 𝐴 ∩ Fin) → (𝒫 𝐴 ∩ Fin) ≠ ∅)
86, 7mp1i 13 . 2 (𝐴𝑉 → (𝒫 𝐴 ∩ Fin) ≠ ∅)
9 elin 3918 . . . . . 6 (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↔ (𝑥 ∈ 𝒫 𝐴𝑥 ∈ Fin))
10 elin 3918 . . . . . 6 (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↔ (𝑦 ∈ 𝒫 𝐴𝑦 ∈ Fin))
11 pwuncl 7703 . . . . . . . 8 ((𝑥 ∈ 𝒫 𝐴𝑦 ∈ 𝒫 𝐴) → (𝑥𝑦) ∈ 𝒫 𝐴)
1211ad2ant2r 747 . . . . . . 7 (((𝑥 ∈ 𝒫 𝐴𝑥 ∈ Fin) ∧ (𝑦 ∈ 𝒫 𝐴𝑦 ∈ Fin)) → (𝑥𝑦) ∈ 𝒫 𝐴)
13 unfi 9080 . . . . . . . 8 ((𝑥 ∈ Fin ∧ 𝑦 ∈ Fin) → (𝑥𝑦) ∈ Fin)
1413ad2ant2l 746 . . . . . . 7 (((𝑥 ∈ 𝒫 𝐴𝑥 ∈ Fin) ∧ (𝑦 ∈ 𝒫 𝐴𝑦 ∈ Fin)) → (𝑥𝑦) ∈ Fin)
1512, 14elind 4150 . . . . . 6 (((𝑥 ∈ 𝒫 𝐴𝑥 ∈ Fin) ∧ (𝑦 ∈ 𝒫 𝐴𝑦 ∈ Fin)) → (𝑥𝑦) ∈ (𝒫 𝐴 ∩ Fin))
169, 10, 15syl2anb 598 . . . . 5 ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (𝑥𝑦) ∈ (𝒫 𝐴 ∩ Fin))
17 ssid 3957 . . . . 5 (𝑥𝑦) ⊆ (𝑥𝑦)
18 sseq2 3961 . . . . . 6 (𝑧 = (𝑥𝑦) → ((𝑥𝑦) ⊆ 𝑧 ↔ (𝑥𝑦) ⊆ (𝑥𝑦)))
1918rspcev 3577 . . . . 5 (((𝑥𝑦) ∈ (𝒫 𝐴 ∩ Fin) ∧ (𝑥𝑦) ⊆ (𝑥𝑦)) → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑥𝑦) ⊆ 𝑧)
2016, 17, 19sylancl 586 . . . 4 ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑥𝑦) ⊆ 𝑧)
2120rgen2 3172 . . 3 𝑥 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑥𝑦) ⊆ 𝑧
2221a1i 11 . 2 (𝐴𝑉 → ∀𝑥 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑥𝑦) ⊆ 𝑧)
23 isipodrs 18440 . 2 ((toInc‘(𝒫 𝐴 ∩ Fin)) ∈ Dirset ↔ ((𝒫 𝐴 ∩ Fin) ∈ V ∧ (𝒫 𝐴 ∩ Fin) ≠ ∅ ∧ ∀𝑥 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑥𝑦) ⊆ 𝑧))
243, 8, 22, 23syl3anbrc 1344 1 (𝐴𝑉 → (toInc‘(𝒫 𝐴 ∩ Fin)) ∈ Dirset)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2111  wne 2928  wral 3047  wrex 3056  Vcvv 3436  cun 3900  cin 3901  wss 3902  c0 4283  𝒫 cpw 4550  cfv 6481  Fincfn 8869  Dirsetcdrs 18196  toInccipo 18430
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-nn 12123  df-2 12185  df-3 12186  df-4 12187  df-5 12188  df-6 12189  df-7 12190  df-8 12191  df-9 12192  df-n0 12379  df-z 12466  df-dec 12586  df-uz 12730  df-fz 13405  df-struct 17055  df-slot 17090  df-ndx 17102  df-base 17118  df-tset 17177  df-ple 17178  df-ocomp 17179  df-proset 18197  df-drs 18198  df-poset 18216  df-ipo 18431
This theorem is referenced by:  isacs5lem  18448  isnacs3  42742
  Copyright terms: Public domain W3C validator