Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fpwipodrs | Structured version Visualization version GIF version |
Description: The finite subsets of any set are directed by inclusion. (Contributed by Stefan O'Rear, 2-Apr-2015.) |
Ref | Expression |
---|---|
fpwipodrs | ⊢ (𝐴 ∈ 𝑉 → (toInc‘(𝒫 𝐴 ∩ Fin)) ∈ Dirset) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pwexg 5299 | . . 3 ⊢ (𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ V) | |
2 | inex1g 5241 | . . 3 ⊢ (𝒫 𝐴 ∈ V → (𝒫 𝐴 ∩ Fin) ∈ V) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝒫 𝐴 ∩ Fin) ∈ V) |
4 | 0elpw 5276 | . . . 4 ⊢ ∅ ∈ 𝒫 𝐴 | |
5 | 0fin 8941 | . . . 4 ⊢ ∅ ∈ Fin | |
6 | 4, 5 | elini 4126 | . . 3 ⊢ ∅ ∈ (𝒫 𝐴 ∩ Fin) |
7 | ne0i 4268 | . . 3 ⊢ (∅ ∈ (𝒫 𝐴 ∩ Fin) → (𝒫 𝐴 ∩ Fin) ≠ ∅) | |
8 | 6, 7 | mp1i 13 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝒫 𝐴 ∩ Fin) ≠ ∅) |
9 | elin 3902 | . . . . . 6 ⊢ (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↔ (𝑥 ∈ 𝒫 𝐴 ∧ 𝑥 ∈ Fin)) | |
10 | elin 3902 | . . . . . 6 ⊢ (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↔ (𝑦 ∈ 𝒫 𝐴 ∧ 𝑦 ∈ Fin)) | |
11 | pwuncl 7610 | . . . . . . . 8 ⊢ ((𝑥 ∈ 𝒫 𝐴 ∧ 𝑦 ∈ 𝒫 𝐴) → (𝑥 ∪ 𝑦) ∈ 𝒫 𝐴) | |
12 | 11 | ad2ant2r 744 | . . . . . . 7 ⊢ (((𝑥 ∈ 𝒫 𝐴 ∧ 𝑥 ∈ Fin) ∧ (𝑦 ∈ 𝒫 𝐴 ∧ 𝑦 ∈ Fin)) → (𝑥 ∪ 𝑦) ∈ 𝒫 𝐴) |
13 | unfi 8942 | . . . . . . . 8 ⊢ ((𝑥 ∈ Fin ∧ 𝑦 ∈ Fin) → (𝑥 ∪ 𝑦) ∈ Fin) | |
14 | 13 | ad2ant2l 743 | . . . . . . 7 ⊢ (((𝑥 ∈ 𝒫 𝐴 ∧ 𝑥 ∈ Fin) ∧ (𝑦 ∈ 𝒫 𝐴 ∧ 𝑦 ∈ Fin)) → (𝑥 ∪ 𝑦) ∈ Fin) |
15 | 12, 14 | elind 4127 | . . . . . 6 ⊢ (((𝑥 ∈ 𝒫 𝐴 ∧ 𝑥 ∈ Fin) ∧ (𝑦 ∈ 𝒫 𝐴 ∧ 𝑦 ∈ Fin)) → (𝑥 ∪ 𝑦) ∈ (𝒫 𝐴 ∩ Fin)) |
16 | 9, 10, 15 | syl2anb 598 | . . . . 5 ⊢ ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (𝑥 ∪ 𝑦) ∈ (𝒫 𝐴 ∩ Fin)) |
17 | ssid 3942 | . . . . 5 ⊢ (𝑥 ∪ 𝑦) ⊆ (𝑥 ∪ 𝑦) | |
18 | sseq2 3946 | . . . . . 6 ⊢ (𝑧 = (𝑥 ∪ 𝑦) → ((𝑥 ∪ 𝑦) ⊆ 𝑧 ↔ (𝑥 ∪ 𝑦) ⊆ (𝑥 ∪ 𝑦))) | |
19 | 18 | rspcev 3559 | . . . . 5 ⊢ (((𝑥 ∪ 𝑦) ∈ (𝒫 𝐴 ∩ Fin) ∧ (𝑥 ∪ 𝑦) ⊆ (𝑥 ∪ 𝑦)) → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑥 ∪ 𝑦) ⊆ 𝑧) |
20 | 16, 17, 19 | sylancl 586 | . . . 4 ⊢ ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑥 ∪ 𝑦) ⊆ 𝑧) |
21 | 20 | rgen2 3127 | . . 3 ⊢ ∀𝑥 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑥 ∪ 𝑦) ⊆ 𝑧 |
22 | 21 | a1i 11 | . 2 ⊢ (𝐴 ∈ 𝑉 → ∀𝑥 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑥 ∪ 𝑦) ⊆ 𝑧) |
