MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwmnd Structured version   Visualization version   GIF version

Theorem pwmnd 18893
Description: The power set of a class 𝐴 is a monoid under union. (Contributed by AV, 27-Feb-2024.)
Hypotheses
Ref Expression
pwmnd.b (Base‘𝑀) = 𝒫 𝐴
pwmnd.p (+g𝑀) = (𝑥 ∈ 𝒫 𝐴, 𝑦 ∈ 𝒫 𝐴 ↦ (𝑥𝑦))
Assertion
Ref Expression
pwmnd 𝑀 ∈ Mnd
Distinct variable group:   𝑥,𝐴,𝑦
Allowed substitution hints:   𝑀(𝑥,𝑦)

Proof of Theorem pwmnd
Dummy variables 𝑎 𝑏 𝑐 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pwmnd.b . . . . . 6 (Base‘𝑀) = 𝒫 𝐴
21eleq2i 2817 . . . . 5 (𝑎 ∈ (Base‘𝑀) ↔ 𝑎 ∈ 𝒫 𝐴)
31eleq2i 2817 . . . . 5 (𝑏 ∈ (Base‘𝑀) ↔ 𝑏 ∈ 𝒫 𝐴)
4 pwuncl 7771 . . . . . . 7 ((𝑎 ∈ 𝒫 𝐴𝑏 ∈ 𝒫 𝐴) → (𝑎𝑏) ∈ 𝒫 𝐴)
5 pwmnd.p . . . . . . . 8 (+g𝑀) = (𝑥 ∈ 𝒫 𝐴, 𝑦 ∈ 𝒫 𝐴 ↦ (𝑥𝑦))
61, 5pwmndgplus 18891 . . . . . . 7 ((𝑎 ∈ 𝒫 𝐴𝑏 ∈ 𝒫 𝐴) → (𝑎(+g𝑀)𝑏) = (𝑎𝑏))
71a1i 11 . . . . . . 7 ((𝑎 ∈ 𝒫 𝐴𝑏 ∈ 𝒫 𝐴) → (Base‘𝑀) = 𝒫 𝐴)
84, 6, 73eltr4d 2840 . . . . . 6 ((𝑎 ∈ 𝒫 𝐴𝑏 ∈ 𝒫 𝐴) → (𝑎(+g𝑀)𝑏) ∈ (Base‘𝑀))
91eleq2i 2817 . . . . . . . 8 (𝑐 ∈ (Base‘𝑀) ↔ 𝑐 ∈ 𝒫 𝐴)
10 unass 4165 . . . . . . . . . 10 ((𝑎𝑏) ∪ 𝑐) = (𝑎 ∪ (𝑏𝑐))
116adantr 479 . . . . . . . . . . . 12 (((𝑎 ∈ 𝒫 𝐴𝑏 ∈ 𝒫 𝐴) ∧ 𝑐 ∈ 𝒫 𝐴) → (𝑎(+g𝑀)𝑏) = (𝑎𝑏))
1211oveq1d 7432 . . . . . . . . . . 11 (((𝑎 ∈ 𝒫 𝐴𝑏 ∈ 𝒫 𝐴) ∧ 𝑐 ∈ 𝒫 𝐴) → ((𝑎(+g𝑀)𝑏)(+g𝑀)𝑐) = ((𝑎𝑏)(+g𝑀)𝑐))
