MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwmnd Structured version   Visualization version   GIF version

Theorem pwmnd 18747
Description: The power set of a class 𝐴 is a monoid under union. (Contributed by AV, 27-Feb-2024.)
Hypotheses
Ref Expression
pwmnd.b (Base‘𝑀) = 𝒫 𝐴
pwmnd.p (+g𝑀) = (𝑥 ∈ 𝒫 𝐴, 𝑦 ∈ 𝒫 𝐴 ↦ (𝑥𝑦))
Assertion
Ref Expression
pwmnd 𝑀 ∈ Mnd
Distinct variable group:   𝑥,𝐴,𝑦
Allowed substitution hints:   𝑀(𝑥,𝑦)

Proof of Theorem pwmnd
Dummy variables 𝑎 𝑏 𝑐 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pwmnd.b . . . . . 6 (Base‘𝑀) = 𝒫 𝐴
21eleq2i 2829 . . . . 5 (𝑎 ∈ (Base‘𝑀) ↔ 𝑎 ∈ 𝒫 𝐴)
31eleq2i 2829 . . . . 5 (𝑏 ∈ (Base‘𝑀) ↔ 𝑏 ∈ 𝒫 𝐴)
4 pwuncl 7704 . . . . . . 7 ((𝑎 ∈ 𝒫 𝐴𝑏 ∈ 𝒫 𝐴) → (𝑎𝑏) ∈ 𝒫 𝐴)
5 pwmnd.p . . . . . . . 8 (+g𝑀) = (𝑥 ∈ 𝒫 𝐴, 𝑦 ∈ 𝒫 𝐴 ↦ (𝑥𝑦))
61, 5pwmndgplus 18745 . . . . . . 7 ((𝑎 ∈ 𝒫 𝐴𝑏 ∈ 𝒫 𝐴) → (𝑎(+g𝑀)𝑏) = (𝑎𝑏))
71a1i 11 . . . . . . 7 ((𝑎 ∈ 𝒫 𝐴𝑏 ∈ 𝒫 𝐴) → (Base‘𝑀) = 𝒫 𝐴)
84, 6, 73eltr4d 2853 . . . . . 6 ((𝑎 ∈ 𝒫 𝐴𝑏 ∈ 𝒫 𝐴) → (𝑎(+g𝑀)𝑏) ∈ (Base‘𝑀))
91eleq2i 2829 . . . . . . . 8 (𝑐 ∈ (Base‘𝑀) ↔ 𝑐 ∈ 𝒫 𝐴)
10 unass 4126 . . . . . . . . . 10 ((𝑎𝑏) ∪ 𝑐) = (𝑎 ∪ (𝑏𝑐))
116adantr 481 . . . . . . . . . . . 12 (((𝑎 ∈ 𝒫 𝐴𝑏 ∈ 𝒫 𝐴) ∧ 𝑐 ∈ 𝒫 𝐴) → (𝑎(+g𝑀)𝑏) = (𝑎𝑏))
1211oveq1d 7372 . . . . . . . . . . 11 (((𝑎 ∈ 𝒫 𝐴𝑏 ∈ 𝒫 𝐴) ∧ 𝑐 ∈ 𝒫 𝐴) → ((𝑎(+g𝑀)𝑏)(+g𝑀)𝑐) = ((𝑎𝑏)(+g𝑀)𝑐))