23 | isipodrs 18265 | . 2 ⊢ ((toInc‘(𝒫 𝐴 ∩ Fin)) ∈ Dirset ↔ ((𝒫 𝐴 ∩ Fin) ∈ V ∧ (𝒫 𝐴 ∩ Fin) ≠ ∅ ∧ ∀𝑥 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)(𝑥 ∪ 𝑦) ⊆ 𝑧)) | |
24 | 3, 8, 22, 23 | syl3anbrc 1342 | 1 ⊢ (𝐴 ∈ 𝑉 → (toInc‘(𝒫 𝐴 ∩ Fin)) ∈ Dirset) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∈ wcel 2106 ≠ wne 2943 ∀wral 3064 ∃wrex 3065 Vcvv 3429 ∪ cun 3884 ∩ cin 3885 ⊆ wss 3886 ∅c0 4256 𝒫 cpw 4533 ‘cfv 6426 Fincfn 8720 Dirsetcdrs 18022 toInccipo 18255 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5221 ax-nul 5228 ax-pow 5286 ax-pr 5350 ax-un 7578 ax-cnex 10937 ax-resscn 10938 ax-1cn 10939 ax-icn 10940 ax-addcl 10941 ax-addrcl 10942 ax-mulcl 10943 ax-mulrcl 10944 ax-mulcom 10945 ax-addass 10946 ax-mulass 10947 ax-distr 10948 ax-i2m1 10949 ax-1ne0 10950 ax-1rid 10951 ax-rnegex 10952 ax-rrecex 10953 ax-cnre 10954 ax-pre-lttri 10955 ax-pre-lttrn 10956 ax-pre-ltadd 10957 ax-pre-mulgt0 10958 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3071 df-rab 3073 df-v 3431 df-sbc 3716 df-csb 3832 df-dif 3889 df-un 3891 df-in 3893 df-ss 3903 df-pss 3905 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5074 df-opab 5136 df-mpt 5157 df-tr 5191 df-id 5484 df-eprel 5490 df-po 5498 df-so 5499 df-fr 5539 df-we 5541 df-xp 5590 df-rel 5591 df-cnv 5592 df-co 5593 df-dm 5594 df-rn 5595 df-res 5596 df-ima 5597 df-pred 6195 df-ord 6262 df-on 6263 df-lim 6264 df-suc 6265 df-iota 6384 df-fun 6428 df-fn 6429 df-f 6430 df-f1 6431 df-fo 6432 df-f1o 6433 df-fv 6434 df-riota 7224 df-ov 7270 df-oprab 7271 df-mpo 7272 df-om 7703 df-1st 7820 df-2nd 7821 df-frecs 8084 df-wrecs 8115 df-recs 8189 df-rdg 8228 df-1o 8284 df-er 8485 df-en 8721 df-dom 8722 df-sdom 8723 df-fin 8724 df-pnf 11021 df-mnf 11022 df-xr 11023 df-ltxr 11024 df-le 11025 df-sub 11217 df-neg 11218 df-nn 11984 df-2 12046 df-3 12047 df-4 12048 df-5 12049 df-6 12050 df-7 12051 df-8 12052 df-9 12053 df-n0 12244 df-z 12330 df-dec 12448 df-uz 12593 df-fz 13250 df-struct 16858 df-slot 16893 df-ndx 16905 df-base 16923 df-tset 16991 df-ple 16992 df-ocomp 16993 df-proset 18023 df-drs 18024 df-poset 18041 df-ipo 18256 |
This theorem is referenced by: isacs5lem 18273 isnacs3 40540 |
Copyright terms: Public domain | W3C validator |