131, 5pwmndgplus 18891 . . . . . . . . . . . 12 (((𝑎𝑏) ∈ 𝒫 𝐴𝑐 ∈ 𝒫 𝐴) → ((𝑎𝑏)(+g𝑀)𝑐) = ((𝑎𝑏) ∪ 𝑐))
144, 13sylan 578 . . . . . . . . . . 11 (((𝑎 ∈ 𝒫 𝐴𝑏 ∈ 𝒫 𝐴) ∧ 𝑐 ∈ 𝒫 𝐴) → ((𝑎𝑏)(+g𝑀)𝑐) = ((𝑎𝑏) ∪ 𝑐))
1512, 14eqtrd 2765 . . . . . . . . . 10 (((𝑎 ∈ 𝒫 𝐴𝑏 ∈ 𝒫 𝐴) ∧ 𝑐 ∈ 𝒫 𝐴) → ((𝑎(+g𝑀)𝑏)(+g𝑀)𝑐) = ((𝑎𝑏) ∪ 𝑐))
161, 5pwmndgplus 18891 . . . . . . . . . . . . 13 ((𝑏 ∈ 𝒫 𝐴𝑐 ∈ 𝒫 𝐴) → (𝑏(+g𝑀)𝑐) = (𝑏𝑐))
1716adantll 712 . . . . . . . . . . . 12 (((𝑎 ∈ 𝒫 𝐴𝑏 ∈ 𝒫 𝐴) ∧ 𝑐 ∈ 𝒫 𝐴) → (𝑏(+g𝑀)𝑐) = (𝑏𝑐))
1817oveq2d 7433 . . . . . . . . . . 11 (((𝑎 ∈ 𝒫 𝐴𝑏 ∈ 𝒫 𝐴) ∧ 𝑐 ∈ 𝒫 𝐴) → (𝑎(+g𝑀)(𝑏(+g𝑀)𝑐)) = (𝑎(+g𝑀)(𝑏𝑐)))
19 simpll 765 . . . . . . . . . . . . 13 (((𝑎 ∈ 𝒫 𝐴𝑏 ∈ 𝒫 𝐴) ∧ 𝑐 ∈ 𝒫 𝐴) → 𝑎 ∈ 𝒫 𝐴)
20 pwuncl 7771 . . . . . . . . . . . . . 14 ((𝑏 ∈ 𝒫 𝐴𝑐 ∈ 𝒫 𝐴) → (𝑏𝑐) ∈ 𝒫 𝐴)
2120adantll 712 . . . . . . . . . . . . 13 (((𝑎 ∈ 𝒫 𝐴𝑏 ∈ 𝒫 𝐴) ∧ 𝑐 ∈ 𝒫 𝐴) → (𝑏𝑐) ∈ 𝒫 𝐴)
2219, 21jca 510 . . . . . . . . . . . 12 (((𝑎 ∈ 𝒫 𝐴𝑏 ∈ 𝒫 𝐴) ∧ 𝑐 ∈ 𝒫 𝐴) → (𝑎 ∈ 𝒫 𝐴 ∧ (𝑏𝑐) ∈ 𝒫 𝐴))
231, 5pwmndgplus 18891 . . . . . . . . . . . 12 ((𝑎 ∈ 𝒫 𝐴 ∧ (𝑏𝑐) ∈ 𝒫 𝐴) → (𝑎(+g𝑀)(𝑏𝑐)) = (𝑎 ∪ (𝑏𝑐)))
2422, 23syl 17 . . . . . . . . . . 11 (((𝑎 ∈ 𝒫 𝐴𝑏 ∈ 𝒫 𝐴) ∧ 𝑐 ∈ 𝒫 𝐴) → (𝑎(+g𝑀)(𝑏𝑐)) = (𝑎 ∪ (𝑏𝑐)))
2518, 24eqtrd 2765 . . . . . . . . . 10 (((𝑎 ∈ 𝒫 𝐴𝑏 ∈ 𝒫 𝐴) ∧ 𝑐 ∈ 𝒫 𝐴) → (𝑎(+g𝑀)(𝑏(+g𝑀)𝑐)) = (𝑎 ∪ (𝑏𝑐)))
2610, 15, 253eqtr4a 2791 . . . . . . . . 9 (((𝑎 ∈ 𝒫 𝐴𝑏 ∈ 𝒫 𝐴) ∧ 𝑐 ∈ 𝒫 𝐴) → ((𝑎(+g𝑀)𝑏)(+g𝑀)𝑐) = (𝑎(+g𝑀)(𝑏(+g𝑀)𝑐)))