131, 5pwmndgplus 18745 . . . . . . . . . . . 12 (((𝑎𝑏) ∈ 𝒫 𝐴𝑐 ∈ 𝒫 𝐴) → ((𝑎𝑏)(+g𝑀)𝑐) = ((𝑎𝑏) ∪ 𝑐))
144, 13sylan 580 . . . . . . . . . . 11 (((𝑎 ∈ 𝒫 𝐴𝑏 ∈ 𝒫 𝐴) ∧ 𝑐 ∈ 𝒫 𝐴) → ((𝑎𝑏)(+g𝑀)𝑐) = ((𝑎𝑏) ∪ 𝑐))
1512, 14eqtrd 2776 . . . . . . . . . 10 (((𝑎 ∈ 𝒫 𝐴𝑏 ∈ 𝒫 𝐴) ∧ 𝑐 ∈ 𝒫 𝐴) → ((𝑎(+g𝑀)𝑏)(+g𝑀)𝑐) = ((𝑎𝑏) ∪ 𝑐))
161, 5pwmndgplus 18745 . . . . . . . . . . . . 13 ((𝑏 ∈ 𝒫 𝐴𝑐 ∈ 𝒫 𝐴) → (𝑏(+g𝑀)𝑐) = (𝑏𝑐))
1716adantll 712 . . . . . . . . . . . 12 (((𝑎 ∈ 𝒫 𝐴𝑏 ∈ 𝒫 𝐴) ∧ 𝑐 ∈ 𝒫 𝐴) → (𝑏(+g𝑀)𝑐) = (𝑏𝑐))
1817oveq2d 7373 . . . . . . . . . . 11 (((𝑎 ∈ 𝒫 𝐴𝑏 ∈ 𝒫 𝐴) ∧ 𝑐 ∈ 𝒫 𝐴) → (𝑎(+g𝑀)(𝑏(+g𝑀)𝑐)) = (𝑎(+g𝑀)(𝑏𝑐)))
19 simpll 765 . . . . . . . . . . . . 13 (((𝑎 ∈ 𝒫 𝐴𝑏 ∈ 𝒫 𝐴) ∧ 𝑐 ∈ 𝒫 𝐴) → 𝑎 ∈ 𝒫 𝐴)
20 pwuncl 7704 . . . . . . . . . . . . . 14 ((𝑏 ∈ 𝒫 𝐴𝑐 ∈ 𝒫 𝐴) → (𝑏𝑐) ∈ 𝒫 𝐴)
2120adantll 712 . . . . . . . . . . . . 13 (((𝑎 ∈ 𝒫 𝐴𝑏 ∈ 𝒫 𝐴) ∧ 𝑐 ∈ 𝒫 𝐴) → (𝑏𝑐) ∈ 𝒫 𝐴)
2219, 21jca 512 . . . . . . . . . . . 12 (((𝑎 ∈ 𝒫 𝐴𝑏 ∈ 𝒫 𝐴) ∧ 𝑐 ∈ 𝒫 𝐴) → (𝑎 ∈ 𝒫 𝐴 ∧ (𝑏𝑐) ∈ 𝒫 𝐴))
231, 5pwmndgplus 18745 . . . . . . . . . . . 12 ((𝑎 ∈ 𝒫 𝐴 ∧ (𝑏𝑐) ∈ 𝒫 𝐴) → (𝑎(+g𝑀)(𝑏𝑐)) = (𝑎 ∪ (𝑏𝑐)))
2422, 23syl 17 . . . . . . . . . . 11 (((𝑎 ∈ 𝒫 𝐴𝑏 ∈ 𝒫 𝐴) ∧ 𝑐 ∈ 𝒫 𝐴) → (𝑎(+g𝑀)(𝑏𝑐)) = (𝑎 ∪ (𝑏𝑐)))
2518, 24eqtrd 2776 . . . . . . . . . 10 (((𝑎 ∈ 𝒫 𝐴𝑏 ∈ 𝒫 𝐴) ∧ 𝑐 ∈ 𝒫 𝐴) → (𝑎(+g𝑀)(𝑏(+g𝑀)𝑐)) = (𝑎 ∪ (𝑏𝑐)))
2610, 15, 253eqtr4a 2802 . . . . . . . . 9 (((𝑎 ∈ 𝒫 𝐴𝑏 ∈ 𝒫 𝐴) ∧ 𝑐 ∈ 𝒫 𝐴) → ((𝑎(+g𝑀)𝑏)(+g𝑀)𝑐) = (𝑎(+g𝑀)(𝑏(+g𝑀)𝑐)))
2726ex 413 . . . . . . . 8 ((𝑎 ∈ 𝒫 𝐴𝑏 ∈ 𝒫 𝐴) → (𝑐 ∈ 𝒫 𝐴 → ((𝑎(+g𝑀)𝑏)(+g𝑀)𝑐) = (𝑎(+g𝑀)(𝑏(+g𝑀)𝑐))))
289, 27biimtrid 241 . . . . . . 7 ((𝑎 ∈ 𝒫 𝐴𝑏 ∈ 𝒫 𝐴) → (𝑐 ∈ (Base‘𝑀) → ((𝑎(+g𝑀)𝑏)(+g𝑀)𝑐) = (𝑎(+g𝑀)(𝑏(+g𝑀)𝑐))))
2928ralrimiv 3142 . . . . . 6 ((𝑎 ∈ 𝒫 𝐴𝑏 ∈ 𝒫 𝐴) → ∀𝑐 ∈ (Base‘𝑀)((𝑎(+g𝑀)𝑏)(+g𝑀)𝑐) = (𝑎(+g𝑀)(𝑏(+g𝑀)𝑐)))
308, 29jca 512 . . . . 5 ((𝑎 ∈ 𝒫 𝐴𝑏 ∈ 𝒫 𝐴) → ((𝑎(+g𝑀)𝑏) ∈ (Base‘𝑀) ∧ ∀𝑐 ∈ (Base‘𝑀)((𝑎(+g𝑀)𝑏)(+g𝑀)𝑐) = (𝑎(+g𝑀)(𝑏(+g𝑀)𝑐))))
312, 3, 30syl2anb 598 . . . 4 ((𝑎 ∈ (Base‘𝑀) ∧ 𝑏 ∈ (Base‘𝑀)) → ((𝑎(+g𝑀)𝑏) ∈ (Base‘𝑀) ∧ ∀𝑐 ∈ (Base‘𝑀)((𝑎(+g𝑀)𝑏)(+g𝑀)𝑐) = (𝑎(+g𝑀)(𝑏(+g𝑀)𝑐))))
3231rgen2 3194 . . 3 𝑎 ∈ (Base‘𝑀)∀𝑏 ∈ (Base‘𝑀)((𝑎(+g𝑀)𝑏) ∈ (Base‘𝑀) ∧ ∀𝑐 ∈ (Base‘𝑀)((𝑎(+g𝑀)𝑏)(+g𝑀)𝑐) = (𝑎(+g𝑀)(𝑏(+g𝑀)𝑐)))
33 0ex 5264 . . . . 5 ∅ ∈ V
34 eleq1 2825 . . . . . 6 (𝑒 = ∅ → (𝑒 ∈ (Base‘𝑀) ↔ ∅ ∈ (Base‘𝑀)))
35 oveq1 7364 . . . . . . . . 9 (𝑒 = ∅ → (𝑒(+g𝑀)𝑎) = (∅(+g𝑀)𝑎))
3635eqeq1d 2738 . . . . . . . 8 (𝑒 = ∅ → ((𝑒(+g𝑀)𝑎) = 𝑎 ↔ (∅(+g𝑀)𝑎) = 𝑎))
37 oveq2 7365 . . . . . . . . 9 (𝑒 = ∅ → (𝑎(+g𝑀)𝑒) = (𝑎(+g𝑀)∅))
3837eqeq1d 2738 . . . . . . . 8 (𝑒 = ∅ → ((𝑎(+g𝑀)𝑒) = 𝑎 ↔ (𝑎(+g𝑀)∅) = 𝑎))
3936, 38anbi12d 631 . . . . . . 7 (𝑒 = ∅ → (((𝑒(+g𝑀)𝑎) = 𝑎 ∧ (𝑎(+g𝑀)𝑒) = 𝑎) ↔ ((∅(+g𝑀)𝑎) = 𝑎 ∧ (𝑎(+g𝑀)∅) = 𝑎)))
4039ralbidv 3174 . . . . . 6 (𝑒 = ∅ → (∀𝑎 ∈ (Base‘𝑀)((𝑒(+g𝑀)𝑎) = 𝑎 ∧ (𝑎(+g𝑀)𝑒) = 𝑎) ↔ ∀𝑎 ∈ (Base‘𝑀)((∅(+g𝑀)𝑎) = 𝑎 ∧ (𝑎(+g𝑀)∅) = 𝑎)))
4134, 40anbi12d 631 . . . . 5 (𝑒 = ∅ → ((𝑒 ∈ (Base‘𝑀) ∧ ∀𝑎 ∈ (Base‘𝑀)((𝑒(+g𝑀)𝑎) = 𝑎 ∧ (𝑎(+g𝑀)𝑒) = 𝑎)) ↔ (∅ ∈ (Base‘𝑀) ∧ ∀𝑎 ∈ (Base‘𝑀)((∅(+g𝑀)𝑎) = 𝑎 ∧ (𝑎(+g𝑀)∅) = 𝑎))))
42 0elpw 5311 . . . . . . 7 ∅ ∈ 𝒫 𝐴
4342, 1eleqtrri 2837 . . . . . 6 ∅ ∈ (Base‘𝑀)
441, 5pwmndgplus 18745 . . . . . . . . . . 11 ((∅ ∈ 𝒫 𝐴𝑎 ∈ 𝒫 𝐴) → (∅(+g𝑀)𝑎) = (∅ ∪ 𝑎))
45 0un 4352 . . . . . . . . . . 11 (∅ ∪ 𝑎) = 𝑎
4644, 45eqtrdi 2792 . . . . . . . . . 10 ((∅ ∈ 𝒫 𝐴𝑎 ∈ 𝒫 𝐴) → (∅(+g𝑀)𝑎) = 𝑎)
471, 5pwmndgplus 18745 . . . . . . . . . . . 12 ((𝑎 ∈ 𝒫 𝐴 ∧ ∅ ∈ 𝒫 𝐴) → (𝑎(+g𝑀)∅) = (𝑎 ∪ ∅))
4847ancoms 459 . . . . . . . . . . 11 ((∅ ∈ 𝒫 𝐴𝑎 ∈ 𝒫 𝐴) → (𝑎(+g𝑀)∅) = (𝑎 ∪ ∅))
49 un0 4350 . . . . . . . . . . 11 (𝑎 ∪ ∅) = 𝑎
5048, 49eqtrdi 2792 . . . . . . . . . 10 ((∅ ∈ 𝒫 𝐴𝑎 ∈ 𝒫 𝐴) → (𝑎(+g𝑀)∅) = 𝑎)
5146, 50jca 512 . . . . . . . . 9 ((∅ ∈ 𝒫 𝐴𝑎 ∈ 𝒫 𝐴) → ((∅(+g𝑀)𝑎) = 𝑎 ∧ (𝑎(+g𝑀)∅) = 𝑎))
5242, 51mpan 688 . . . . . . . 8 (𝑎 ∈ 𝒫 𝐴 → ((∅(+g𝑀)𝑎) = 𝑎 ∧ (𝑎(+g𝑀)∅) = 𝑎))
532, 52sylbi 216 . . . . . . 7 (𝑎 ∈ (Base‘𝑀) → ((∅(+g𝑀)𝑎) = 𝑎 ∧ (𝑎(+g𝑀)∅) = 𝑎))
5453rgen 3066 . . . . . 6 𝑎 ∈ (Base‘𝑀)((∅(+g𝑀)𝑎) = 𝑎 ∧ (𝑎(+g𝑀)∅) = 𝑎)
5543, 54pm3.2i 471 . . . . 5 (∅ ∈ (Base‘𝑀) ∧ ∀𝑎 ∈ (Base‘𝑀)((∅(+g𝑀)𝑎) = 𝑎 ∧ (𝑎(+g𝑀)∅) = 𝑎))
5633, 41, 55ceqsexv2d 3497 . . . 4 𝑒(𝑒 ∈ (Base‘𝑀) ∧ ∀𝑎 ∈ (Base‘𝑀)((𝑒(+g𝑀)𝑎) = 𝑎 ∧ (𝑎(+g𝑀)𝑒) = 𝑎))
57 df-rex 3074 . . . 4 (∃𝑒 ∈ (Base‘𝑀)∀𝑎 ∈ (Base‘𝑀)((𝑒(+g𝑀)𝑎) = 𝑎 ∧ (𝑎(+g𝑀)𝑒) = 𝑎) ↔ ∃𝑒(𝑒 ∈ (Base‘𝑀) ∧ ∀𝑎 ∈ (Base‘𝑀)((𝑒(+g𝑀)𝑎) = 𝑎 ∧ (𝑎(+g𝑀)𝑒) = 𝑎)))
5856, 57mpbir 230 . . 3 𝑒 ∈ (Base‘𝑀)∀𝑎 ∈ (Base‘𝑀)((𝑒(+g𝑀)𝑎) = 𝑎 ∧ (𝑎(+g𝑀)𝑒) = 𝑎)
5932, 58pm3.2i 471 . 2 (∀𝑎 ∈ (Base‘𝑀)∀𝑏 ∈ (Base‘𝑀)((𝑎(+g𝑀)𝑏) ∈ (Base‘𝑀) ∧ ∀𝑐 ∈ (Base‘𝑀)((𝑎(+g𝑀)𝑏)(+g𝑀)𝑐) = (𝑎(+g𝑀)(𝑏(+g𝑀)𝑐))) ∧ ∃𝑒 ∈ (Base‘𝑀)∀𝑎 ∈ (Base‘𝑀)((𝑒(+g𝑀)𝑎) = 𝑎 ∧ (𝑎(+g𝑀)𝑒) = 𝑎))
60 eqid 2736 . . 3 (Base‘𝑀) = (Base‘𝑀)
61 eqid 2736 . . 3 (+g𝑀) = (+g𝑀)
6260, 61ismnd 18559 . 2 (𝑀 ∈ Mnd ↔ (∀𝑎 ∈ (Base‘𝑀)∀𝑏 ∈ (Base‘𝑀)((𝑎(+g𝑀)𝑏) ∈ (Base‘𝑀) ∧ ∀𝑐 ∈ (Base‘𝑀)((𝑎(+g𝑀)𝑏)(+g𝑀)𝑐) = (𝑎(+g𝑀)(𝑏(+g𝑀)𝑐))) ∧ ∃𝑒 ∈ (Base‘𝑀)∀𝑎 ∈ (Base‘𝑀)((𝑒(+g𝑀)𝑎) = 𝑎 ∧ (𝑎(+g𝑀)𝑒) = 𝑎)))
6359, 62mpbir 230 1 𝑀 ∈ Mnd
Colors of variables: wff setvar class
Syntax hints:  wa 396   = wceq 1541  wex 1781  wcel 2106  wral 3064  wrex 3073  cun 3908  c0 4282  𝒫 cpw 4560  cfv 6496  (class class class)co 7357  cmpo 7359  Basecbs 17083  +gcplusg 17133  Mndcmnd 18556
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pr 5384  ax-un 7672
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-rab 3408  df-v 3447  df-sbc 3740  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-br 5106  df-opab 5168  df-id 5531  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-iota 6448  df-fun 6498  df-fv 6504  df-ov 7360  df-oprab 7361  df-mpo 7362  df-mgm 18497  df-sgrp 18546  df-mnd 18557
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator