MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fpwipodrs Structured version   Visualization version   GIF version

Theorem fpwipodrs 18610
Description: The finite subsets of any set are directed by inclusion. (Contributed by Stefan O'Rear, 2-Apr-2015.)
Assertion
Ref Expression
fpwipodrs (𝐴𝑉 → (toInc‘(𝒫 𝐴 ∩ Fin)) ∈ Dirset)

Proof of Theorem fpwipodrs
Dummy variables 𝑧 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pwexg 5396 . . 3 (𝐴𝑉 → 𝒫 𝐴 ∈ V)
2 inex1g 5337 . . 3 (𝒫 𝐴 ∈ V → (𝒫 𝐴 ∩ Fin) ∈ V)
31, 2syl 17 . 2 (𝐴𝑉 → (𝒫 𝐴 ∩ Fin) ∈ V)
4 0elpw 5374 . . . 4 ∅ ∈ 𝒫 𝐴
5 0fi 9108 . . . 4 ∅ ∈ Fin
64, 5elini 4222 . . 3 ∅ ∈ (𝒫 𝐴 ∩ Fin)
7 ne0i 4364 . . 3 (∅ ∈ (𝒫 𝐴 ∩ Fin) → (𝒫 𝐴 ∩ Fin) ≠ ∅)
86, 7mp1i 13 . 2 (𝐴𝑉 → (𝒫 𝐴 ∩ Fin) ≠ ∅)
9 elin 3992 . . . . . 6 (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↔ (𝑥 ∈ 𝒫 𝐴𝑥 ∈ Fin))
10 elin 3992 . . . . . 6 (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↔ (𝑦 ∈ 𝒫 𝐴𝑦 ∈ Fin))
11 pwuncl 7805 . . . . . . . 8 ((𝑥 ∈ 𝒫 𝐴𝑦 ∈ 𝒫 𝐴) → (𝑥𝑦) ∈ 𝒫 𝐴)
1211ad2ant2r 746 . . . . . . 7 (((𝑥 ∈ 𝒫 𝐴𝑥 ∈ Fin) ∧ (𝑦 ∈ 𝒫 𝐴𝑦 ∈ Fin)) → (𝑥𝑦) ∈ 𝒫 𝐴)
13 unfi 9238 . . . . . . . 8 ((𝑥 ∈ Fin ∧ 𝑦 ∈ Fin) → (𝑥𝑦) ∈ Fin)
1413ad2ant2l 745 . . . . . . 7 (((𝑥 ∈ 𝒫 𝐴𝑥 ∈ Fin) ∧ (𝑦 ∈ 𝒫 𝐴𝑦 ∈ Fin)) → (𝑥𝑦) ∈ Fin)
1512, 14elind 4223 . . . . . 6 (((𝑥 ∈ 𝒫 𝐴𝑥 ∈ Fin) ∧ (𝑦 ∈ 𝒫 𝐴𝑦 ∈ Fin)) → (𝑥𝑦) ∈ (𝒫 𝐴 ∩ Fin))
169, 10, 15syl2anb 597 . . . . 5 ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (𝑥𝑦) ∈ (𝒫 𝐴 ∩ Fin))
17 ssid 4031 . . . . 5 (𝑥𝑦) ⊆ (𝑥𝑦)
18 sseq2 4035 . . . . . 6 (𝑧 = (𝑥𝑦) → ((𝑥𝑦) ⊆ 𝑧 ↔ (𝑥𝑦) ⊆ (𝑥𝑦)))
1918rspcev 3635 . . . . 5 (((𝑥𝑦) ∈ (𝒫 𝐴 ∩ Fin) ∧ (𝑥𝑦) ⊆ (𝑥𝑦)) → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑥𝑦) ⊆ 𝑧)
2016, 17, 19sylancl 585 . . . 4 ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑥𝑦) ⊆ 𝑧)
2120rgen2 3205 . . 3 𝑥 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑥𝑦) ⊆ 𝑧
2221a1i 11 . 2 (𝐴𝑉 → ∀𝑥 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑥𝑦) ⊆ 𝑧)
23 isipodrs 18607 . 2 ((toInc‘(𝒫 𝐴 ∩ Fin)) ∈ Dirset ↔ ((𝒫 𝐴 ∩ Fin) ∈ V ∧ (𝒫 𝐴 ∩ Fin) ≠ ∅ ∧ ∀𝑥 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑥𝑦) ⊆ 𝑧))
243, 8, 22, 23syl3anbrc 1343 1 (𝐴𝑉 → (toInc‘(𝒫 𝐴 ∩ Fin)) ∈ Dirset)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2108  wne 2946  wral 3067  wrex 3076  Vcvv 3488  cun 3974  cin 3975  wss 3976  c0 4352  𝒫 cpw 4622  cfv 6573  Fincfn 9003  Dirsetcdrs 18364  toInccipo 18597
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-fz 13568  df-struct 17194  df-slot 17229  df-ndx 17241  df-base 17259  df-tset 17330  df-ple 17331  df-ocomp 17332  df-proset 18365  df-drs 18366  df-poset 18383  df-ipo 18598
This theorem is referenced by:  isacs5lem  18615  isnacs3  42666
  Copyright terms: Public domain W3C validator