2726ex 411 . . . . . . . 8 ((𝑎 ∈ 𝒫 𝐴𝑏 ∈ 𝒫 𝐴) → (𝑐 ∈ 𝒫 𝐴 → ((𝑎(+g𝑀)𝑏)(+g𝑀)𝑐) = (𝑎(+g𝑀)(𝑏(+g𝑀)𝑐))))
289, 27biimtrid 241 . . . . . . 7 ((𝑎 ∈ 𝒫 𝐴𝑏 ∈ 𝒫 𝐴) → (𝑐 ∈ (Base‘𝑀) → ((𝑎(+g𝑀)𝑏)(+g𝑀)𝑐) = (𝑎(+g𝑀)(𝑏(+g𝑀)𝑐))))
2928ralrimiv 3135 . . . . . 6 ((𝑎 ∈ 𝒫 𝐴𝑏 ∈ 𝒫 𝐴) → ∀𝑐 ∈ (Base‘𝑀)((𝑎(+g𝑀)𝑏)(+g𝑀)𝑐) = (𝑎(+g𝑀)(𝑏(+g𝑀)𝑐)))
308, 29jca 510 . . . . 5 ((𝑎 ∈ 𝒫 𝐴𝑏 ∈ 𝒫 𝐴) → ((𝑎(+g𝑀)𝑏) ∈ (Base‘𝑀) ∧ ∀𝑐 ∈ (Base‘𝑀)((𝑎(+g𝑀)𝑏)(+g𝑀)𝑐) = (𝑎(+g𝑀)(𝑏(+g𝑀)𝑐))))
312, 3, 30syl2anb 596 . . . 4 ((𝑎 ∈ (Base‘𝑀) ∧ 𝑏 ∈ (Base‘𝑀)) → ((𝑎(+g𝑀)𝑏) ∈ (Base‘𝑀) ∧ ∀𝑐 ∈ (Base‘𝑀)((𝑎(+g𝑀)𝑏)(+g𝑀)𝑐) = (𝑎(+g𝑀)(𝑏(+g𝑀)𝑐))))
3231rgen2 3188 . . 3 𝑎 ∈ (Base‘𝑀)∀𝑏 ∈ (Base‘𝑀)((𝑎(+g𝑀)𝑏) ∈ (Base‘𝑀) ∧ ∀𝑐 ∈ (Base‘𝑀)((𝑎(+g𝑀)𝑏)(+g𝑀)𝑐) = (𝑎(+g𝑀)(𝑏(+g𝑀)𝑐)))
33 0ex 5307 . . . . 5 ∅ ∈ V
34 eleq1 2813 . . . . . 6 (𝑒 = ∅ → (𝑒 ∈ (Base‘𝑀) ↔ ∅ ∈ (Base‘𝑀)))
35 oveq1 7424 . . . . . . . . 9 (𝑒 = ∅ → (𝑒(+g𝑀)𝑎) = (∅(+g𝑀)𝑎))
3635eqeq1d 2727 . . . . . . . 8 (𝑒 = ∅ → ((𝑒(+g𝑀)𝑎) = 𝑎 ↔ (∅(+g𝑀)𝑎) = 𝑎))
37 oveq2 7425 . . . . . . . . 9 (𝑒 = ∅ → (𝑎(+g𝑀)𝑒) = (𝑎(+g𝑀)∅))
3837eqeq1d 2727 . . . . . . . 8 (𝑒 = ∅ → ((𝑎(+g𝑀)𝑒) = 𝑎 ↔ (𝑎(+g𝑀)∅) = 𝑎))
3936, 38anbi12d 630 . . . . . . 7 (𝑒 = ∅ → (((𝑒(+g𝑀)𝑎) = 𝑎 ∧ (𝑎(+g𝑀)𝑒) = 𝑎) ↔ ((∅(+g𝑀)𝑎) = 𝑎 ∧ (𝑎(+g𝑀)∅) = 𝑎)))
4039ralbidv 3168 . . . . . 6 (𝑒 = ∅ → (∀𝑎 ∈ (Base‘𝑀)((𝑒(+g𝑀)𝑎) = 𝑎 ∧ (𝑎(+g𝑀)𝑒) = 𝑎) ↔ ∀𝑎 ∈ (Base‘𝑀)((∅(+g𝑀)𝑎) = 𝑎 ∧ (𝑎(+g𝑀)∅) = 𝑎)))
4134, 40anbi12d 630 . . . . 5 (𝑒 = ∅ → ((𝑒 ∈ (Base‘𝑀) ∧ ∀𝑎 ∈ (Base‘𝑀)((𝑒(+g𝑀)𝑎) = 𝑎 ∧ (𝑎(+g𝑀)𝑒) = 𝑎)) ↔ (∅ ∈ (Base‘𝑀) ∧ ∀𝑎 ∈ (Base‘𝑀)((∅(+g𝑀)𝑎) = 𝑎 ∧ (𝑎(+g𝑀)∅) = 𝑎))))
42 0elpw 5355 . . . . . . 7 ∅ ∈ 𝒫 𝐴
4342, 1eleqtrri 2824 . . . . . 6 ∅ ∈ (Base‘𝑀)
441, 5pwmndgplus 18891 . . . . . . . . . . 11 ((∅ ∈ 𝒫 𝐴𝑎 ∈ 𝒫 𝐴) → (∅(+g𝑀)𝑎) = (∅ ∪ 𝑎))
45 0un 4393 . . . . . . . . . . 11 (∅ ∪ 𝑎) = 𝑎
4644, 45eqtrdi 2781 . . . . . . . . . 10 ((∅ ∈ 𝒫 𝐴𝑎 ∈ 𝒫 𝐴) → (∅(+g𝑀)𝑎) = 𝑎)
471, 5pwmndgplus 18891 . . . . . . . . . . . 12 ((𝑎 ∈ 𝒫 𝐴 ∧ ∅ ∈ 𝒫 𝐴) → (𝑎(+g𝑀)∅) = (𝑎 ∪ ∅))
4847ancoms 457 . . . . . . . . . . 11 ((∅ ∈ 𝒫 𝐴𝑎 ∈ 𝒫 𝐴) → (𝑎(+g𝑀)∅) = (𝑎 ∪ ∅))
49 un0 4391 . . . . . . . . . . 11 (𝑎 ∪ ∅) = 𝑎
5048, 49eqtrdi 2781 . . . . . . . . . 10 ((∅ ∈ 𝒫 𝐴𝑎 ∈ 𝒫 𝐴) → (𝑎(+g𝑀)∅) = 𝑎)
5146, 50jca 510 . . . . . . . . 9 ((∅ ∈ 𝒫 𝐴𝑎 ∈ 𝒫 𝐴) → ((∅(+g𝑀)𝑎) = 𝑎 ∧ (𝑎(+g𝑀)∅) = 𝑎))
5242, 51mpan 688 . . . . . . . 8 (𝑎 ∈ 𝒫 𝐴 → ((∅(+g𝑀)𝑎) = 𝑎 ∧ (𝑎(+g𝑀)∅) = 𝑎))
532, 52sylbi 216 . . . . . . 7 (𝑎 ∈ (Base‘𝑀) → ((∅(+g𝑀)𝑎) = 𝑎 ∧ (𝑎(+g𝑀)∅) = 𝑎))
5453rgen 3053 . . . . . 6 𝑎 ∈ (Base‘𝑀)((∅(+g𝑀)𝑎) = 𝑎 ∧ (𝑎(+g𝑀)∅) = 𝑎)
5543, 54pm3.2i 469 . . . . 5 (∅ ∈ (Base‘𝑀) ∧ ∀𝑎 ∈ (Base‘𝑀)((∅(+g𝑀)𝑎) = 𝑎 ∧ (𝑎(+g𝑀)∅) = 𝑎))
5633, 41, 55ceqsexv2d 3519 . . . 4 𝑒(𝑒 ∈ (Base‘𝑀) ∧ ∀𝑎 ∈ (Base‘𝑀)((𝑒(+g𝑀)𝑎) = 𝑎 ∧ (𝑎(+g𝑀)𝑒) = 𝑎))
57 df-rex 3061 . . . 4 (∃𝑒 ∈ (Base‘𝑀)∀𝑎 ∈ (Base‘𝑀)((𝑒(+g𝑀)𝑎) = 𝑎 ∧ (𝑎(+g𝑀)𝑒) = 𝑎) ↔ ∃𝑒(𝑒 ∈ (Base‘𝑀) ∧ ∀𝑎 ∈ (Base‘𝑀)((𝑒(+g𝑀)𝑎) = 𝑎 ∧ (𝑎(+g𝑀)𝑒) = 𝑎)))
5856, 57mpbir 230 . . 3 𝑒 ∈ (Base‘𝑀)∀𝑎 ∈ (Base‘𝑀)((𝑒(+g𝑀)𝑎) = 𝑎 ∧ (𝑎(+g𝑀)𝑒) = 𝑎)
5932, 58pm3.2i 469 . 2 (∀𝑎 ∈ (Base‘𝑀)∀𝑏 ∈ (Base‘𝑀)((𝑎(+g𝑀)𝑏) ∈ (Base‘𝑀) ∧ ∀𝑐 ∈ (Base‘𝑀)((𝑎(+g𝑀)𝑏)(+g𝑀)𝑐) = (𝑎(+g𝑀)(𝑏(+g𝑀)𝑐))) ∧ ∃𝑒 ∈ (Base‘𝑀)∀𝑎 ∈ (Base‘𝑀)((𝑒(+g𝑀)𝑎) = 𝑎 ∧ (𝑎(+g𝑀)𝑒) = 𝑎))
60 eqid 2725 . . 3 (Base‘𝑀) = (Base‘𝑀)
61 eqid 2725 . . 3 (+g𝑀) = (+g𝑀)
6260, 61ismnd 18696 . 2 (𝑀 ∈ Mnd ↔ (∀𝑎 ∈ (Base‘𝑀)∀𝑏 ∈ (Base‘𝑀)((𝑎(+g𝑀)𝑏) ∈ (Base‘𝑀) ∧ ∀𝑐 ∈ (Base‘𝑀)((𝑎(+g𝑀)𝑏)(+g𝑀)𝑐) = (𝑎(+g𝑀)(𝑏(+g𝑀)𝑐))) ∧ ∃𝑒 ∈ (Base‘𝑀)∀𝑎 ∈ (Base‘𝑀)((𝑒(+g𝑀)𝑎) = 𝑎 ∧ (𝑎(+g𝑀)𝑒) = 𝑎)))
6359, 62mpbir 230 1 𝑀 ∈ Mnd
Colors of variables: wff setvar class
Syntax hints:  wa 394   = wceq 1533  wex 1773  wcel 2098  wral 3051  wrex 3060  cun 3943  c0 4323  𝒫 cpw 4603  cfv 6547  (class class class)co 7417  cmpo 7419  Basecbs 17179  +gcplusg 17232  Mndcmnd 18693
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5299  ax-nul 5306  ax-pr 5428  ax-un 7739
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3465  df-sbc 3775  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-br 5149  df-opab 5211  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-iota 6499  df-fun 6549  df-fv 6555  df-ov 7420  df-oprab 7421  df-mpo 7422  df-mgm 18599  df-sgrp 18678  df-mnd 18694
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator